CN104857562B - 一种钛合金/焦磷酸钙表层生物复合材料及其制备方法 - Google Patents

一种钛合金/焦磷酸钙表层生物复合材料及其制备方法 Download PDF

Info

Publication number
CN104857562B
CN104857562B CN201510188034.2A CN201510188034A CN104857562B CN 104857562 B CN104857562 B CN 104857562B CN 201510188034 A CN201510188034 A CN 201510188034A CN 104857562 B CN104857562 B CN 104857562B
Authority
CN
China
Prior art keywords
powder
calcium pyrophosphate
titanium alloy
mixed
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510188034.2A
Other languages
English (en)
Other versions
CN104857562A (zh
Inventor
何正员
张玉勤
周荣
蒋业华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201510188034.2A priority Critical patent/CN104857562B/zh
Publication of CN104857562A publication Critical patent/CN104857562A/zh
Application granted granted Critical
Publication of CN104857562B publication Critical patent/CN104857562B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种钛合金/焦磷酸钙表层生物复合材料及其制备方法,属于生物医用材料领域。本发明所涉及的表层复合材料以钛合金为基体,焦磷酸钙+锆为生物陶瓷层。其工艺步骤为:将钛、铌、锆粉末机械合金化6~8h后烘干,得到钛合金混合粉末;将焦磷酸钙与锆粉末球磨混粉1~2h后烘干,得到焦磷酸钙混合粉末。然后将钛合金混合粉末与焦磷酸钙混合粉末借助辅助装置分别装入石墨模具上、下层,压实后置入放电等离子烧结炉中烧结得到钛合金/焦磷酸钙表层生物复合材料。本发明制备的表层复合材料界面结合良好、强度适宜、表面生物活性优异,复合层厚度最高可达10mm,可用于人体硬组织替代和修复,并且制备过程洁净、工艺简单、成本低廉,易于实现工业化生产。

