CN104774216B - 高纯三乙基镓的制备方法 - Google Patents

高纯三乙基镓的制备方法 Download PDF

Info

Publication number
CN104774216B
CN104774216B CN201510193872.9A CN201510193872A CN104774216B CN 104774216 B CN104774216 B CN 104774216B CN 201510193872 A CN201510193872 A CN 201510193872A CN 104774216 B CN104774216 B CN 104774216B
Authority
CN
China
Prior art keywords
gallium
triethyl
purity
chromatographic column
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510193872.9A
Other languages
English (en)
Other versions
CN104774216A (zh
Inventor
顾宏伟
茅嘉原
李敏
王士峰
洪海燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU PUYAO PHOTOELECTRIC MATERIAL CO Ltd
Original Assignee
SUZHOU PUYAO PHOTOELECTRIC MATERIAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU PUYAO PHOTOELECTRIC MATERIAL CO Ltd filed Critical SUZHOU PUYAO PHOTOELECTRIC MATERIAL CO Ltd
Priority to CN201510193872.9A priority Critical patent/CN104774216B/zh
Publication of CN104774216A publication Critical patent/CN104774216A/zh
Application granted granted Critical
Publication of CN104774216B publication Critical patent/CN104774216B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)

Abstract

本发明涉及一种高纯三乙基镓的制备方法,属于元素周期表第Ⅲ族金属化合物制备的技术领域。本发明的制备方法包括以下步骤:(1)以乙醚为溶剂,制备三乙基镓粗品;(2)对步骤(1)得到的三乙基镓粗品进行纯化,所述纯化方法包括采用第一层析柱对所述三乙基镓粗品进行提纯的步骤;并且所述第一层析柱采用的固定相为接枝二氧化硅,所述接枝二氧化硅为表面接枝有三正辛胺的二氧化硅。本发明的制备方法采用合成和分离两个步骤得到了纯度可以达到6N的三乙基镓;尤其是采用的纯化方法结合了固液分离的手段,将特定的配位剂负载在二氧化硅上,不仅操作简单,而且也进一步提高了纯化效果。

Description

高纯三乙基镓的制备方法
技术领域
本发明属于元素周期表第Ⅲ族金属化合物制备的技术领域,更具体的说,本发明涉及一种高纯三乙基镓的制备方法。
背景技术
高纯三乙基镓广泛应用于生长铟镓磷、铟镓砷氮、铟镓砷等化合物半导体薄膜材料,是金属有机化学气相沉积技术(MOCVD)、化学束外延(CBE)过程中生长光电子材料的最重要、也是目前用量最大的原料。为了满足光电子材料高纯度、高精度的质量要求(纯度不够的三乙基镓会对芯片的性能产生很大的影响,对MOCVD设备也会有很大的损害),要求高纯三乙基镓的纯度达到99.9999%,否则就需要进一步提纯。
公开号为CN 102020670A的中国发明专利申请公开说明书公开了一种工业化制备三乙基镓的方法,在充满惰性气体的反应釜中,投入镓镁合金原料,在醚类溶剂(乙醚、四氢呋喃或甲基四氢呋喃)存在下,在搅拌条件下逐步加入卤代烷(溴乙烷或碘乙烷),通过控制卤代烷的滴加速度控制溶剂回流速度,反应完成后,将溶剂蒸出,再在减压条件下得到三甲基镓与醚的配合物,最后解配得到三甲基镓;其中,所述镓镁合金为GaxMgy,其中,x=0.3~0.7,y=0.7~0.3,x+y=1,x、y为摩尔比。所述卤代烷与镓镁合金中镓含量的摩尔比为3~8:1。所述减压的压力为1~50mmgH。所述解配的温度为90~180℃。
三乙基镓由于制备工艺的限制,使得其与反应溶剂很难分离,现有方式是选用醚类等配位剂进行配位,然后在升温及真空条件下除去低沸点溶剂,然后再高温真空条件下解配得到粗品,然后经过精馏再得到高纯产品。大部分配位剂都属于大分子高沸点液态,且粘度较高,小分子低沸点杂质容易被包裹在大分子高沸点配位剂里面,不容易被除尽,纯度一般仅能达到95.0~99.0%。另一方面现有技术为保证三乙基镓的纯度,会选择放弃一部分三乙基镓,让其随低沸点杂质一并被带出,但是由于三乙基镓本身特性,导致这一部工作的危险性较大,不易操作,难度较高。
发明内容
为了解决现有技术中的上述技术问题,本发明的目的在于提供一种高纯三乙基镓的制备方法及其制备方法。
为了实现上述目的,本发明采用了以下技术方案:
一种高纯三乙基镓的制备方法,其特征在于包括以下步骤:(1)以乙醚为溶剂,制备三乙基镓粗品;(2)对步骤(1)得到的三乙基镓粗品进行纯化,所述纯化方法包括采用第一层析柱对所述三乙基镓粗品进行提纯的步骤;并且所述第一层析柱采用的固定相为接枝二氧化硅,所述接枝二氧化硅为表面接枝有三正辛胺的二氧化硅。
其中,所述三乙基镓的纯度为95.0~99.0%。
其中,所述三乙基镓粗品通过以下反应(1)~(4)的任何一种得到:
CH3CH2MgX+GaX3→Ga(CH3CH2)3+MgX2,X为I或Br (1)
CH3CH2X+Ga+Mg→Ga(CH3CH2)3+MgX2+CH3CH2MgX,X为I或Br (2)
CH3CH2X+Ga+Li→Ga(CH3CH2)3+Li X,X为I或Br (3)
CH3CH2Li+GaX3→Ga(CH3CH2)3+Li X,X为I或Br (4)
其中,所述接枝二氧化硅通过以下方法制备得到:首先利用氨基硅烷对二氧化硅进行表面处理,然后再接枝三正辛胺。
其中,所述接枝二氧化硅通过以下方法制备得到:将硅胶粉分散于酸性溶液中,在60~70℃搅拌10~20h,冷却至40~60℃,加入氨基硅烷继续搅拌10~20h,然后加入三正辛胺,搅拌4~8h,过滤即可得到接枝二氧化硅。
其中,所述硅胶粉、氨基硅烷以及三正辛胺的质量比为:100:3~6:8~12。
其中,所述氨基硅烷选自γ-氨丙基三乙氧基硅烷、γ-氨丙基三甲氧基硅烷、苯氨基乙基三乙氧基硅烷、苯氨基乙基三甲氧基硅烷、N-β(氨乙基)-γ-氨丙基三乙氧基硅烷、N-β(氨乙基)-γ-氨丙基三甲氧基硅烷或N-β(氨乙基)-γ-氨丙基乙基二乙氧基硅烷中的至少一种,优选为γ-氨丙基三乙氧基硅烷。
其中,所述纯化的操作如下:(2.1)把三乙基镓倒入固定相为二氧化硅的第二层析柱中,依靠重力自然下流,待液体流完,收集溶液;(2.2)将收集的溶液倒入第一层析柱中,依靠重力自然下流,待液体流完收集溶液;再把收集的溶液再倒入第一层析柱中,重复操作2~5次;(2.3)对经过(2.2)处理后的第一层析柱进行加热解配,并在层析柱底部抽真空收集即可得到纯化的三乙基镓。
其中,步骤(2.3)中,加热解配的温度为80~100℃。
与现有技术相比,本发明所述的高纯三乙基镓的制备方法具有以下有益效果:
本发明的制备方法采用合成和分离两个步骤得到了纯度可以达到6N的三乙基镓;尤其是采用的纯化方法结合了固液分离的手段,将特定的配位剂负载在二氧化硅上,不仅操作简单,而且也进一步提高了纯化效果。
具体实施方式
以下将结合具体实施例对本发明所述的高纯三乙基镓的制备方法做进一步的阐述,以对本发明的发明构思及其效果做出更完整的说明。
实施例1
将100g粒径为400目的硅胶粉分散于浓度为0.1mol/L的盐酸水溶液中,在60~70℃搅拌10~20h,冷却至40℃,加入5gγ-氨丙基三乙氧基硅烷继续搅拌10~20h,然后加入10g三正辛胺,搅拌4~8h,过滤后即可得到接枝二氧化硅。将得到的接枝二氧化硅装入层析柱(内径为10mm)中,加压保证填充均匀,然后加入正己烷进行冲洗,冲洗干净后即可得到第一层析柱。将100g粒径为400目的硅胶粉装入层析柱(内径为10mm)中,加压保证填充均匀,即可得到第二层析柱。
实施例2
以CH3CH2MgX和GaX3(X为I或Br)为原料,以乙醚为溶剂,合成反应后经过粗提得到纯度为99.0%的三乙基镓。以该三乙基镓粗品进行包括以下步骤的提纯操作。
步骤2.1:把该三乙基镓倒入实施例1制备的第二层析柱中,依靠重力自然下流,待液体流完,收集溶液。
步骤2.2:将步骤2.1收集的溶液全部倒入实施例1制备的第一层析柱中,依靠重力自然下流,待液体流完收集溶液;再把收集的溶液全部倒入该第一层析柱中,重复步骤2的前述操作3次;
步骤2.3:对经过步骤2.2处理后的第一层析柱进行加热解配,加热温度为100℃,并在层析柱底部以真空泵抽真空为动力,收集解配的三乙基镓可得到约19.3g三乙基镓。
对步骤2.3得到的三乙基镓进行ICP-OES和NMR分析,可以确认收集到的三乙基镓的纯度为99.9999%(6N)。
实施例3
以卤代烷CH3CH2X(X为I或Br)、镓和镁为原料,以乙醚为溶剂,合成反应后经过粗提得到纯度为99.0%的三乙基镓。以该三乙基镓粗品进行包括以下步骤的提纯操作。
步骤2.1:把该三乙基镓倒入实施例1制备的第二层析柱中,依靠重力自然下流,待液体流完,收集溶液。
步骤2.2:将步骤2.1收集的溶液全部倒入实施例1制备的第一层析柱中,依靠重力自然下流,待液体流完收集溶液;再把收集的溶液全部倒入该第一层析柱中,重复步骤2的前述操作3次;
步骤2.3:对经过步骤2.2处理后的第一层析柱进行加热解配,加热温度为100℃,并在层析柱底部以真空泵抽真空为动力,收集解配的三乙基镓可得到约19.3g三乙基镓。
对步骤2.3得到的三乙基镓进行ICP-OES和NMR分析,可以确认收集到的三乙基镓的纯度为99.9999%(6N)。
实施例4
以CH3CH2Li和GaX3(X为I或Br)为原料,以乙醚为溶剂,合成反应后经过粗提得到纯度为99.0%的三乙基镓。以该三乙基镓粗品进行包括以下步骤的提纯操作。
步骤2.1:把该三乙基镓倒入实施例1制备的第二层析柱中,依靠重力自然下流,待液体流完,收集溶液。
步骤2.2:将步骤2.1收集的溶液全部倒入实施例1制备的第一层析柱中,依靠重力自然下流,待液体流完收集溶液;再把收集的溶液全部倒入该第一层析柱中,重复步骤2的前述操作3次;
步骤2.3:对经过步骤2.2处理后的第一层析柱进行加热解配,加热温度为120℃,并在层析柱底部以真空泵抽真空为动力,收集解配的三乙基镓可得到约19.0g三乙基镓。
对步骤2.3得到的三乙基镓进行ICP-OES和NMR分析,可以确认收集到的三乙基镓的纯度为99.9999%(6N)。
实施例5
以卤代烷CH3CH2X(X为I或Br)、镓和锂为原料,以乙醚为溶剂,合成反应后经过粗提得到纯度为99.0%的三乙基镓。以该三乙基镓粗品进行包括以下步骤的提纯操作。
步骤2.1:把该三乙基镓倒入实施例1制备的第二层析柱中,依靠重力自然下流,待液体流完,收集溶液。
步骤2.2:将步骤2.1收集的溶液全部倒入实施例1制备的第一层析柱中,依靠重力自然下流,待液体流完收集溶液;再把收集的溶液全部倒入该第一层析柱中,重复步骤2的前述操作3次;
步骤2.3:对经过步骤2.2处理后的第一层析柱进行加热解配,加热温度为120℃,并在层析柱底部以真空泵抽真空为动力,收集解配的三乙基镓可得到约19.2g三乙基镓。
对步骤2.3得到的三乙基镓进行ICP-OES和NMR分析,可以确认收集到的三乙基镓的纯度为99.9999%(6N)。
对比例
以二正丁胺、三丙胺替代实施例1的三正辛胺制作层析柱,采用实施例的提纯操作,经过ICP-OES和NMR分析发现,不仅不能去除其中的乙醚或乙基四氢呋喃溶剂,以及金属杂质离子,而且还会引入二正丁胺和三丙胺。
对于本领域的普通技术人员而言,具体实施例只是对本发明进行了示例性描述,本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种非实质性的改进,或未经改进将本发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围之内。

Claims (6)

1.一种高纯三乙基镓的制备方法,其特征在于:包括以下步骤:
(1)以乙醚为溶剂,制备三乙基镓粗品,所述三乙基镓粗品的纯度为95.0~99.0%;所述三乙基镓粗品通过以下反应(1)~(4)的任何一种得到:
CH3CH2MgX+GaX3→Ga(CH3CH2)3+MgX2,X为I或Br (1)
CH3CH2X+Ga+Mg→Ga(CH3CH2)3+MgX2+CH3CH2MgX,X为I或Br (2)
CH3CH2X+Ga+Li→Ga(CH3CH2)3+Li X,X为I或Br (3)
CH3CH2Li+GaX3→Ga(CH3CH2)3+Li X,X为I或Br (4);
(2)对步骤(1)得到的三乙基镓粗品进行纯化,所述纯化的操作如下:(2.1)把三乙基镓倒入固定相为二氧化硅的第二层析柱中,依靠重力自然下流,待液体流完,收集溶液;(2.2)将收集的溶液倒入第一层析柱中,依靠重力自然下流,待液体流完收集溶液;再把收集的溶液再倒入第一层析柱中,重复操作2~5次;(2.3)对经过(2.2)处理后的第一层析柱进行加热解配,并在层析柱底部抽真空收集即可得到纯化的三乙基镓,加热解配的温度为100~120℃;并且所述第一层析柱采用的固定相为接枝二氧化硅,所述接枝二氧化硅为表面接枝有三正辛胺的二氧化硅。
2.根据权利要求1所述的高纯三乙基镓的制备方法,其特征在于:所述接枝二氧化硅通过以下方法制备得到:首先利用氨基硅烷对二氧化硅进行表面处理,然后再接枝三正辛胺。
3.根据权利要求1所述的高纯三乙基镓的制备方法,其特征在于:所述接枝二氧化硅通过以下方法制备得到:将硅胶粉分散于酸性溶液中,在60~70℃搅拌10~20h,冷却至40~60℃,加入氨基硅烷继续搅拌10~20h,然后加入三正辛胺,搅拌4~8h,过滤即可得到接枝二氧化硅。
4.根据权利要求3所述的高纯三乙基镓的制备方法,其特征在于:所述硅胶粉、氨基硅烷以及三正辛胺的质量比为:100:3~6:8~12。
5.根据权利要求2所述的高纯三乙基镓的制备方法,其特征在于:所述氨基硅烷选自γ-氨丙基三乙氧基硅烷、γ-氨丙基三甲氧基硅烷、苯氨基乙基三乙氧基硅烷、苯氨基乙基三甲氧基硅烷、N-β(氨乙基)-γ-氨丙基三乙氧基硅烷、N-β(氨乙基)-γ-氨丙基三甲氧基硅烷或N-β(氨乙基)-γ-氨丙基乙基二乙氧基硅烷中的至少一种。
6.根据权利要求5所述的高纯三乙基镓的制备方法,其特征在于:所述氨基硅烷为γ-氨丙基三乙氧基硅烷。
CN201510193872.9A 2015-04-23 2015-04-23 高纯三乙基镓的制备方法 Active CN104774216B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510193872.9A CN104774216B (zh) 2015-04-23 2015-04-23 高纯三乙基镓的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510193872.9A CN104774216B (zh) 2015-04-23 2015-04-23 高纯三乙基镓的制备方法

Publications (2)

Publication Number Publication Date
CN104774216A CN104774216A (zh) 2015-07-15
CN104774216B true CN104774216B (zh) 2016-08-24

Family

ID=53616014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510193872.9A Active CN104774216B (zh) 2015-04-23 2015-04-23 高纯三乙基镓的制备方法

Country Status (1)

Country Link
CN (1) CN104774216B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102503968A (zh) * 2011-11-30 2012-06-20 苏州普耀光电材料有限公司 一步法制备高纯三乙基镓的方法
CN103849165A (zh) * 2012-11-28 2014-06-11 中国科学院化学研究所 表面接枝有紫外线吸收功能基团的功能化纳米二氧化硅及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024617A (ja) * 2006-07-19 2008-02-07 Ube Ind Ltd 高純度トリアルキルアルミニウム及びその製法
JP5397641B2 (ja) * 2011-12-27 2014-01-22 宇部興産株式会社 高純度トリアルキルインジウム及びその製法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102503968A (zh) * 2011-11-30 2012-06-20 苏州普耀光电材料有限公司 一步法制备高纯三乙基镓的方法
CN103849165A (zh) * 2012-11-28 2014-06-11 中国科学院化学研究所 表面接枝有紫外线吸收功能基团的功能化纳米二氧化硅及其制备方法

Also Published As

Publication number Publication date
CN104774216A (zh) 2015-07-15

Similar Documents

Publication Publication Date Title
CN104774218B (zh) 高纯三甲基铝的制备方法
CN104923163B (zh) 一种吸附重金属离子的硅胶吸附剂及其制备方法
CN104744500B (zh) 液态第ⅲ族金属的三烷基化合物的纯化方法
CN102198937B (zh) 静态多级熔融结晶法制备电子级磷酸
CN113527303B (zh) 一种瑞德西韦母核中间体的制备工艺
CN111792628B (zh) 一种熔盐法合成的双功能氮化碳材料及其制备方法与应用
CN111303169B (zh) 一种福比他韦的制备方法
CN1904097A (zh) 草酸体系萃取法制取无氟氧化铌工艺
CN114315888B (zh) 一种基于格氏法合成有机化合物的环保型方法
CN103601624A (zh) 一种超纯丙酮的制备方法
CN107746410B (zh) 一种含碳硼烷的硅烷偶联剂及其制备方法
CN104774216B (zh) 高纯三乙基镓的制备方法
CN104860973B (zh) 三甲基镓的纯化方法
CN110423257B (zh) 一种索菲布韦合成工艺
CN117142935A (zh) 一种双(乙酰丙酮)锡的制备方法
CN104817579B (zh) 三乙基镓的高效纯化方法
CN104860972B (zh) 高纯三甲基铟的制备方法
CN117143136A (zh) 四甲基硅烷及其制备方法
CN111205297A (zh) 一种福比他韦rrrr型对映异构体的制备方法
CN102863023A (zh) 一种电子级砷烷的合成和提纯方法
CN103030149A (zh) 一种从工业硅中去除杂质的方法
CN104817580B (zh) 三甲基铟的高效纯化方法
CN101848856A (zh) 簇硼的制造方法
Mai et al. Comparative study on removal of Fe, Al and Ca from MG-Si by acid leaching
CN105776307B (zh) 一种稀土氧化物分离纯化的前处理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant