CN104818409B - 一种高耐磨、高强韧的医用锆合金及其制备方法与应用 - Google Patents

一种高耐磨、高强韧的医用锆合金及其制备方法与应用 Download PDF

Info

Publication number
CN104818409B
CN104818409B CN201510192032.0A CN201510192032A CN104818409B CN 104818409 B CN104818409 B CN 104818409B CN 201510192032 A CN201510192032 A CN 201510192032A CN 104818409 B CN104818409 B CN 104818409B
Authority
CN
China
Prior art keywords
zircaloy
alloy
preparation
zirconium
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510192032.0A
Other languages
English (en)
Other versions
CN104818409A (zh
Inventor
杨超
周林菊
李元元
王芬
张卫文
肖志瑜
陈维平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201510192032.0A priority Critical patent/CN104818409B/zh
Publication of CN104818409A publication Critical patent/CN104818409A/zh
Application granted granted Critical
Publication of CN104818409B publication Critical patent/CN104818409B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明属于高性能医用合金材料技术领域,特别涉及一种表面高耐磨、整体高强韧的医用锆合金及其制备方法与应用。该医用锆合金表面为微米级厚度的氧化物陶瓷层,成分主要为单斜晶系的氧化锆和少量的四方系氧化锆;基体为锆合金,其具体组分按质量百分比计含量为:Zr 76.5~100wt.%,Nb 0~19wt.%,Hf 0~4.5wt.%,其余为不可避免的微量杂质;在氧化物陶瓷层与基体合金之间还存在一层富氧过渡层,即氧固溶于基体中形成锆氧固溶体。本发明利用塑性变形技术和高温氧化技术相结合,制备得到表面硬度、耐磨性及合金强度大幅提高的医用锆合金,因而在生物医学,特别是生物医用植入物方面具有广泛的应用前景。

Description

一种高耐磨、高强韧的医用锆合金及其制备方法与应用
技术领域
本发明属于高性能医用合金材料技术领域,特别涉及一种表面高耐磨、整体高强韧的医用锆合金及其制备方法与应用。
背景技术
锆合金具有良好的力学性能,优异的耐腐蚀性,在核工业、石化工业和医学等领域具有广泛的应用。最近,含有一定量Nb的锆铌系合金被开发出来,这类锆合金所含元素无毒,具有生物相容性好、综合力学性能优异等特点,可以作为良好的医用植入材料。因此,为了更好地满足人体对关节假体更苛刻的要求,优异综合力学性能的锆铌合金已成为科研人员研究的热点。
通常情况下,金属材料具有高强度、高韧性、易加工等特点,常用来制作结构复杂和承重的医用植入材料。其中,代表性的医用植入材料包括不锈钢、钴铬合金、钛及钛合金、锆合金等。然而,金属材料用作医用植入材料的主要缺点是在长期使用过程中,在体液作用下释放出有害的金属离子,从而导致关节周围的组织发炎和关节松动,最终导致植入失败。另外,由于金属材料表面硬度较低,因此耐磨性相对较差,在长期的植入过程中由于关节间的相对滑动,关节面发生严重磨损,产生植入关节的松动并最终导致植入失败。同时产生的大量颗粒状磨屑,易与人体细胞和组织发生异物反应,对人体产生不良影响。这些缺点严重影响了医用金属髋关节植入物的长期服役效果【Y.H.Li,C.Yang,H.D.Zhao,S.G.Qu,X.Q.Li,and Y.Y.Li,Materials,7(2014):1709-1800】。鉴于氧化物陶瓷材料具有硬度高、强度高、耐磨性好、化学稳定性和耐蚀性强、与体液的润湿性好等优点,预期可作为医用植入物获得广泛应用【M.N.Rahaman,A.Yao,B.S.Bal,J.P.Garino,and M.D.Ries,J.Am.Ceram.Soc.,7(2007):1965-1988】。然而,由于氧化物陶瓷材料具有固有脆性的缺点,因而其难以作为整体植入物获得应用。因此,如何结合氧化物陶瓷和金属材料的性能优势,制备出表面高硬度高耐磨、整体高强韧、可用作医用植入物的材料及其零件(如髋关节假体锆铌合金球头),成为了亟待解决的技术难题。
高温氧化属于材料表面改性的范畴,其具有简单、易操作和对试样形状无限制等优点,是一种十分经济以及适用于医用植入物复杂形状的表面处理方式。通过优选氧化温度、时间等参数,可获得少或无缺陷、可控厚度的致密氧化层,并实现表面氧化层与基体合金之间过渡层成分的平稳梯度变化。同时,通过塑性变形可细化基体金属材料的晶粒从而提高其强度和塑性,同时产生的大量形变位错,可作为通道加速氧化过程中氧原子的扩散,从而增大表面氧化层与基体合金之间的含氧过渡层的厚度,以实现表面氧化层与心部基体合金之间更强的结合,以期结合氧化物陶瓷和金属材料的性能优势,获得更加优异的综合性能。
因此,如果能把塑性变形和高温氧化工艺相结合,制备出优异综合性能的锆铌合金,将对其用作医用植入物具有非常重要的意义。本发明提出采用塑性变形的锆铌合金并结合高温氧化工艺以实现表面高硬度高耐磨、整体高强韧的综合性能,迄今为止尚无相关的文献报道。
发明内容
为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一种表面高耐磨、整体高强韧的医用锆合金。
本发明另一目的在于提供一种上述表面高耐磨、整体高强韧的医用锆合金的制备方法。
本发明再一目的在于提供上述表面高耐磨、整体高强韧的医用锆合金在生物医学中的应用。
本发明的再一目的在于提供上述制备方法在合金材料加工处理中的应用,特别是钛合金、钴铬合金和铁合金等。
本发明的目的通过下述方案实现:
一种表面高耐磨、整体高强韧的医用锆合金,其表面为微米级厚度的氧化物陶瓷层,成分主要为单斜晶系的氧化锆和少量的四方系氧化锆;基体为锆合金,其具体组分按质量百分比计含量为:Zr 76.5~100wt.%,Nb 0~19wt.%,Hf 0~4.5wt.%,其余为不可避免的微量杂质;在氧化物陶瓷层与基体合金之间还存在一层富氧过渡层,即氧固溶于基体中形成锆氧固溶体。
由本发明实施例可知,所述氧化物陶瓷层的厚度根据塑性变形处理方式不同及氧化处理工艺条件而改变,本发明列举实施例中的厚度约为4~6μm。
由本发明实施例可知,所述富氧过渡层的厚度根据塑性变形处理方式不同及氧化处理工艺条件而改变,本发明列举实施例中的厚度约为15~35μm。
本发明还提供一种上述表面高耐磨、整体高强韧的医用锆合金的制备方法,该方法是塑性变形技术和高温氧化技术相结合的制备方法,具体包括以下步骤:
步骤一:塑性变形处理
利用塑性变形技术对锆铌合金进行室温变形处理,获得表面层晶粒细化的合金材料;
步骤二:表面预处理
对上述合金材料进行表面机械抛光处理,清洁、干燥;
步骤三:高温氧化处理
对上述表面预处理后的合金材料进行高温氧化处理,具体工艺条件如下:
氧化设备:箱式电阻炉或管式炉
氧化方式:空气氧化或氧气气氛氧化
氧化温度:550~650℃
氧化时间:1~6h
氧化压力:0.01~0.1MPa。
经高温氧化即获得表面高耐磨、整体高强韧的医用锆合金。
步骤一中所述的塑性变形技术指任意本领域已知的塑性变形技术,包括轧制、锻造、表面滚压、喷丸等。
所述的锆铌合金为市售常规的锆铌合金和锆合金中的至少一种均可。
步骤二中所述的清洁指本领域常规的去油污等清洁处理。
本发明的表面高耐磨、整体高强韧的医用锆合金综合性能优于未塑性变形、氧化处理的同成分合金,因而在生物医学,特别是生物医用植入物方面具有广泛的应用前景。
本发明的制备方法结合了塑性变形技术和高温氧化技术,对合金材料进行处理后可获得性能提高的材料,因此可应用于合金材料加工处理中,特别是钛合金、钴铬合金、铁合金等。
本发明的机理为:
本发明利用合金材料在高温下与氧发生化学反应,在表面生成氧化物陶瓷层,大幅提高合金表面硬度、耐磨性及合金的强度;利用塑性变形处理,细化金属的组织机构,从而改变后续氧化处理氧的扩散条件以改变表面氧化层的总和性能。本发明核心技术为通过塑性变形处理改变锆铌合金的组织结构,通过塑性变形获得晶粒的大幅细化,从而为氧化过程中氧原子的扩散提供更多的晶界与位错通道,使得氧原子具有更远的扩散距离,从而形成较深的氧浓度梯度和更厚的富氧过渡层,同时也为氧化物的形成提供更多的形核点,可获得晶粒细化的氧化物,在使氧化层具有更高致密性的同时,使整体合金具有更优异的综合性能。
本发明相对于现有技术,具有如下的优点及有益效果:
(1)本发明的塑性变形技术和高温氧化技术相结合的制备方法加工过程简单、操作方便、经济可行。
(2)本发明制备得到的医用锆合金具有厚度较大的富氧扩散过渡层,实现了高硬度高耐磨的表面氧化陶瓷层与高强韧基体合金的性能平滑过渡,从而使得氧化层与基体具有更高的结合强度。
(3)本发明制备得到的医用锆合金具有表面高硬度高耐磨、整体高强韧的性能特点,综合性能优于未塑性变形加氧化处理的同成分合金,因而在生物医用植入物方面具有广泛的应用前景。
附图说明
图1为实施例1的医用锆合金的截面扫描电镜图。
图2为实施例1的医用锆合金的截面硬度分布趋势图。
图3为实施例1的医用锆合金的拉伸应力应变曲线。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1:
步骤一:锆铌合金的塑性变形处理
利用双辊轧机对厚度为10mm的板状95.8Zr-2.1Nb-2.1Hf锆铌合金样品(市售)进行室温轧制处理,每道次形变量约0.4mm,多次轧制直至厚度约4mm,使其塑性变形量为60%。
步骤二:塑性变形锆铌合金的表面预处理
对塑性变形处理的锆铌合金用180#至2000#的砂纸进行打磨后机械抛光处理,随后浸入丙酮和酒精中用超声清洗器分别清洗30min进行清洁处理,以去除表面油污,最后对表面进行干燥处理。
步骤三:塑性变形锆铌合金的高温氧化处理
将表面预处理的锆铌合金置于电阻炉中,升温进行空气环境下的氧化处理,氧化工艺条件如下:
氧化设备:箱式电阻炉
氧化方式:空气氧化
氧化温度:650℃
氧化时间:1h
氧化压力:1个大气压
经高温氧化即获得表面为高硬度高耐磨的氧化物陶瓷层、心部为高强韧基体的医用锆合金。图1的扫描电镜图片表明,氧化物陶瓷层均匀生长于锆铌合金表面,厚度约5.5μm;图2的硬度沿截面分布趋势表明表面硬度为1217HV,硬度沿氧化层截面逐渐下降,下降距离超过40μm,远远超过氧化层的厚度,表明具有34.5μm的富氧过渡层。与相同氧化工艺不轧制的同成分锆合金相比,其表面硬度提高了230HV,富氧过渡层厚度增加了将近30μm。对有效尺寸为10mm×5mm×2mm的板状试样进行拉伸测试,结果表明抗拉强度和塑性应变分别为681.2MPa和24.6%(图3曲线(a)),分别较未处理的锆合金的同成分锆合金(图3曲线(b))增加了82MPa和3.2%。
实施例2:
步骤一:锆铌合金的塑性变形处理
利用双辊轧机对厚度为10mm的板状95.8Zr-2.1Nb-2.1Hf锆铌合金样品(市售)进行室温轧制处理,使其塑性变形量为65%。
步骤二:塑性变形锆铌合金的表面预处理
对塑性变形处理的锆铌合金用180#至2000#的砂纸进行打磨后机械抛光处理,随后浸入丙酮和酒精中用超声清洗器分别清洗30min进行清洁处理,以去除表面油污,最后对表面进行干燥处理。
步骤三:塑性变形锆铌合金的高温氧化处理
将表面预处理的锆铌合金置于电阻炉中,升温进行空气环境下的氧化处理,氧化工艺条件如下:
氧化设备:箱式电阻炉
氧化方式:空气氧化
氧化温度:600℃
氧化时间:4h
氧化压力:1个大气压
经高温氧化即获得表面为高硬度高耐磨的氧化物陶瓷层、心部为高强韧基体的医用锆合金。扫描电镜分析表明其表面氧化物陶瓷层厚度约5.4μm,硬度分析表明其表面硬度为1069HV,富氧过渡层厚度约为25.9μm,拉伸力学性能测试表明其抗拉强度和塑性应变分别为656.8MPa和19.4%。
实施例3:
步骤一:锆铌合金的塑性变形处理
利用双辊轧机对厚度为10mm的板状91.8Zr-8.2Nb锆铌合金样品(市售)进行室温轧制处理,使其塑性变形量为55%。
步骤二:塑性变形锆铌合金的表面预处理
对塑性变形处理的锆铌合金用180#至2000#的砂纸进行打磨后机械抛光处理,随后浸入丙酮和酒精中用超声清洗器分别清洗30min进行清洁处理,以去除表面油污,最后对表面进行干燥处理。
步骤三:塑性变形锆铌合金的高温氧化处理
将表面预处理的锆铌合金置于电阻炉中,升温进行空气环境下的氧化处理,氧化工艺条件如下:
氧化设备:箱式电阻炉
氧化方式:空气氧化
氧化温度:550℃
氧化时间:6h
氧化压力:1个大气压
经高温氧化即获得表面为高硬度高耐磨的氧化物陶瓷层、心部为高强韧基体的医用锆合金。扫描电镜分析表明其表面氧化物陶瓷层厚度约5.1μm,硬度分析表明其表面硬度为811HV,富氧过渡层厚度约为20μm,拉伸力学性能测试表明其抗拉强度和塑性应变分别为654.3MPa和26.7%。
实施例4:
步骤一:锆铌合金的塑性变形处理
利用双辊轧机对厚度为10mm的板状93.4Zr-5.1Nb-1.5Hf锆铌合金样品(市售)进行室温表面滚压(600N的压力下滚压12次)处理,使其表面光亮,表层发生塑性变形。
步骤二:塑性变形锆铌合金的表面预处理
对塑性变形处理的锆铌合金用180#至2000#的砂纸进行打磨后机械抛光处理,随后浸入丙酮和酒精中用超声清洗器分别清洗30min进行清洁处理,以去除表面油污,最后对表面进行干燥处理。
步骤三:塑性变形锆铌合金的高温氧化处理
将表面预处理的锆铌合金置于电阻炉中,升温进行氧气环境下的氧化处理,氧化工艺条件如下:
氧化设备:管式电阻炉
氧化方式:氧气氧化
氧化温度:650℃
氧化时间:1h
氧化压力:1个大气压
经高温氧化即获得表面为高硬度高耐磨的氧化物陶瓷层、心部为高强韧基体的医用锆合金。扫描电镜分析表明其表面氧化物陶瓷层厚度约5.6μm,硬度分析表明其表面硬度为1087HV,富氧过渡层厚度约为24.4μm,拉伸力学性能测试表明其抗拉强度和塑性应变分别为660.9MPa和20.2%。
实施例5:
步骤一:锆铌合金的塑性变形处理
利用双辊轧机对厚度为10mm的板状85.6Zr-12.5Nb-1.9Hf锆铌合金样品(市售)进行室温喷丸处理(空气压力0.3MPa室温喷丸30min),使其表面发生塑性变形。
步骤二:塑性变形锆铌合金的表面预处理
对塑性变形处理的锆铌合金用180#至2000#的砂纸进行打磨后机械抛光处理,随后浸入丙酮和酒精中用超声清洗器分别清洗30min进行清洁处理,以去除表面油污,最后对表面进行干燥处理。
步骤三:塑性变形锆铌合金的高温氧化处理
将表面预处理的锆铌合金置于电阻炉中,升温进行氧化处理,氧化工艺条件如下:
氧化设备:管式电阻炉
氧化方式:氧气氧化
氧化温度:600℃
氧化时间:4h
氧化压力:1个大气压
经高温氧化即获得表面为高硬度高耐磨的氧化物陶瓷层、心部为高强韧基体的医用锆合金。扫描电镜分析表明其表面氧化物陶瓷层厚度约5.6μm,硬度分析表明其表面硬度为1274HV,富氧过渡层厚度约为20μm,拉伸力学性能测试表明其抗拉强度和塑性应变分别为642.5MPa和32.6%。
实施例6:
步骤一:锆铌合金的塑性变形处理
利用双辊轧机对厚度为10mm的板状95.8Zr-2.1Nb-2.1Hf锆铌合金样品(市售)进行锻造处理(在β相区多次锻造),使其塑性变形量为60%。
步骤二:塑性变形锆铌合金的表面预处理
对塑性变形处理的锆铌合金用180#至2000#的砂纸进行打磨后机械抛光处理,随后浸入丙酮和酒精中用超声清洗器分别清洗30min进行清洁处理,以去除表面油污,最后对表面进行干燥处理。
步骤三:塑性变形锆铌合金的高温氧化处理
将表面预处理的锆铌合金置于电阻炉中,升温进行氧化处理,氧化工艺条件如下:
氧化设备:箱式电阻炉
氧化方式:氧气氧化
氧化温度:550℃
氧化时间:6h
氧化压力:1个大气压
经高温氧化即获得表面为高硬度高耐磨的氧化物陶瓷层、心部为高强韧基体的医用锆合金。扫描电镜分析表明其表面氧化物陶瓷层厚度约4.7μm,硬度分析表明其表面硬度为857HV,富氧过渡层厚度约为15μm,拉伸力学性能测试表明其抗拉强度和塑性应变分别为599.3MPa和21.4%。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (4)

1.一种表面高耐磨、整体高强韧的医用锆合金的制备方法,其特征在于该方法是塑性变形技术和高温氧化技术相结合的制备方法,具体包括以下步骤:
步骤一:塑性变形处理
利用塑性变形技术对锆铌合金进行室温变形处理,获得表面层晶粒细化的合金材料;
步骤二:表面预处理
对上述合金材料进行表面机械抛光处理,清洁、干燥;
步骤三:高温氧化处理
对上述表面预处理后的合金材料进行高温氧化处理,具体工艺条件如下:
氧化设备:箱式电阻炉或管式炉
氧化方式:空气氧化或氧气气氛氧化
氧化温度:550~650℃
氧化时间:1~6h
氧化压力:0.01~0.1MPa;
经高温氧化即获得表面高耐磨、整体高强韧的医用锆合金;
所述表面高耐磨、整体高强韧的医用锆合金,其表面为微米级厚度的氧化物陶瓷层,成分主要为单斜晶系的氧化锆和少量的四方系氧化锆;基体为锆合金,其具体组分按质量百分比计含量为:Zr 76.5~100wt.%,Nb 0~19wt.%,Hf 0~4.5wt.%,其余为不可避免的微量杂质;在氧化物陶瓷层与基体合金之间还存在一层富氧过渡层,即氧固溶于基体中形成锆氧固溶体;
所述氧化物陶瓷层的厚度为4~6μm;
所述富氧过渡层的厚度为15~35μm。
2.根据权利要求1所述的表面高耐磨、整体高强韧的医用锆合金的制备方法,其特征在于:步骤一中所述的塑性变形技术指轧制、锻造、表面滚压或喷丸。
3.根据权利要求1~2任一项所述的表面高耐磨、整体高强韧的医用锆合金的制备方法在合金材料加工处理中的应用。
4.根据权利要求3所述的表面高耐磨、整体高强韧的医用锆合金的制备方法在合金材料加工处理中的应用,其特征在于:所述的合金材料包括钛合金、钴铬合金和铁合金中的至少一种。
CN201510192032.0A 2015-04-21 2015-04-21 一种高耐磨、高强韧的医用锆合金及其制备方法与应用 Active CN104818409B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510192032.0A CN104818409B (zh) 2015-04-21 2015-04-21 一种高耐磨、高强韧的医用锆合金及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510192032.0A CN104818409B (zh) 2015-04-21 2015-04-21 一种高耐磨、高强韧的医用锆合金及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN104818409A CN104818409A (zh) 2015-08-05
CN104818409B true CN104818409B (zh) 2017-03-08

Family

ID=53728888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510192032.0A Active CN104818409B (zh) 2015-04-21 2015-04-21 一种高耐磨、高强韧的医用锆合金及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN104818409B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109825797A (zh) * 2019-03-07 2019-05-31 苏州微创关节医疗科技有限公司 锆合金的处理方法及应用

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105039957B (zh) * 2015-08-18 2017-06-27 西安交通大学 一种在锆合金基体表面制备包含h‑Zr3O相的致密氧化锆涂层的方法
CN105925846B (zh) * 2016-06-24 2018-02-23 西部新锆核材料科技有限公司 一种Zr‑Sn‑Nb‑Hf合金棒材及其制备方法
CN107142444B (zh) * 2017-03-28 2019-09-06 广西大学 一种表面氧化的β型医用锆合金的制备方法
CN107022696B (zh) * 2017-04-25 2018-09-18 西北有色金属研究院 一种生物医用亚稳定β型Zr-Nb合金铸锭及其制备方法
CN107675122B (zh) * 2017-11-20 2019-11-12 北京金轮坤天特种机械有限公司 一种锆铌合金表面非化学计量比氧化膜及其制备方法
CN111270196B (zh) * 2019-03-07 2022-03-04 苏州微创关节医疗科技有限公司 制备锆铌合金表面氧化陶瓷层的方法及应用
US20220341002A1 (en) * 2019-10-03 2022-10-27 Hitachi Metals, Ltd. Zr-Nb-BASED ALLOY MATERIAL, METHOD FOR MANUFACTURING THE ALLOY MATERIAL, AND Zr-Nb-BASED ALLOY PRODUCT
CN111270179A (zh) * 2020-02-12 2020-06-12 北京金轮坤天特种机械有限公司 一种耐磨耐蚀锆合金球/球缺体及其制备方法和应用
CN111304494B (zh) * 2020-03-12 2021-06-04 中国石油天然气集团有限公司 一种锆合金柔性连续管及其制造方法
CN111676407B (zh) * 2020-05-20 2021-07-09 东南大学 一种高强度低弹性模量医用植入锆合金及制备方法
CN112315627B (zh) * 2020-10-30 2024-04-09 嘉思特医疗器材(天津)股份有限公司 带有骨小梁的含氧化层锆铌合金胫骨平台假体及制备方法
CN112155801B (zh) * 2020-10-30 2024-04-09 嘉思特医疗器材(天津)股份有限公司 含氧化层锆铌合金骨小梁单间室胫骨平台假体及制备方法
CN112404433B (zh) * 2020-10-30 2023-03-10 嘉思特华剑医疗器材(天津)有限公司 含氧化层锆铌合金分区骨小梁单间室胫骨平台及制备方法
CN112853255B (zh) * 2020-12-31 2024-03-15 西安优耐特容器制造有限公司 一种锆基材料表面原位陶瓷化复合处理方法
CN113403502A (zh) * 2021-07-28 2021-09-17 燕山大学 一种低弹性模量锆合金及其制备方法
CN113604704A (zh) * 2021-08-11 2021-11-05 燕山大学 一种低弹性模量锆合金及其制备方法和应用
CN113564420B (zh) * 2021-08-11 2023-03-31 燕山大学 一种高强高塑锆合金及其制备方法和应用
CN114107735B (zh) * 2021-12-10 2022-10-28 西北工业大学 一种耐腐蚀锆合金及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250485A (ja) * 1985-08-30 1987-03-05 Hitachi Ltd ジルコニウム合金部材
KR101405396B1 (ko) * 2012-06-25 2014-06-10 한국수력원자력 주식회사 표면에 혼합층을 포함하는 코팅층이 형성된 지르코늄 합금 및 이의 제조방법
CN103194650B (zh) * 2013-04-10 2015-08-19 苏州热工研究院有限公司 一种Zr-1Nb合金的制备方法
CZ2013727A3 (cs) * 2013-09-20 2015-04-15 České Vysoké Učení Technické V Praze, Fakulta Strojní, Ústav Energetiky Vrstva, chránící povrch zirkoniových slitin užívaných v jaderných reaktorech

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109825797A (zh) * 2019-03-07 2019-05-31 苏州微创关节医疗科技有限公司 锆合金的处理方法及应用

Also Published As

Publication number Publication date
CN104818409A (zh) 2015-08-05

Similar Documents

Publication Publication Date Title
CN104818409B (zh) 一种高耐磨、高强韧的医用锆合金及其制备方法与应用
Oh et al. Microstructures and mechanical properties of porous titanium compacts prepared by powder sintering
JP7413554B2 (ja) 骨梁付き酸化物層を含むジルコニウム・ニオブ合金の脛骨プラトープロテーゼ及びその製造方法
CN101696480A (zh) 无镍生物医用钛合金Ti-Nb-Zr材料及其制备方法
Hussain et al. Mechanical properties of CNT reinforced hybrid functionally graded materials for bioimplants
CN109487121A (zh) 一种齿科用钛合金及其制备方法
CN104193331B (zh) 骨植入假体用氧化锆基复合陶瓷及由其制备的骨植入假体
CN107475564B (zh) 一种高强致密钛合金-陶瓷生物复合材料的制备方法
Xue et al. Effect of Ti on microstructure, mechanical properties and corrosion resistance of Zr-Ta-Ti alloys processed by spark plasma sintering
EP4086022A1 (en) Oxide layer-containing zirconium-niobium alloy partitioned trabecular bone single-compartment femoral condyle and preparation method
WO2022088702A1 (zh) 含氧化层锆铌合金踝关节假体系统及制备方法
Miao Observation of microcracks formed in HA-316L composites
US20230301792A1 (en) Zonal trabecular uni-compartmental tibial plateau containing zirconium-niobium alloy on oxidation layer and preparation method thereof
CN113183562B (zh) 一种梯度异构钛钽层状复合材料、制备方法及其应用
WO2020177382A1 (zh) 锆合金的处理方法及应用
Liang et al. Preparation and properties of dental zirconia ceramics
Kim et al. Sintering behavior of ultra-fine Al2O3–(ZrO2+ X mol% Y2O3) ceramics by high-frequency induction heating
US20230248879A1 (en) Oxide layer-containing zirconium-niobium alloy shoulder joint prosthesis system and preparation method
CN115786747A (zh) 一种医用高性能抗菌钛合金板材的制备方法
Che Daud et al. The effect of sintering on the properties of powder metallurgy (PM) F-75 alloy
Chavez et al. Corrosion and tribocorrosion behavior of Ti6Al4V/xTiN composites for biomedical applications
EP4082696A1 (en) Zirconium niobium alloy hip joint prosthesis system comprising oxide layer, and preparation method therefor
KR101889010B1 (ko) 치과용 써지컬 가이드를 위한 슬리브 제조방법
CN112155801B (zh) 含氧化层锆铌合金骨小梁单间室胫骨平台假体及制备方法
JP7470194B2 (ja) 酸化物層を含むジルコニウム・ニオブ合金の股関節プロテーゼシステム及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant