CN104810397A - 一种超级结碳化硅mosfet器件及其制作方法 - Google Patents

一种超级结碳化硅mosfet器件及其制作方法 Download PDF

Info

Publication number
CN104810397A
CN104810397A CN201410037819.5A CN201410037819A CN104810397A CN 104810397 A CN104810397 A CN 104810397A CN 201410037819 A CN201410037819 A CN 201410037819A CN 104810397 A CN104810397 A CN 104810397A
Authority
CN
China
Prior art keywords
type
silicon carbide
extension
substrate
post district
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410037819.5A
Other languages
English (en)
Other versions
CN104810397B (zh
Inventor
杨霏
吴昊
于坤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Global Energy Interconnection Research Institute
Original Assignee
State Grid Corp of China SGCC
Smart Grid Research Institute of SGCC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Smart Grid Research Institute of SGCC filed Critical State Grid Corp of China SGCC
Priority to CN201410037819.5A priority Critical patent/CN104810397B/zh
Publication of CN104810397A publication Critical patent/CN104810397A/zh
Application granted granted Critical
Publication of CN104810397B publication Critical patent/CN104810397B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种超级结碳化硅MOSFET器件及其制作方法,主要解决现有高压碳化硅MOSFET导通电阻较大的问题。该器件包括:源极(1)、栅极(2)、栅氧介质(3)、N型源区(4)、P阱区(5)、JEFT区(6)、P型外延柱区(7)、N-外延(8)、P型衬底柱区(9)、N+衬底(10)和漏极(11),其中在P阱的正下方的N+衬底与N-外延的部分分别设有P型外延柱区(7)和P型衬底柱区(9),本发明可以有效降低器件的导通电阻,同时改善器件体内的电场分布,提高器件的耐压。本发明器件具有击穿电压高,导通电阻低,开关速度快、开关损耗低等优点,同时制作工艺简单,易于实现,可用于电力电子变压器,新能源发电、光伏逆变器等领域。

Description

一种超级结碳化硅MOSFET器件及其制作方法
技术领域
本发明涉及半导体器件及其制作方法,具体涉及一种超级结碳化硅MOSFET器件及其制作方法。
背景技术
碳化硅(SiC)作为第三代半导体材料,具有禁带宽度大、热导率高、临界击穿电场高、电子的饱和漂移速度高等突出优点。与目前技术成熟的硅(Si)基电力电子器件相比,以SiC为代表的宽禁带半导体材料,特别适合制作大功率、高压、高温、抗辐照的电力电子器件。SiC电力电子器件在功率变换装置中的应用,将极大地提高现有能源的转换效率,不仅在传统工业领域,在基于电压源换流的柔性直流输电,太阳能、风能等新能源领域也能发挥重要作用。
然而,虽然SiC MOSFET比传统Si基MOSFET具有更低的比导通电阻、高工作频率和高温工作稳定性等优点,但仍存在着导通电阻随耐压的2.5次方急剧上升的问题,使其在高压工作是导通损耗增大,限制了其高压应用。一般采取超接结构来减小器件的导通电阻。
图1为传统碳化硅MOSFET结构,由于耐压越高,器件漂移区厚度越大,掺杂浓度越低,因此导通电阻越高,同时在P阱区的边缘由于曲率效应的影响电场分布比较集中;传统碳化硅超结MOSFET结构,需要多次刻蚀和外延,工艺实现比较困难,成本高。
发明内容
针对现有技术的不足,本发明的目的是提供一种超级结碳化硅MOSFET器件及其制作方法,本发明减小高压碳化硅MOSFET器件的导通电阻,降低器件损耗,同时改善器件体内电场分布,提高器件的击穿电压和可靠性。
本发明的目的是采用下述技术方案实现的:
本发明提供一种超级结碳化硅MOSFET器件,所述器件包括源极1、栅极2、栅氧介质3、N型源区4、P阱区5、JEFT区6、N-外延8、N+衬底10和漏极11,所述漏极11设置在N+衬底10的背面,所述N-外延8设置于N+衬底10的正面,所述JEFT区6设置于N-外延8的中间区域,所述P阱区5对称设置于N-外延8的两侧;所述N型源区4设置于P阱区5的一角,所述P阱区5包围N型源区4;所述栅氧介质3设置于N-外延8的正面,在所述栅氧介质3上沉积有栅极2;所述源极1设置于N型源区4的上表面;
其改进之处在于,在N-外延8和N+衬底10的两侧,且在P阱区5的下方,分别设有P型外延柱区7和P型衬底柱区9,P型外延柱区7和P型衬底柱区9,P型外延柱区7和P型衬底柱区9均通过离子注入实现,用于降低器件导通电阻,改善器件体内电场分布,提高器件击穿电压,并且避免二次外延以及刻蚀工艺带来的器件损伤,简化制造工艺。
进一步地,所述P型外延柱区7设置在P型衬底柱区9的正下方。
进一步地,所述P型外延柱区7与P型衬底柱区9的横向宽度相等,且等于P阱区5的宽度。
进一步地,所述P型外延柱区7与P型衬底柱区9均通过离子注入工艺实现,厚度为0.8μm至2μm,掺杂浓度为1e17至1e19cm-3
进一步地,所述栅极2为多晶硅栅极;所述源极1和漏极11上淀积Al\Ni\TI合金,作为源极1和漏极11的金属层。
本发明还提供一种超级结碳化硅MOSFET器件的制作方法,其改进之处在于,所述制作方法包括如下步骤:
A、在碳化硅N+衬底10的正面上离子注入深度0.2μm-2μm、铝离子掺杂浓度为1e15至1e16cm-3的P型衬底柱区9;
B、在碳化硅N+衬底10的正面上外延一层厚度为10μm、掺杂浓度为1e15至1e16cm-3的N-外延层8;
C、在碳化硅N-外延8的正面上离子注入深度0.2μm-2μm、铝离子掺杂浓度为1e15至1e16cm-3的P型外延柱区7;
D、在N-外延层8的中间区域离子注入深度为0.2μm-2μm,氮离子掺杂浓度为1e17cm-3的N型JEFT区6;
E、在P阱区5离子注入深度为0.2μm-0.5μm,氮离子掺杂浓度为1e19cm-3至1e20cm-3的N型源区4;
F、在碳化硅N-外延8的正面上采用氢氧合成工艺氧化一层50nm厚的栅氧介质3;
G、在栅氧介质3层上面用化学气相淀积的方法淀积一层150nm厚的多晶硅栅极2;
H、在源级1以及碳化硅背面的漏极11淀积Al\Ni\TI合金,作为源极1和漏极11的金属层。
进一步地,所述步骤A中,所涉及的离子注入,铝离子的注入能量为30keV至800keV,铝离子注入温度为650摄氏度,激活退火温度大于1780摄氏度。
进一步地,所述步骤D中,所涉及的离子注入,氮离子注入温度为650摄氏度,激活退火温度大于1780摄氏度。
进一步地,所述步骤F中,所涉及的氧化温度为1150度,在氩气Ar中退火30分钟,再在一氧化氮NO中退火2小时。
进一步地,所述步骤G中,所述多晶硅,采用LPCVD的沉积方式,在LPCVD设备上600摄氏度淀积50分钟。
进一步地,所述步骤H中,所涉及的Al\Ni\Ti合金,厚度分别为300nm\200nm\50nm,在650摄氏度温度下退火形成欧姆接触。
与现有技术比,本发明达到的有益效果是:
1、本发明由于在碳化硅衬底和碳化硅外延两个部分引入垂直对应的P型柱区,使得器件导通电阻降低,同时使器件原本集中的电场分布更为均匀,提高了器件的可靠性。
2、本发明相比于其他超结的方法,制作工艺简单,避免了多次外延和刻蚀造成器件缺陷以及晶格损伤等缺点。
附图说明
图1是传统VDMOSFET器件结构示意图;
图2是本发明提供的超级结碳化硅MOSFET器件结构示意图;其中:1-源极、2-栅极、3-栅氧介质、4-N型源区、5-P阱区、6-JEFT区、7-P型外延柱区、8-N-外延、9-P型衬底柱区、10-N+衬底、11-漏极。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步的详细说明。
本发明提供的超级结碳化硅MOSFET器件结构示意图如图2所示,所述器件包括源极1、栅极2、栅氧介质3、N型源区4、P阱区5、JEFT区6、N-外延8、N+衬底10和漏极11,所述漏极11设置在N+衬底10的背面,所述N-外延8设置于N+衬底10的正面,所述JEFT区6设置于N-外延8的中间区域,所述P阱区5对称设置于N-外延8的两侧;所述N型源区4设置于P阱区5的一角,所述P阱区5包围N型源区4;所述栅氧介质3设置于N-外延8的正面,在所述栅氧介质3上沉积有栅极2;所述源极1设置于N型源区4的上表面;
在N-外延8和N+衬底10的两侧,且在P阱区5的下方,分别设有P型外延柱区7和P型衬底柱区9,P型外延柱区7和P型衬底柱区9,P型外延柱区7和P型衬底柱区9均通过离子注入实现,用于降低器件导通电阻,改善器件体内电场分布,提高器件击穿电压,并且避免二次外延以及刻蚀工艺带来的器件损伤,简化制造工艺。
P型外延柱区7设置在P型衬底柱区9的正下方。
P型外延柱区7与P型衬底柱区9的横向宽度相等,且等于P阱区5的宽度。
P型外延柱区7与P型衬底柱区9均通过离子注入工艺实现,厚度为0.8μm至2μm,掺杂浓度为1e17至1e19cm-3
栅极2为多晶硅栅极;所述源极1和漏极11上淀积Al\Ni\TI合金,作为源极1和漏极11的金属层。
本发明还提供一种超级结碳化硅MOSFET器件的制作方法,包括如下步骤:
A、在碳化硅N+衬底10的正面上离子注入深度0.2μm-2μm、铝离子掺杂浓度为1e15至1e16cm-3的P型衬底柱区9;所涉及的离子注入,铝离子的注入能量为30keV至800keV,铝离子注入温度为650摄氏度,激活退火温度大于1780摄氏度。
B、在碳化硅N+衬底10的正面上外延一层厚度为10μm、掺杂浓度为1e15至1e16cm-3的N-外延层8;
C、在碳化硅N-外延8的正面上离子注入深度0.2μm-2μm、铝离子掺杂浓度为1e15至1e16cm-3的P型外延柱区7;
D、在N-外延层8的中间区域离子注入深度为0.2μm-2μm,氮离子掺杂浓度为1e17cm-3的N型JEFT区6;所涉及的离子注入,氮离子注入温度为650摄氏度,激活退火温度大于1780摄氏度。
E、在P阱区5离子注入深度为0.2μm-0.5μm,氮离子掺杂浓度为1e19cm-3至1e20cm-3的N型源区4;
F、在碳化硅N-外延8的正面上采用氢氧合成工艺氧化一层50nm厚的栅氧介质3;所涉及的氧化温度为1150度,在氩气Ar中退火30分钟,再在一氧化氮NO中退火2小时。
G、在栅氧介质3层上面用化学气相淀积的方法淀积一层150nm厚的多晶硅栅极2;所述多晶硅,采用LPCVD的沉积方式,在LPCVD设备上600摄氏度淀积50分钟。
H、在源级1以及碳化硅背面的漏极11淀积Al\Ni\TI合金,作为源极1和漏极11的金属层;所涉及的Al\Ni\Ti合金,厚度分别为300nm\200nm\50nm,在650摄氏度温度下退火形成欧姆接触。
本发明提供的超级结碳化硅MOSFET器件及其制作方法,可以有效降低器件的导通电阻,同时改善器件体内的电场分布,提高器件的耐压。本发明器件具有击穿电压高,导通电阻低,开关速度快、开关损耗低等优点,同时制作工艺简单,易于实现,可用于电力电子变压器,新能源发电、光伏逆变器等领域。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求范围当中。

Claims (11)

1.一种超级结碳化硅MOSFET器件,所述器件包括源极(1)、栅极(2)、栅氧介质(3)、N型源区(4)、P阱区(5)、JEFT区(6)、N-外延(8)、N+衬底(10)和漏极(11),所述漏极(11)设置在N+衬底(10)的背面,所述N-外延(8)设置于N+衬底(10)的正面,所述JEFT区(6)设置于N-外延(8)的中间区域,所述P阱区(5)对称设置于N-外延(8)的两侧;所述N型源区(4)设置于P阱区(5)的一角,所述P阱区(5)包围N型源区(4);所述栅氧介质(3)设置于N-外延(8)的正面,在所述栅氧介质(3)上沉积有栅极(2);所述源极(1)设置于N型源区(4)的上表面;
其特征在于,在N-外延(8)和N+衬底(10)的两侧,且在P阱区(5)的下方,分别设有P型外延柱区(7)和P型衬底柱区(9),P型外延柱区(7)和P型衬底柱区(9),P型外延柱区(7)和P型衬底柱区(9)均通过离子注入实现,用于降低器件导通电阻,改善器件体内电场分布,提高器件击穿电压,并且避免二次外延以及刻蚀工艺带来的器件损伤,简化制造工艺。
2.如权利要求1所述的超级结碳化硅MOSFET器件,其特征在于,所述P型外延柱区(7)设置在P型衬底柱区(9)的正下方。
3.如权利要求1所述的超级结碳化硅MOSFET器件,其特征在于,所述P型外延柱区(7)与P型衬底柱区(9)的横向宽度相等,且等于P阱区(5)的宽度。
4.如权利要求1所述的超级结碳化硅MOSFET器件,其特征在于,所述P型外延柱区(7)与P型衬底柱区(9)均通过离子注入工艺实现,厚度为0.8μm至2μm,掺杂浓度为1e17至1e19cm-3
5.如权利要求1所述的超级结碳化硅MOSFET器件,其特征在于,所述栅极(2)为多晶硅栅极;所述源极(1)和漏极(11)上淀积Al\Ni\TI合金,作为源极(1)和漏极(11)的金属层。
6.一种超级结碳化硅MOSFET器件的制作方法,其特征在于,所述制作方法包括如下步骤:
A、在碳化硅N+衬底(10)的正面上离子注入深度0.2μm-2μm、铝离子掺杂浓度为1e15至1e16cm-3的P型衬底柱区(9);
B、在碳化硅N+衬底(10)的正面上外延一层厚度为10μm、掺杂浓度为1e15至1e16cm-3的N-外延层(8);
C、在碳化硅N-外延(8)的正面上离子注入深度0.2μm-2μm、铝离子掺杂浓度为1e15至1e16cm-3的P型外延柱区(7);
D、在N-外延层(8)的中间区域离子注入深度为0.2μm-2μm,氮离子掺杂浓度为1e17cm-3的N型JEFT区(6);
E、在P阱区(5)离子注入深度为0.2μm-0.5μm,氮离子掺杂浓度为1e19cm-3至1e20cm-3的N型源区(4);
F、在碳化硅N-外延(8)的正面上采用氢氧合成工艺氧化一层50nm厚的栅氧介质(3);
G、在栅氧介质(3)层上面用化学气相淀积的方法淀积一层150nm厚的多晶硅栅极(2);
H、在源级(1)以及碳化硅背面的漏极(11)淀积Al\Ni\TI合金,作为源极(1)和漏极(11)的金属层。
7.如权利要求6所述的制作方法,其特征在于,所述步骤A中,所涉及的离子注入,铝离子的注入能量为30keV至800keV,铝离子注入温度为650摄氏度,激活退火温度大于1780摄氏度。
8.如权利要求6所述的制作方法,其特征在于,所述步骤D中,所涉及的离子注入,氮离子注入温度为650摄氏度,激活退火温度大于1780摄氏度。
9.如权利要求6所述的制作方法,其特征在于,所述步骤F中,所涉及的氧化温度为1150度,在氩气Ar中退火30分钟,再在一氧化氮NO中退火2小时。
10.如权利要求6所述的制作方法,其特征在于,所述步骤G中,所述多晶硅,采用LPCVD的沉积方式,在LPCVD设备上600摄氏度淀积50分钟。
11.如权利要求6所述的制作方法,其特征在于,所述步骤H中,所涉及的Al\Ni\Ti合金,厚度分别为300nm\200nm\50nm,在650摄氏度温度下退火形成欧姆接触。
CN201410037819.5A 2014-01-26 2014-01-26 一种超级结碳化硅mosfet器件及其制作方法 Active CN104810397B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410037819.5A CN104810397B (zh) 2014-01-26 2014-01-26 一种超级结碳化硅mosfet器件及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410037819.5A CN104810397B (zh) 2014-01-26 2014-01-26 一种超级结碳化硅mosfet器件及其制作方法

Publications (2)

Publication Number Publication Date
CN104810397A true CN104810397A (zh) 2015-07-29
CN104810397B CN104810397B (zh) 2018-01-09

Family

ID=53695084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410037819.5A Active CN104810397B (zh) 2014-01-26 2014-01-26 一种超级结碳化硅mosfet器件及其制作方法

Country Status (1)

Country Link
CN (1) CN104810397B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231903A (zh) * 2018-01-24 2018-06-29 重庆大学 一种带软恢复体二极管的超结功率mosfet
CN108231559A (zh) * 2016-12-09 2018-06-29 全球能源互联网研究院 一种接触电极制备方法及mosfet功率器件
CN111312811A (zh) * 2020-03-04 2020-06-19 厦门市三安集成电路有限公司 碳化硅欧姆接触结构及其制备方法
CN111613662A (zh) * 2020-05-27 2020-09-01 东北大学 偏压诱导共线反铁磁材料产生自旋极化电流及其调控方法
CN115101476A (zh) * 2022-08-22 2022-09-23 泰科天润半导体科技(北京)有限公司 一种提高电流能力的对称碳化硅mosfet的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030008483A1 (en) * 1999-10-21 2003-01-09 Fuji Electric, Co., Ltd. Super-junction semiconductor device and the method of manufacturing the same
US20070132020A1 (en) * 2005-12-14 2007-06-14 De Fresart Edouard D Superjunction power MOSFET
CN102420251A (zh) * 2011-12-05 2012-04-18 电子科技大学 一种具有非均匀浮岛结构的vdmos器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030008483A1 (en) * 1999-10-21 2003-01-09 Fuji Electric, Co., Ltd. Super-junction semiconductor device and the method of manufacturing the same
US20070132020A1 (en) * 2005-12-14 2007-06-14 De Fresart Edouard D Superjunction power MOSFET
CN102420251A (zh) * 2011-12-05 2012-04-18 电子科技大学 一种具有非均匀浮岛结构的vdmos器件

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231559A (zh) * 2016-12-09 2018-06-29 全球能源互联网研究院 一种接触电极制备方法及mosfet功率器件
CN108231903A (zh) * 2018-01-24 2018-06-29 重庆大学 一种带软恢复体二极管的超结功率mosfet
CN108231903B (zh) * 2018-01-24 2020-06-02 重庆大学 一种带软恢复体二极管的超结功率mosfet
CN111312811A (zh) * 2020-03-04 2020-06-19 厦门市三安集成电路有限公司 碳化硅欧姆接触结构及其制备方法
CN111613662A (zh) * 2020-05-27 2020-09-01 东北大学 偏压诱导共线反铁磁材料产生自旋极化电流及其调控方法
CN115101476A (zh) * 2022-08-22 2022-09-23 泰科天润半导体科技(北京)有限公司 一种提高电流能力的对称碳化硅mosfet的制造方法
CN115101476B (zh) * 2022-08-22 2022-11-11 泰科天润半导体科技(北京)有限公司 一种提高电流能力的对称碳化硅mosfet的制造方法

Also Published As

Publication number Publication date
CN104810397B (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
TWI520337B (zh) 階梯溝渠式金氧半場效電晶體及其製造方法
CN102364688B (zh) 一种垂直双扩散金属氧化物半导体场效应晶体管
US10475896B2 (en) Silicon carbide MOSFET device and method for manufacturing the same
CN102832248A (zh) 基于半超结的碳化硅mosfet及制作方法
CN104810397A (zh) 一种超级结碳化硅mosfet器件及其制作方法
US10211330B2 (en) Vertical high voltage semiconductor apparatus and fabrication method of vertical high voltage semiconductor apparatus
WO2023142393A1 (zh) 集成高速续流二极管的碳化硅分离栅mosfet及制备方法
CN103928320B (zh) 沟槽栅碳化硅绝缘栅双极型晶体管的制备方法
JP6241958B2 (ja) 高耐圧半導体装置およびその製造方法
Ji et al. A review of gallium oxide-based power Schottky barrier diodes
CN103258847A (zh) 一种双面场截止带埋层的rb-igbt器件
JP7042898B2 (ja) 炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法
CN113571584A (zh) 一种SiC MOSFET器件及其制备方法
US8835935B2 (en) Trench MOS transistor having a trench doped region formed deeper than the trench gate
WO2019242100A1 (zh) 氧化镓垂直结构半导体电子器件及其制作方法
JP2012186318A (ja) 高耐圧半導体装置
CN106910774A (zh) 圆弧角u形槽栅结构的碳化硅功率mosfet器件及其制备方法
CN103928524A (zh) 带有n型漂移层台面的碳化硅umosfet器件及制作方法
CN206574721U (zh) 一种集成肖特基二极管的SiC双沟槽型MOSFET器件
CN103928321A (zh) 碳化硅绝缘栅双极型晶体管的制备方法
WO2019242101A1 (zh) 氧化镓垂直结构半导体电子器件及其制作方法
CN106098561A (zh) 一种mosfet器件的制造方法及其器件
CN103531616B (zh) 一种沟槽型快恢复二极管及其制造方法
JP7127748B2 (ja) 炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法
CN205845958U (zh) 一种igbt器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Wu Hao

Inventor after: Yang Fei

Inventor after: Yu Kunshan

Inventor before: Yang Fei

Inventor before: Wu Hao

Inventor before: Yu Kunshan

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 100031 Xicheng District West Chang'an Avenue, No. 86, Beijing

Co-patentee after: GLOBAL ENERGY INTERCONNECTION RESEARCH INSTITUTE Co.,Ltd.

Patentee after: STATE GRID CORPORATION OF CHINA

Address before: 100031 Xicheng District West Chang'an Avenue, No. 86, Beijing

Co-patentee before: GLOBAL ENERGY INTERCONNECTION Research Institute

Patentee before: STATE GRID CORPORATION OF CHINA

Address after: 100031 Xicheng District West Chang'an Avenue, No. 86, Beijing

Co-patentee after: GLOBAL ENERGY INTERCONNECTION Research Institute

Patentee after: STATE GRID CORPORATION OF CHINA

Address before: 100031 Xicheng District West Chang'an Avenue, No. 86, Beijing

Co-patentee before: STATE GRID SMART GRID Research Institute

Patentee before: State Grid Corporation of China