Description

一种钛合金/焦磷酸钙表层生物复合材料及其制备方法
技术领域
本发明涉及一种钛合金/焦磷酸钙表层生物复合材料及其制备方法,属于生物医用材料领域。
背景技术
生物材料领域中,Ti-Nb-Zr系合金是一种无毒且低弹性模量的钛合金,此系列合金具有较好的力学性能,作为人体植入材料可用于承载较大的部位,但是生物活性较差。而焦磷酸钙(CPP)生物陶瓷与人体骨骼具有相似的成分和结构,植入生物体内能与骨组织发生骨性结合,因而具有优异的生物相容性。但是由于焦磷酸钙材料的力学性能较差,不能直接用于承载较大部位的人工替代和修复材料。
结合生物陶瓷优异的生物相容性与钛合金优良的力学性能是成功制备生物复合材料的关键。目前的研究主要集中在金属基陶瓷表层复合与金属/生物陶瓷混合制备等方面。其中采用等离子喷涂、激光熔覆、化学沉淀等方法制备的金属基陶瓷表层生物复合材料能很好的提高钛及钛合金的生物活性,例如专利CN101254315公开了一种由CaO-ZrO2-SiO2涂层和钛合金组成的骨替换材料及制备方法,其特征在于以钛合金为基材,在钛合金基材表面采用CaO-ZrO2-SiO2玻璃粉料制备的生物相容涂层,所述的CaO-ZrO2-SiO2玻璃粉体中,氧化钙摩尔百分含量为21.3%-42.8%,氧化硅的摩尔百分含量为12.5%-31.7%,余量为ZrO2。所提供的骨替换材料采用电弧等离子喷涂工艺制备,制备的材料经模拟体液浸泡和Tris-HCl缓冲溶液中降解试验显示出良好的生物活性。但是上述方法涂层较薄,且涂层与基体材料性质的差异较大而导致生物活性涂层材料存在结合强度低、易开裂及溶解脱落等问题。
另外一种制备生物复合材料的途径是金属与陶瓷粉末的混合烧结制备生物复合材料。其中采用放电等离子烧结尤为常见,此技术具有在加压过程中快速烧结的特点,脉冲电流产生的等离子体及烧结过程中的加压有利于降低粉末的烧结温度;同时低电压、高电流的特征,能使粉末快速烧结致密。文献(马琰华,禹基道,金相美.表面多孔Ti-Nb-Zr-CPP生物材料的制备及其微观组织的研究.稀有金属与硬质合金,2013,(03):16-19)报道了表面多孔Ti-Nb-Zr-10CPP生物材料的制备及其微观组织研究,通过在真空度0.1Pa、轴向压力60MPa、1000℃下放电等离子烧结,并在溶液浸蚀得到与人体骨表面相近的多孔Ti-35%Nb-7%Zr-10%CPP生物材料。文献(Woo,K. D.,S. M. Kim,D. G. Kim,D. Y. Kim and D. S.Kang. Mechanical Properties and Biocompatibility of Ti-Nb-Zr-Mo-CPPBiomaterial Fabricated by Spark Plasma Sintering. Korean Journal of MaterialsResearch,2013,23(2): 135-142)报道了Ti-25 wt%Nb-7 wt%Zr-10 wt%Mo-(10 wt% CPP)生物复合材料在60MPa烧结压力、1000℃烧结温度下烧结制备而成,生物相容性与腐蚀性能得到改善。上述研究均采用放电等离子烧结的快速成型优势,但是加入的CPP的量有限,此势必影响复合材料生物活性的提高。
综上所述,在钛合金中加入生物陶瓷(CPP)能一定程度的提高其生物相容性,但上述研究仍存在诸多问题,比如表层复合易脱落、混合烧结的生物陶瓷加入量有限,这影响了其稳定性与生物活性,不利于骨的替代和骨细胞的诱导生长。为了更好的提高植入体的生物活性且不明显降低其强度,本发明通过球磨机械合金化与混粉,借助装料辅助装置分别加入钛合金混合粉末和焦磷酸钙混合粉末,采用放电等离子烧结技术成功制备了一种钛合金/焦磷酸钙表层复合材料。
发明内容
本发明要解决的技术问题是:针对目前改善钛合金生物惰性的工艺方法存在生物陶瓷涂层易开裂、脱落以及混合制备中生物陶瓷的加入量有限等问题,以钛合金为基体,生物陶瓷为嵌入体,锆作为陶瓷层的活化剂与稳定剂,采用放电等离子烧结技术,提供了一种界面结合强度高、生物活性优良的表层生物复合材料及其制备方法。
本发明的目的在于提供一种钛合金/焦磷酸钙表层生物复合材料,所述钛合金/焦磷酸钙表层生物复合材料包括钛合金为基体、生物陶瓷层,所述钛合金基体中:Ti的质量百分比为 56~74%、Nb的质量百分比为 13~35%、Zr的质量百分比为 6~13%;所述生物陶瓷层中焦磷酸钙的量百分比为85%~95%、Zr 的量百分比为5%~15%。
本发明所述钛合金/焦磷酸钙表层生物复合材料的制备方法,具体工艺步骤如下:
(1)将钛、铌、锆粉末按成分配比称取后放入球磨罐中,酒精密封后抽真空至20~30Pa,进行机械合金化6~8h后取出,然后置于真空条件下烘干,得到钛合金混合粉末;
(2)将焦磷酸钙与锆的粉末按成分配比称取后放入球磨罐中,酒精密封后抽真空至20~30Pa,进行球磨混粉1~2h后取出,然后置于真空条件下烘干,得到焦磷酸钙混合粉末;
(3)将步骤(1)得到的钛合金混合粉末与步骤(2)得到的焦磷酸钙混合粉末借助辅助装置分别装入石墨模具的上、下层,如图1所示,然后压实;
(4)将步骤(3)中装有混合粉末的石墨模具置入放电等离子烧结炉中,在轴向压力为45~60MPa、真空度为10~20Pa条件下,先以100℃/min升至900℃,再以20~40℃/min升至烧结温度950℃~1050℃,保温时间为10~15min,烧结完毕后继续保持真空直至冷却至室温即得钛合金/焦磷酸钙表层生物复合材料。
所述步骤(1)中,钛、铌、锆粉末的纯度为99. 5%、99.95%和99%,平均粒度25μm~44μm;焦磷酸钙纯度为96%的分析纯。
所述步骤(2)中,辅助装置包括一级凸台1、二级凸台2、三级凸台3,一级凸台1、二级凸台2、三级凸台3依次连接;所述二级凸台2的高度为1~20 mm,二级凸台2直径与模具的内径配合紧密;三级凸台的高度为1~3 mm,直径为1~3mm。
所述步骤(2)中,辅助装置一级凸台与模具底部平齐,二级凸台与模具内壁配合,三级凸台调节陶瓷粉末与金属粉末的镶嵌量。
所述步骤(2)中,辅助装置与模具配合后,先装入金属粉末,压实后倒置并取出辅助装置,再加入陶瓷混合粉末,压实。
本发明的优点在于:
(1)将Ti-Nb-Zr粉末进行机械合金化,从而确保了复合材料基体为β型钛合金;将锆与焦磷酸钙进行混粉,使生物陶瓷层中Zr元素均匀分布,从而保证了Zr元素在陶瓷层与钛合金基体界面的活化作用;
(2)采用的辅助装置可以通过二级凸台高度控制上下两层粉末的加入量,三级凸台能控制上下双层复合材料的嵌入量,加大了双层复合材料的接触面,从而利于复合材料的界面结合;
(3)陶瓷混合粉末中锆的加入减少了因焦磷酸钙与合金粉末膨胀系数差异较大而产生界面缺陷问题,有利于提高双层材料的界面结合强度;
(4)利用放电等离子烧结具有升温可控、烧结时间短、制备过程洁净等特点,通过高温高压烧结、阶段式升温,提高了材料的致密度;
(5)所制备的钛合金/焦磷酸钙表层生物复合材料界面结合良好、强度适宜、生物相容性良好、致密度高、复合层的厚度可达10 mm。
附图说明
图1为本发明复合材料结构示意图;
图2为本发明所述辅助装置示意图;
图3 为实施例3中Ti29Nb4Zr/CPP生物复合材料生物陶瓷层的XRD谱线;
图4为实施例3中Ti29Nb4Zr/CPP生物复合材料界面处线扫描;
图5为实施例3中Ti29Nb4Zr/CPP生物复合材料界面(a)以及EDS能谱分析(b);
图中:1-一级凸台;2-二级凸台;3-三级凸台,4-模具,δ为复合层厚度。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1
(1)按Ti 74%、Nb 13%、Zr 13.0%的质量百分比(wt%)分别称取纯度为99. 5%、99.95%和99%、粒度为45 μm的Ti,Nb,Zr金属粉末;焦磷酸钙混合粉末按Zr 15%(纯度为99%、粒度45 μm)、焦磷酸钙(纯度为96%的分析纯)85%的质量百分比(wt%)称取。
(2)将钛铌锆粉末放入球磨罐中,球磨介质为不锈钢球,球料比为4:1,酒精密封后抽真空至30Pa,进行机械合金化6h后取出,然后置于真空干燥箱中40℃条件下烘干,得到钛合金混合粉末;将焦磷酸钙粉末与钛粉末放入球磨罐中,球磨介质为不锈钢球,球料比为4:1,酒精密封后抽真空至30Pa,进行混粉2h后取出,然后置于真空干燥箱中40℃条件下烘干,得到焦磷酸钙混合粉末。
(3)将步骤(2)得到的钛合金混合粉末与焦磷酸钙混合粉末借助辅助装置分别装入石墨模具得上、下层,如图1所示;辅助装置的二级凸台的高度(不含螺纹部分)为5 mm,直径与模具内径配合紧密;三级凸台的高度(不含螺纹部分)为1 mm,直径为2 mm。
(4)将步骤(3)中装有混合粉末的石墨模具置入放电等离子烧结炉中,在轴向压力为45MPa、真空度为15 Pa的条件下,先以100℃/min升至900℃,再以20℃/min升至烧结温度1000℃,保温时间为10min,烧结完毕后继续保持真空直至冷却至室温后取样。所制备复合层厚度为2.5 mm,界面结合良好。
实施例2
(1)按Ti 56%、Nb 35%、Zr 9%的质量百分比(wt%)分别称取纯度为99. 5%、99.95%和99%、粒度为25 μm的Ti,Nb,Zr金属粉末;焦磷酸钙混合粉末按Zr 10%(纯度为99%、粒度25μm)、焦磷酸钙90%(纯度为96%的分析纯)的质量百分比(wt%)称取。
(2)将钛铌锆粉末放入球磨罐中,球磨介质为不锈钢球,球料比为3:1,酒精密封后抽真空至20Pa,进行机械合金化8h后取出,然后置于真空干燥箱中40℃条件下烘干,得到钛合金混合粉末;将焦磷酸钙粉末与钛粉末放入球磨罐中,球磨介质为不锈钢球,球料比为3:1,酒精密封后抽真空至20Pa,进行混粉1h后取出,然后置于真空干燥箱中40℃条件下烘干,得到焦磷酸钙混合粉末。
(3)将步骤(2)得到的钛合金混合粉末与焦磷酸钙混合粉末借助辅助装置分别装入石墨模具的上、下层;辅助装置仅采用一级凸台与二级凸台,其中二级凸台的高度(不含螺纹部分)为1 mm,直径与模具内径配合紧密。
(4)将步骤(3)中装有混合粉末的石墨模具置入放电等离子烧结炉中,在轴向压力为60MPa、真空度为10 Pa的条件下,先以100℃/min升至900℃,再以25℃/min加热至烧结温度950℃,保温时间为12min,烧结完毕后继续保持真空直至冷却至室温后取样。所制备复合层厚度为0.5 mm,界面为结合良好。
实施例3
(1)按Ti 67%、Nb 29%、Zr 4%的质量百分比(wt%)分别称取纯度为99. 5%、99.95%和99%、粒度为30 μm的Ti,Nb,Zr金属粉末;焦磷酸钙混合粉末按Zr13%(纯度为99. 5%、粒度30 μm)、焦磷酸钙87%(纯度为96%的分析纯)的质量百分比(wt%)称取。
(2)将钛铌锆粉末放入球磨罐中,球磨介质为不锈钢球,球料比为4:1,酒精密封后抽真空至25Pa,进行机械合金化7h后取出,然后置于真空干燥箱中40℃条件下烘干,得到钛合金混合粉末;将焦磷酸钙粉末与钛粉末放入球磨罐中,球磨介质为不锈钢球,球料比为4:1,酒精密封后抽真空至25Pa,进行混粉1.5 h后取出,然后置于真空干燥箱中40℃条件下烘干,得到焦磷酸钙混合粉末。
(3)将步骤(2)得到的钛合金混合粉末与焦磷酸钙混合粉末借助辅助装置分别装入石墨模具得上、下层;辅助装置中的二级凸台的高度(不含螺纹部分)为20 mm,直径与模具内径配合紧密;三级凸台的高度(不含螺纹部分)为3 mm,直径为3 mm。
(4)将步骤(3)中装有混合粉末的石墨模具置入放电等离子烧结炉中,在轴向压力为50MPa、真空度为20 Pa的条件下,先以100℃/min升至900℃,再以30℃/min升至烧结温度1050℃,保温时间为15min,烧结完毕后继续保持真空直至冷却至室温后取样。
所制备复合层厚度为10 mm。图3为生物陶瓷层的XRD谱线,结果表明,烧结之后的复合层中物相主要以CPP为主,此有利于保持复合层优良的生物活性;通过图4(b)可以看出,元素从基体到复合层过渡较明显;由于是镶嵌式装料,在装料的过程中因为Nb的密度较大,可能部分Nb元素渗入到复合层中,因此在线扫面图谱看到在复合层中有部分的Nb元素存在。通过高倍的SEM形貌(图5(a))可以看出,界面处有过渡层,呈良好的化学冶金结合,有利于提高界面结合强度。
实施例4
本实施方式与具体实施方式一所述的钛合金与焦磷酸钙复合材料及其制备方法的区别在于,辅助装置的二级凸台的高度(不含螺纹部分)为10mm,直径与模具内径配合紧密;三级凸台的高度(不含螺纹部分)为2 mm,直径为1 mm。烧结温度为1020℃,升温速率为40℃/min。所制备复合层厚度为5 mm,界面为结合良好。
实施例5
本实施方式与具体实施方式二所述的钛合金与焦磷酸钙复合材料及其制备方法的区别在于,烧结温度为1050℃,升温速率为30℃/min。
实施例6
本实施方式与具体实施方式三所述的钛合金与焦磷酸钙复合材料及其制备方法的区别在于,焦磷酸钙混合粉末按Zr 5%(纯度为99. 5%、粒度30μm)、焦磷酸钙95%(纯度为96%的分析纯)的质量百分比(wt%)称取,烧结保温时间为12 min。

Claims (4)

1.一种钛合金/焦磷酸钙表层生物复合材料的制备方法,其特征在于,具体包括以下步骤:
(1)将钛、铌、锆粉末按成分配比称取后放入球磨罐中,酒精密封后抽真空至20~30Pa,进行机械合金化6~8h后取出,然后置于真空条件下烘干,得到钛合金混合粉末;
(2)将焦磷酸钙与锆的粉末按配比称取后放入球磨罐中,酒精密封后抽真空至20~30Pa,进行球磨混粉1~2h后取出,然后置于真空条件下烘干,得到焦磷酸钙混合粉末;
(3)将步骤(1)得到的钛合金混合粉末与步骤(2)得到的焦磷酸钙混合粉末借助辅助装置分别装入石墨模具的上、下层,然后压实;
(4)将步骤(3)中装有混合粉末的石墨模具置入放电等离子烧结炉中,在轴向压力为45~60MPa、真空度为10~20Pa条件下,先以100℃/min升至900℃,再以20~40℃/min升至烧结温度950℃~1050℃,保温时间为10~15min,烧结完毕后继续保持真空直至冷却至室温即得钛合金/焦磷酸钙表层生物复合材料;
所述钛合金/焦磷酸钙表层生物复合材料包括钛合金基体、生物陶瓷层,所述钛合金基体中:Ti的质量百分比为 56~74%、Nb的质量百分比为 13~35%、Zr的质量百分比为 6~13%;所述生物陶瓷层中焦磷酸钙的质量百分比为85%~95%、Zr的质量百分比为5%~15%;
所述辅助装置包括一级凸台(1)、二级凸台(2)、三级凸台(3),一级凸台(1)、二级凸台(2)、三级凸台(3)依次连接。
2.根据权利要求1所述的钛合金/焦磷酸钙表层生物复合材料的制备方法,其特征在于:所述的钛、铌、锆粉末的纯度分别为99. 5%、99.95%和99%,平均粒度25μm~44μm;焦磷酸钙纯度为96%的分析纯。
3.根据权利要求1所述一种钛合金/焦磷酸钙表层生物复合材料的制备方法,其特征在于:步骤(1)与步骤(2)中的球磨介质为不锈钢,球料比为3:1~4:1。
4.根据权利要求1所述一种钛合金/焦磷酸钙表层生物复合材料的制备方法,其特征在于:所述二级凸台(2)的高度为1~20 mm,二级凸台(2)直径与模具的内径配合紧密;三级凸台的高度为1~3 mm,直径为1~3mm。
CN201510188034.2A 2015-04-21 2015-04-21 一种钛合金/焦磷酸钙表层生物复合材料及其制备方法 Active CN104857562B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510188034.2A CN104857562B (zh) 2015-04-21 2015-04-21 一种钛合金/焦磷酸钙表层生物复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510188034.2A CN104857562B (zh) 2015-04-21 2015-04-21 一种钛合金/焦磷酸钙表层生物复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN104857562A CN104857562A (zh) 2015-08-26
CN104857562B true CN104857562B (zh) 2018-06-19

Family

ID=53904012

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510188034.2A Active CN104857562B (zh) 2015-04-21 2015-04-21 一种钛合金/焦磷酸钙表层生物复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN104857562B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107475564B (zh) * 2017-08-22 2019-05-28 东北大学 一种高强致密钛合金-陶瓷生物复合材料的制备方法
CN107813300B (zh) * 2017-12-07 2019-01-04 北京康力优蓝机器人科技有限公司 一种可用于机器人的柔性智能模块的分层浇铸方法
CN114569800B (zh) * 2022-01-24 2023-04-14 苏州卓恰医疗科技有限公司 生物活性陶瓷复合镁基金属髓内钉及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303183B1 (en) * 1999-11-08 2001-10-16 Aos Holding Company Anti-microbial porcelain enamel coating
CN1194775C (zh) * 2002-09-13 2005-03-30 北京工业大学 Ti表面HA活性涂层生物材料及其制备方法
CN102031518A (zh) * 2010-12-30 2011-04-27 同济大学 钛合金表面激光熔覆生物陶瓷复合涂层材料的制备方法

Also Published As

Publication number Publication date
CN104857562A (zh) 2015-08-26

Similar Documents

Publication Publication Date Title
CN104841009B (zh) 一种羟基磷灰石活化钛合金表层生物复合材料及其制备方法
CN104841018B (zh) 一种多层生物复合材料及其制备方法
Mehrali et al. Dental implants from functionally graded materials
CN104857566B (zh) 一种钛铌锆基羟基磷灰石生物复合材料的制备方法
CN102534284B (zh) 微波烧结制备医用多孔NiTi形状记忆合金的方法
CN102312128B (zh) 一种利用放电等离子烧结制备钛铌钽锆生物医用钛合金的方法
Chen et al. Preparation and characterization of ZrO2-Al2O3 bioceramics by stereolithography technology for dental restorations
CN104894420B (zh) 一种钛铌锆基焦磷酸钙生物复合材料的制备方法
Chen et al. Spark plasma sintering of sol–gel derived 45S5 Bioglass®-ceramics: Mechanical properties and biocompatibility evaluation
CN105251057A (zh) 一种多孔钛/羟基磷灰石复合材料的制备方法
CN102312129B (zh) 一种利用放电等离子烧结制备钛铌锆锡生物医用钛合金的方法
CN108273126A (zh) 一种径向梯度医用复合材料的制备方法
CN106552940A (zh) 一种梯度有序多孔TiAg合金的制备方法
CN104857562B (zh) 一种钛合金/焦磷酸钙表层生物复合材料及其制备方法
CN105169471A (zh) 一种医用植入多孔铌钛合金材料及其制备方法
CN112296342B (zh) 含氧化层锆铌合金分区骨小梁单间室股骨髁及制备方法
CN104491923A (zh) 纳米/微米晶梯度结构磷酸钙生物陶瓷材料及其制备方法和应用
Mani et al. Is there a future for additive manufactured titanium bioglass composites in biomedical application? A perspective
Riaz et al. A novel approach to fabricate load-bearing Ti6Al4V-Barium titanate piezoelectric bone scaffolds by coupling electron beam melting and field-assisted sintering
CN112155796B (zh) 增材制造钛合金分区骨小梁人工髋关节臼杯及制备方法
Gupta et al. Sintering of biomaterials for arthroplasty: A comparative study of microwave and conventional sintering techniques
CN112404431A (zh) 含氧化层锆铌合金髋关节假体系统及制备方法
CN102302799A (zh) 一种钛基人工关节柄用钙镁硅多相陶瓷涂层的制备方法
CN106924816B (zh) 生物可降解镁基金属陶瓷复合材料及其制备方法和应用
CN108772559B (zh) 一种生物陶瓷基金属复合材料及其制备方法和用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant