CN104880944B - 一种新型变结构pi控制器 - Google Patents

一种新型变结构pi控制器 Download PDF

Info

Publication number
CN104880944B
CN104880944B CN201510317763.3A CN201510317763A CN104880944B CN 104880944 B CN104880944 B CN 104880944B CN 201510317763 A CN201510317763 A CN 201510317763A CN 104880944 B CN104880944 B CN 104880944B
Authority
CN
China
Prior art keywords
link
input
subtracter
output end
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510317763.3A
Other languages
English (en)
Other versions
CN104880944A (zh
Inventor
左月飞
符慧
刘闯
张涛
胡烨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Leili Motor Co Ltd
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201510317763.3A priority Critical patent/CN104880944B/zh
Publication of CN104880944A publication Critical patent/CN104880944A/zh
Application granted granted Critical
Publication of CN104880944B publication Critical patent/CN104880944B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

本发明公开了一种新型变结构PI控制器,包括给定微分前馈环节、比例微分环节、积分环节、抗积分饱和环节、控制增益环节、限幅环节、加法器、第一减法器和第二减法器。给定微分前馈环节和抗积分饱和环节相互配合,使得本发明对连续变化和非连续变化给定呈现不同的结构特性。本发明在解决阶跃响应超调问题的同时提高对连续变化给定的跟踪性能。

Description

一种新型变结构PI控制器
技术领域
本发明属于控制技术领域,特别涉及了一种新型变结构PI控制器。
背景技术
目前,如图1所示的传统线性PI控制器,因其结构简单在工业应用中占据主导地位。然而传统线性PI控制器存在一些问题,比如控制参数整定困难、阶跃响应存在超调等。
针对传统线性PI控制时阶跃响应的超调问题,文献[1](韩京清.自抗扰控制技术—估计补偿不确定因素的控制技术[M].北京:国防工业出版社.2008.)提出采用跟踪微分器对阶跃给定安排过渡过程来实现无超调控制,但存在参数调节复杂的问题。文献[2](黄科元,周滔滔,黄守道,等.永磁伺服系统基于微分自适应补偿的快速无超调控制策略[J].电工技术学报,2014,29(09):137-144.)采用输出微分负反馈来消除超调,然而输出微分会引入噪声,影响系统性能。为抑制噪声,文献[3](李光泉,葛红娟,刘天翔,马春江.永磁同步电机调速系统的伪微分反馈控制[J].电工技术学报.2010,25(08):18-23.)在文献[2]的基础上将PI控制改成I控制以构成IP控制器,该方法尽管消除了超调,但对连续变化给定的跟踪性能变差。
发明内容
为了解决上述背景技术提出的技术问题,本发明旨在提供一种新型变结构PI控制器,在解决阶跃响应超调问题的同时提高系统对连续变化给定的跟踪性能。
为了实现上述技术目的,本发明的技术方案为:
一种新型变结构PI控制器,包括给定微分前馈环节、比例微分环节、积分环节、抗积分饱和环节、控制增益环节、限幅环节、加法器、第一减法器和第二减法器,所述第一减法器的正输入端输入给定信号,第一减法器的负输入端输入反馈信号,第一减法器的输出端连接比例微分环节的输入端,所述给定微分前馈环节的输入端输入前述给定信号,给定微分前馈环节的输出端连接加法器的第一输入端,加法器的第二输入端连接积分环节的输出端,加法器的输出端连接控制增益环节的输入端,控制增益环节的输出端分别连接限幅环节的输入端和第二减法器的正输入端,限幅环节的输出端作为控制器的输出,同时限幅环节的输出端连接第二减法器的负输入端,所述抗积分饱和环节的输入端分别连接比例积分环节的输出端和第二减法器的输出端,抗积分饱和环节的输出端连接积分环节的输入端。
其中,上述给定微分前馈环节为一阶微分器。
其中,上述比例微分环节的比例系数为1。
其中,上述抗积分饱和环节采用遇限停止积分法,控制器进入饱和区后,当第二减法器的输出值与比例微分环节的输出值的乘积小于零时,积分环节的输入值为比例微分环节的输出值,当第二减法器的输出值与比例微分环节的输出值的乘积大于等于零时,积分环节的输入值为零。
采用上述技术方案带来的有益效果:
本发明相较于传统PI控制器,仅增加了给定微分前馈环节和控制增益环节,简单可靠,通用性强,易于工业实现。本发明对阶跃给定和连续变化给定呈现不同的结构特性,在阶跃给定的作用下等效于IP控制器,在连续变化给定的作用下等效于PI控制器,因此,本发明可以在保证阶跃响应无超调的同时提高对连续变化给定的跟踪性能。
附图说明
图1是传统PI控制器的系统结构框图;
图2是本发明的系统结构框图;
图3是本发明在连续变化给定下的等效框图;
图4是本发明在阶跃给定下的等效框图;
图5是采用本发明的永磁同步电机矢量控制调速系统的结构框图;
图6是PI控制器、IP控制器以及本发明在阶跃给定为80rpm空载起动时的转速仿真波形图;
图7是PI控制器、IP控制器以及本发明在阶跃给定为80rpm空载起动时的交轴电流仿真波形图;
图8是PI控制器、IP控制器以及本发明在阶跃给定为800rpm空载起动时的转速仿真波形图;
图9是PI控制器、IP控制器以及本发明在阶跃给定为800rpm空载起动时的交轴电流仿真波形图;
图10是本发明在阶跃给定为800rpm空载起动、系统带宽ωn分别为80、160和320时的仿真波形图;
图11是PI控制器、IP控制器以及本发明在ωn=80、给定500rpm/5Hz的正弦转速时,系统的正弦跟踪响应的仿真波形图。
具体实施方式
以下将结合附图,对本发明的技术方案进行详细说明。
如图2所示本发明的系统结构框图,一种新型变结构PI控制器,包括给定微分前馈环节、比例微分环节、积分环节、抗积分饱和环节、控制增益环节、限幅环节、加法器、第一减法器和第二减法器,所述第一减法器的正输入端输入给定信号,第一减法器的负输入端输入反馈信号,第一减法器的输出端连接比例微分环节的输入端,所述给定微分前馈环节的输入端输入前述给定信号,给定微分前馈环节的输出端连接加法器的第一输入端,加法器的第二输入端连接积分环节的输出端,加法器的输出端连接控制增益环节的输入端,控制增益环节的输出端分别连接限幅环节的输入端和第二减法器的正输入端,限幅环节的输出端作为控制器的输出,同时限幅环节的输出端连接第二减法器的负输入端,所述抗积分饱和环节的输入端分别连接比例积分环节的输出端和第二减法器的输出端,抗积分饱和环节的输出端连接积分环节的输入端。控制增益环节输出理论控制量,限幅环节输出实际控制量。
在本实施例中,给定微分前馈环节为一阶微分器。
在本实施例中,比例微分环节的比例系数为1。
在本实施例中,抗积分饱和环节采用遇限停止积分法,当控制器进入饱和区后,当第二减法器的输出值与比例微分环节的输出值的乘积小于零时,积分环节的输入值为比例微分环节的输出值,当第二减法器的输出值与比例微分环节的输出值的乘积大于等于零时,积分环节的输入值为零。
对于连续变化给定,其微分一般不会过大,作用时间也不会过短,能够被系统响应,因此给定微分前馈环节起作用,可以消除系统建模误差,提高对连续变化给定的跟踪性能。此时本发明等效于图3所示的PI控制器。
对于阶跃给定,其微分为脉冲信号,幅值过大且时间较短,无法被系统响应,因此给定微分前馈环节近似不起作用。此外,给定微分前馈导致控制量在第一个控制周期达到饱和,抗积分饱和环节起作用,积分环节的输入为0,之后给定的微分保持为0,因此,由给定先微分后积分构成的给定比例环节在整个响应过程中都不起作用,此时本发明等效于图4所示的IP控制器,系统的阶跃响应无超调。
本发明提供的一种新型变结构PI控制器适用于所有传统PI控制器能够应用的场合,以在永磁同步电机调速系统转速环中的应用为实施例。
永磁同步电机的数学模型是高阶、非线性、强耦合的多变量系统,采用直轴电流给定值id *=0的矢量控制可使系统近似解耦,实现永磁同步电机的高性能控制。
采用本发明的永磁同步电机矢量控制调速系统的结构框图如图5所示,该调速系统包括转速控制器(即本发明的PI控制器)、转速计算模块、最大转矩电流比计算模块、交轴电流控制器、直轴电流控制器、坐标变换模块、SVPWM计算模块、逆变器、位置采集模块、电流传感器(图中未画出)、位置传感器(图中未画出)和永磁同步电机。其中,位置传感器采集电机的转子位置,位置采集模块根据转子位置计算得到电机的转子位置角用于坐标变换和转速计算;电流传感器用于测量电机两相的电流值,坐标变换模块将两相电流变换为交轴电流和直轴电流;转速给定与转速反馈送入PI控制器,计算得到电磁转矩给定值;电磁转矩给定值根据最大转矩电流比规则分配交轴电流给定值与直轴电流给定值;电流给定值与电流反馈值之差送入电流控制器中计算,得到电压给定值;电压给定值经SVPWM计算模块得到占空比,用于控制逆变器输出电压,进而驱动电机。
永磁同步电机的转动惯量J=2.68g·m2。对于本发明采用的新型变结构PI控制器,取无阻尼自然频率ωn=80,则控制器的比例系数kp=2ωn=160、积分系数ki=ωn 2=6400、控制增益b=1/J=373。
取ωn=80,PI控制器、IP控制器以及本发明在阶跃给定为80rpm空载起动时的转速n和交轴电流iq的仿真波形如图6和图7所示,PI控制器、IP控制器以及本发明在阶跃给定为800rpm空载起动时的转速n和交轴电流iq的仿真波形如图8和图9所示,从图中可看出,本发明PI控制器(New PI)和IP控制器的转速响应和iq波形完全相同,转速无超调,相比于PI控制,电流冲击要小,响应平稳性好。本发明控制器在阶跃给定为800rpm空载起动、系统带宽ωn分别为80、160和320时的仿真波形如图10所示。由图10可知,本发明继承了IP控制系统的优点,随着ωn的增大,系统响应变快,跟踪性能越好。
取ωn=80,当给定500rpm/5Hz的正弦转速时,系统的正弦跟踪响应的仿真波形如图11所示。由图11可以看出,本发明和传统PI控制的跟踪误差均为±5rpm,而IP控制的跟踪误差为±340rpm,本发明和传统PI控制的转速响应完全相同,跟踪精度高,跟踪性能明显优于IP控制。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (3)

1.一种新型变结构PI控制器,其特征在于:包括给定微分前馈环节、比例微分环节、积分环节、抗积分饱和环节、控制增益环节、限幅环节、加法器、第一减法器和第二减法器,所述第一减法器的正输入端输入给定信号,第一减法器的负输入端输入反馈信号,第一减法器的输出端连接比例微分环节的输入端,所述给定微分前馈环节的输入端输入前述给定信号,给定微分前馈环节的输出端连接加法器的第一输入端,加法器的第二输入端连接积分环节的输出端,加法器的输出端连接控制增益环节的输入端,控制增益环节的输出端分别连接限幅环节的输入端和第二减法器的正输入端,限幅环节的输出端作为控制器的输出,同时限幅环节的输出端连接第二减法器的负输入端,所述抗积分饱和环节的输入端分别连接比例微分环节的输出端和第二减法器的输出端,抗积分饱和环节的输出端连接积分环节的输入端;所述抗积分饱和环节采用遇限停止积分法,控制器进入饱和区后,当第二减法器的输出值与比例微分环节的输出值的乘积小于零时,积分环节的输入值为比例微分环节的输出值,当第二减法器的输出值与比例微分环节的输出值的乘积大于等于零时,积分环节的输入值为零。
2.根据权利要求1所述一种新型变结构PI控制器,其特征在于:所述给定微分前馈环节为一阶微分器。
3.根据权利要求1所述一种新型变结构PI控制器,其特征在于:所述比例微分环节的比例系数为1。
CN201510317763.3A 2015-06-10 2015-06-10 一种新型变结构pi控制器 Active CN104880944B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510317763.3A CN104880944B (zh) 2015-06-10 2015-06-10 一种新型变结构pi控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510317763.3A CN104880944B (zh) 2015-06-10 2015-06-10 一种新型变结构pi控制器

Publications (2)

Publication Number Publication Date
CN104880944A CN104880944A (zh) 2015-09-02
CN104880944B true CN104880944B (zh) 2017-05-24

Family

ID=53948478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510317763.3A Active CN104880944B (zh) 2015-06-10 2015-06-10 一种新型变结构pi控制器

Country Status (1)

Country Link
CN (1) CN104880944B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106253779A (zh) * 2016-07-29 2016-12-21 中国科学院自动化研究所 一种永磁同步电机速度控制方法
CN106842960B (zh) * 2017-03-29 2020-06-12 南京埃斯顿自动化股份有限公司 一种用于电机控制的抗积分饱和控制方法
CN111624871B (zh) * 2020-06-30 2023-08-08 中国科学院微电子研究所 一种用于精密运动控制的变结构抗积分饱和方法
CN113037174B (zh) * 2021-03-17 2022-07-05 北京航空航天大学 一种基于模糊切换策略的永磁同步电机复合变结构控制方法
CN117175698A (zh) * 2022-05-27 2023-12-05 金风科技股份有限公司 风机群的无功控制方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104252135A (zh) * 2014-10-10 2014-12-31 四川理工学院 Pid控制系统抗积分饱和及抑制超调的智能积分方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2770461B2 (ja) * 1989-08-23 1998-07-02 東洋電機製造株式会社 多機能形制御装置
TWI417690B (zh) * 2010-12-20 2013-12-01 Ind Tech Res Inst 控制系統

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104252135A (zh) * 2014-10-10 2014-12-31 四川理工学院 Pid控制系统抗积分饱和及抑制超调的智能积分方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"变结构PI 控制器的设计及其在光电跟踪系统中的应用";熊皑 等;《光学精密工程》;20100830;第18卷(第8期);全文 *
"永磁交流伺服系统速度控制器优化设计方法";王宏佳 等;《电机与控制学报》;20120229;第16卷(第2期);全文 *

Also Published As

Publication number Publication date
CN104880944A (zh) 2015-09-02

Similar Documents

Publication Publication Date Title
CN104880944B (zh) 一种新型变结构pi控制器
CN110429881B (zh) 一种永磁同步电机的自抗扰控制方法
CN106788086B (zh) 考虑输入饱和的异步电机命令滤波有限时间模糊控制方法
CN105577058B (zh) 基于模糊自抗扰控制器的五相容错永磁电机速度控制方法
CN104932250B (zh) 一种新型pi控制器结构及其参数整定方法
CN109873582B (zh) 基于动态面的永磁同步电机有限时间位置跟踪控制方法
CN107577149B (zh) 一种采用分数阶快速终端滑模控制的随动控制方法
CN110401391B (zh) 异步电动机随机系统模糊自适应动态面控制方法
CN108183645A (zh) 基于扩张状态观测器的永磁同步电机双幂次滑模控制方法
CN109194219A (zh) 基于无模型非奇异终端滑模控制永磁同步电机方法及系统
CN106026835A (zh) 一种基于模糊控制和滑模观测器的无速度传感器优化方法
CN107482982A (zh) 一种基于铁损模型的异步电机矢量控制方法
CN106059423A (zh) 一种基于fc和smo的无速度传感器控制系统
CN105262393A (zh) 一种采用新型过渡过程的容错永磁电机速度控制方法
CN106788051A (zh) 一种无轴承异步电机转速估计方法
CN112018783A (zh) 用于直驱风机次同步振荡抑制的模型降阶反馈控制方法
CN109167538A (zh) 基于双层结构抑制永磁无刷直流电机转矩脉动的控制方法
Tong et al. Research on PMSM active disturbance rejection controller based on model compensation
CN108429501A (zh) 一种永磁同步电机负载扰动的观测方法
CN107395080A (zh) 基于级联非奇异终端滑模观测器的无速度传感器转矩控制系统及方法
JPH09182499A (ja) 同期電動機の制御装置
Yang et al. A new adaptive sliding mode observer based PLSM sensorless control motors
Ma et al. Chattering-free nonsingular fast terminal sliding-mode control for permanent magnet synchronous motor servo system
CN107359835A (zh) 一种基于自适应鲁棒控制的超高速永磁同步电机转速控制方法
CN112803860A (zh) 基于输出回授滑模控制和抗饱和pi的永磁电机控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230703

Address after: 213000 No. 19 Qianjiatang Road, Yaoguan Town, Wujin District, Changzhou City, Jiangsu Province

Patentee after: JIANGSU LEILI MOTOR Co.,Ltd.

Address before: No. 29, Qinhuai District, Qinhuai District, Nanjing, Jiangsu

Patentee before: Nanjing University of Aeronautics and Astronautics