CN104768876B - 利用紫外和可见光谱测量以及氧化还原电势来监测和控制臭氧化和曝气过滤的方法和装置 - Google Patents

利用紫外和可见光谱测量以及氧化还原电势来监测和控制臭氧化和曝气过滤的方法和装置 Download PDF

Info

Publication number
CN104768876B
CN104768876B CN201380042364.XA CN201380042364A CN104768876B CN 104768876 B CN104768876 B CN 104768876B CN 201380042364 A CN201380042364 A CN 201380042364A CN 104768876 B CN104768876 B CN 104768876B
Authority
CN
China
Prior art keywords
oxidation
reduction potential
dosage
air
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380042364.XA
Other languages
English (en)
Other versions
CN104768876A (zh
Inventor
伊万·X·朱
布莱恩·J·贝茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xylem Water Solutions Zelienople LLC
Original Assignee
Xylem Water Solutions Zelienople LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xylem Water Solutions Zelienople LLC filed Critical Xylem Water Solutions Zelienople LLC
Publication of CN104768876A publication Critical patent/CN104768876A/zh
Application granted granted Critical
Publication of CN104768876B publication Critical patent/CN104768876B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/003Downstream control, i.e. outlet monitoring, e.g. to check the treating agents, such as halogens or ozone, leaving the process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/006Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/15N03-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/20Total organic carbon [TOC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/38Gas flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

本发明涉及用于监测和控制在水处理和废水处理中所使用的臭氧化和生物曝气过滤的工艺流程的方法和系统。该工艺的监测和控制可以通过在线测量一个或多个波长下的UV/Vis吸收和氧化/还原电势值,并将其与预定的UV吸收和氧化/还原电势值进行对比来实现。然后基于所测量的出水的UV/Vis吸收和氧化/还原电势值对出水的空气和臭氧剂量进行调整。

Description

利用紫外和可见光谱测量以及氧化还原电势来监测和控制臭 氧化和曝气过滤的方法和装置
相关申请的交叉引用
本申请要求2012年8月10日提交的美国专利申请序列号61/681,991的优先权,其全部内容通过引用合并于此。
技术领域
本发明涉及用于监测和控制水处理和废水处理中所使用的臭氧化和生物曝气过滤的工艺流程的方法和装置。
背景技术
臭氧化工艺广泛应用于水处理和废水处理中,旨在提高有机成分的生物降解能力,以及杀死或灭活细菌或病原体类,起到消毒的作用。生物曝气过滤(BAF)是用于同时去除生化需氧量(BOD)、氨以及总悬浮固体量(TSS)的固定床固定生物膜工艺。过滤介质可以是沙子、膨胀粘土、浮石、塑料珠子或其他专用介质。在BAF中,工艺空气从底部引入系统中,以提供用于BOD去除和硝化作用的氧气。当对TSS的拦截和生物生长使水头损失逐渐形成,清理程序即可开始,包括空气冲刷、空气和水同时清洗,以及单独用水清洗。通常,用于冲刷的空气由单独的运送系统来提供。如果过量的工艺空气被运送到系统内,则出水的溶解氧将升高。在这样的情况下,氧将不是生物反应的限制因子,并且所运送的过量空气会完全回到大气中,引起了额外的能耗。类似地,如果工艺空气运送不足,出水中的溶解氧将降低,且该工艺将受到氧的限制。在该工艺组合中,臭氧的使用意在提高进水水体的生物降解能力(表示为BOD/COD的比值),这样BOD可以被附在过滤介质上的微生物所利用。臭氧供应不足可能不会产生充足的BOD量,并弱化其性能;相反,如果供应过量,可能是不必要的。
在过去,臭氧化和生物曝气过滤的工艺被分别控制,几乎不考虑利用用于工艺控制和自动化的统一的参数或指标。其中,臭氧的剂量通常是预定的,并根据诸如进水BOD、TSS以及颜色等其他工艺信息进行现场修订,并不参考统一的工艺指标。同时,曝气率通常是预设的,在BAF的操作过程中几乎没有变化。
发明内容
在本发明中,紫外和可见(UV/Vis)光谱测量被用作统一的指标,用于在在线氧化/还原电势(ORP)的辅助下进行工艺监测和控制。臭氧化和BAF的组合工艺流程通常包括用于对浊度、总有机碳(TOC)、氨以及溶解氧等进行工艺监测(和控制)的多个在线传感器。本发明包括通过单个设备实施的工艺控制,在微处理器的辅助下实现所需的出水质量,该设备用于在线监测出水UV/Vis光谱以及直接来源于出水的其他信息,该出水质量表达为UV吸收,以代替总有机碳(TOC)和化学需氧量(COD)。
本发明涉及用于监测和控制在水处理和废水处理中所使用的空气和臭氧剂量的工艺流程的方法和系统。本发明的方法包括获得一个或多个波长下的出水的UV吸收以及氧化/还原电势的在线测量值、将所测量的UV吸收以及出水的氧化/还原电势与存储在微处理器内的预定的UV吸收值以及氧化/还原电势值进行对比,以及基于所测量的出水的UV吸收以及氧化/还原电势的值来对向系统提供的空气和臭氧剂量进行如下调整:
i.当UV吸收的测量值低于预定的UV吸收值,且氧化/还原电势的测量值高于预定的氧化/还原电势值时,减少空气的流速;
ii.当UV吸收的测量值低于预定的UV吸收值,且氧化/还原电势的测量值低于或等于预定的氧化/还原电势值时,减少臭氧的剂量;
iii.当UV吸收的测量值高于预定的UV吸收值,且氧化/还原电势的测量值高于或等于预定的氧化/还原电势值时,增加臭氧的剂量;
iv.当UV吸收的测量值高于预定的UV吸收值,且氧化/还原电势的测量值低于预定的氧化/还原电势值时,增加空气的流速。
本发明的系统包括用于测量一个或多个波长下的出水的UV吸收以及氧化/还原电势的传感器、用于将所测量的出水的UV吸收以及氧化/还原电势与存储在微处理器内的预定的UV吸收以及氧化/还原电势进行对比的微处理器,以及用于如上所述的基于所测量的出水的UV吸收以及氧化/还原电势的值来对出水的空气和臭氧剂量进行调整的比例、积分和微分控制回路。可选的UV/Vis传感器也可以放置在处理流程的前面,这样可以实时监测进水水质,并且臭氧变化的控制范围(剂量上限和剂量下限)可以根据实际的水质进行改变。
附图说明
图1是本发明的系统的示意图,其在臭氧化和生物曝气过滤系统内;以及
图2是示意框图,其示出了本发明的方法的空气和臭氧化组合的调整的工艺控制逻辑。
具体实施方式
图1显示了臭氧化和生物曝气过滤系统1,其包括UV/Vis 2和ORP探针3,UV/Vis 2和ORP探针3收集出水4的水质的信息。
UV/Vis照射的扫描会产生覆盖190-600nm的范围的光谱。200-250nm的光谱用作硝酸盐和亚硝酸盐的指纹谱,190-380nm的光谱用作有机成分的指纹谱,380-600nm的光谱用作浊度和悬浮固体量的指纹谱。UV吸收或反射比与水中的有机物、胶质物和其他物质的量相关,经过水时有机物、胶质物和其他物质吸收和散射紫外光,并且众所周知UV吸收是对进水水流和出水水流中的有机成分进行测量的替代。然而,单个波长的测量可能无法获得宽范围的具有不同的官能团的有机物质,且当有机成分随时间发生变化时往往会产生有偏结果。对190-380nm的光谱扫描允许系统覆盖有机成分的宽范围,并提供可靠的信息。有机成分(表示为总有机碳或化学需氧量)和UV吸收之间的预定关联将被储存在微处理器5中。已经证明在线UV/Vis光谱测量是能够对水中的(有机)物质的去除效率和后续浓度的具体信息进行收集的工具。包括总悬浮固体量(TSS)、浊度、总有机碳、化学需氧量以及硝酸盐/亚硝酸盐在内的参数可以通过UV/Vis光谱测量而被容易地监测。出水中的预定目标UV吸收(表示为单个波长吸收或扫描光谱区域)也被储存在处理器中。根据UV吸收的值,对臭氧剂量以及曝气率作出调整。
系统中的溶解氧水平与ORP有很强的关联。ORP(氧化/还原电势)是对系统能力的测量,该测量对系统得电子(还原)或失电子(氧化)进行观察(单位为毫伏)。正数时,该测量表示系统被氧化的程度,负数时,该测量表示系统被还原的程度。所需的ORP值可以是用户限定并存储在处理器中的,这样可以为COD去除或硝化,或这两种工艺提供充足的空气。该思想是为了使能耗最小化,并仍旧可以符合出水处理的要求。根据所测量的ORP值,对臭氧剂量以及曝气率作出调整。
臭氧剂量以及曝气率的调整是通过图1所示的臭氧发生器6和曝气鼓风机8来完成。
图2示出了当UV吸收和ORP值与其设定点对比时,基于当前UV吸收和ORP值进行工艺调整的四种情况。对空气和臭氧剂量的工艺调整将通过比例、积分和微分(PID)控制回路来实现。在控制回路中,引入了延迟功能,以适应过滤系统和整个处理系统管道、通道以及采样系统的水力停留时间。当UV吸收和ORP值与其设定点对比时,基于当前UV吸收和ORP值进行工艺调整的四种情况如下:
·低UVA/高ORP=>减少空气;
·低UVA/低ORP=>减少臭氧;
·高UVA/高ORP=>增加臭氧;以及
·高UVA/低ORP=>增加空气。
为了防止工艺调整期间的工艺失控事件,臭氧剂量的上限和下限被存储在处理器中,空气冲刷流速也一样。当UV测量传感器被设置在流程的前面时,也可以通过对处理流程的进水的UV吸收的实时监测来随时确定和调整臭氧的上限和下限。通过实时监测水质,臭氧变化的控制范围(剂量上限和剂量下限)可以根据实际的水质而改变。这种对工艺空气调整的途径能够解决进入的有机成分的浓度相对低且不需要曝气的情况。由于工艺空气的调整,曝气鼓风机会因此关闭,并且进入的有机成分的氧化只随着内部的溶解氧的消耗而发生。
尽管浊度、TSS、硝酸盐以及亚硝酸盐的结果可能不会用于工艺控制,但是它们提供了关于当前工艺状态以及性能的有价值的信息,尤其在除了生化转化外还需要硝化作用时。
本发明中,可以通过对UV吸收和ORP的在线测量来实现工艺监测和控制。UV吸收和UV透光率可以通过方程式吸收=-log(透光率)来转换。如果可利用的话,UV透光率读数会用于下游UV消毒系统的UV灯强度和UV剂量控制。本方法的优点在于,在保持所需的出水质量的同时节能,并简单且便宜。
已经参考优选的实施方式对本发明进行了描述。在阅读和理解了前述的具体描述的基础上可以想到其他的明显修改和变更。目的在于本发明被视为包括所有此类修改和变更。

Claims (14)

1.一种用于监测和控制在水处理工艺流程中所使用的空气和臭氧剂量的方法,该方法包括如下步骤:
(a)获得出水的UV吸收的在线测量值;
(b)将所测量的出水的UV吸收与储存在微处理器中的预定的UV吸收值进行对比;
(c)获得出水的氧化/还原电势的在线测量值;
(d)将所测量的出水的氧化/还原电势与储存在微处理器中的预定的氧化/还原电势值进行对比;以及
(e)基于所测量的出水的UV/Vis吸收和氧化/还原电势的值来对所述出水的空气和臭氧剂量进行如下调整:
i.当UV吸收的测量值低于预定的UV吸收值,且氧化/还原电势的测量值高于预定的氧化/还原电势值时,减少空气的流速;
ii.当UV吸收的测量值低于预定的UV值,且氧化/还原电势的测量值低于或等于预定的氧化/还原电势值时,减小臭氧的剂量;
iii.当UV吸收的测量值高于预定的UV值,且氧化/还原电势的测量值高于或等于预定的氧化/还原电势值时,增加臭氧的剂量;以及
iv.当UV吸收的测量值高于预定的UV值,且氧化/还原电势的测量值低于预定的氧化/还原电势值时,增加空气的流速。
2.根据权利要求1所述的用于监测和控制在水处理工艺流程中所使用的空气和臭氧剂量的方法,其中所述出水的UV/Vis吸收的在线测量值从对UV/Vis照射的扫描来获得,所述UV/Vis照射的扫描产生190nm到600nm的范围的光谱。
3.根据权利要求1所述的用于监测和控制在水处理工艺流程中所使用的空气和臭氧剂量的方法,其中所述出水的UV吸收的在线测量还用于确定下游UV消毒系统的UV灯强度和UV剂量控制。
4.根据权利要求1所述的用于监测和控制在水处理工艺流程中所使用的空气和臭氧剂量的方法,其中UV/Vis传感器被放置在所述工艺流程的前面。
5.根据权利要求4所述的用于监测和控制在水处理工艺流程中所使用的空气和臭氧剂量的方法,其中所述UV/Vis传感器实时监测进水水质,并且臭氧的剂量上限和剂量下限根据实际的水质而改变。
6.根据权利要求1所述的用于监测和控制在水处理工艺流程中所使用的空气和臭氧剂量的方法,其中储存在所述微处理器中的所述氧化/还原电势值被限定为与化学需氧量去除工艺或硝化作用工艺、或这两个工艺所必要的空气的量相关。
7.根据权利要求1所述的用于监测和控制在水处理工艺流程中所使用的空气和臭氧剂量的方法,其中所述对出水的空气和臭氧剂量进行调整的步骤通过比例、积分和微分控制回路实现。
8.一种用于监测和控制在水处理工艺流程中所使用的空气和臭氧剂量的系统,该系统包括:
(a)用于测量出水的UV吸收的传感器;
(b)用于测量出水的氧化/还原电势的传感器;
(c)微处理器,其用于将所测量的出水的UV吸收和氧化/还原电势与存储在所述微处理器中的预定的UV吸收和氧化/还原电势进行对比;以及
(d)比例、积分和微分控制回路,其用于基于所测量的出水的UV/Vis吸收和氧化/还原电势的值来对出水的空气和臭氧剂量进行调整,该调整如下:
i.当UV吸收的测量值低于预定的UV吸收值,且氧化/还原电势的测量值高于预定的氧化/还原电势值时,减少空气的流速;
ii.当UV吸收的测量值低于预定的UV值,且氧化/还原电势的测量值低于或等于预定的氧化/还原电势值时,减少臭氧的剂量;
iii.当UV吸收的测量值高于预定的UV值,且氧化/还原电势的测量值高于或等于预定的氧化/还原电势值时,增加臭氧的剂量;以及
iv.当UV吸收的测量值高于预定的UV值,且氧化/还原电势的测量值低于预定的氧化/还原电势值时,增加空气的剂量。
9.根据权利要求8所述的用于监测和控制在水处理工艺流程中所使用的空气和臭氧剂量的系统,其中所述出水的UV/Vis吸收的在线测量值从对UV/Vis照射的扫描获得,所述UV/Vis照射的扫描产生190nm到600nm的范围的光谱。
10.根据权利要求8所述的用于监测和控制在水处理工艺流程中所使用的空气和臭氧剂量的系统,其中所述出水的UV吸收的在线测量还用于确定下游UV消毒系统的UV灯强度和UV剂量控制。
11.根据权利要求8所述的用于监测和控制在水处理工艺流程中所使用的空气和臭氧剂量的系统,其中UV/Vis传感器被放置在工艺流程的前面。
12.根据权利要求11所述的用于监测和控制在水处理工艺流程中所使用的空气和臭氧剂量的系统,其中所述UV/Vis传感器实时监测进水水质,并且臭氧的剂量上限和剂量下限根据实际的水质而改变。
13.根据权利要求8所述的用于监测和控制在水处理工艺流程中所使用的空气和臭氧剂量的系统,其中储存在所述微处理器中的所述氧化/还原电势值被限定为与化学需氧量去除工艺或硝化作用工艺、或这两个工艺所必要的空气的量相关。
14.根据权利要求8所述的用于监测和控制在水处理工艺流程中所使用的空气和臭氧剂量的系统,其中所述对出水的空气和臭氧剂量进行调整的步骤通过比例、积分和微分控制回路实现。
CN201380042364.XA 2012-08-10 2013-07-03 利用紫外和可见光谱测量以及氧化还原电势来监测和控制臭氧化和曝气过滤的方法和装置 Active CN104768876B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261681991P 2012-08-10 2012-08-10
US61/681,991 2012-08-10
PCT/US2013/049187 WO2014025478A1 (en) 2012-08-10 2013-07-03 Method and apparatus for monitoring and controlling ozonation and aerated filtration using uv and visible spectral measurement and oxidation reduction potential

Publications (2)

Publication Number Publication Date
CN104768876A CN104768876A (zh) 2015-07-08
CN104768876B true CN104768876B (zh) 2017-05-17

Family

ID=50068478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380042364.XA Active CN104768876B (zh) 2012-08-10 2013-07-03 利用紫外和可见光谱测量以及氧化还原电势来监测和控制臭氧化和曝气过滤的方法和装置

Country Status (6)

Country Link
US (1) US9365437B2 (zh)
EP (1) EP2882691A4 (zh)
CN (1) CN104768876B (zh)
AU (1) AU2013300098A1 (zh)
CL (1) CL2015000315A1 (zh)
WO (1) WO2014025478A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015187982A1 (en) * 2014-06-04 2015-12-10 H2Oxidation, Llc Oxidation and colloidal destabilization waste water treatment
DE102014010946A1 (de) 2014-07-28 2016-01-28 Xylem Ip Management S.À.R.L. Regelungsverfahren und -vorrichtung für eine Wasserbehandlung
US10227241B2 (en) 2015-03-27 2019-03-12 Rayvio Corporation UV-LED liquid monitoring and treatment apparatus and method
US10214431B2 (en) * 2015-03-27 2019-02-26 Rayvio Corporation System and method for UV-LED liquid monitoring and disinfection
US10561156B2 (en) 2015-03-27 2020-02-18 Larq Inc. Device for UV-LED liquid monitoring and treatment
US10570028B2 (en) 2015-03-27 2020-02-25 Larq, Inc. Device for UV-LED liquid monitoring and treatment
AU2017234381A1 (en) * 2016-03-16 2018-10-11 Sydney Water Corporation Disinfection monitoring system and method
US10954151B1 (en) 2016-04-15 2021-03-23 Hugh Stephen McDonald Drinking water treatment system
WO2017219028A1 (en) 2016-06-17 2017-12-21 Qatar Foundation For Education, Science And Community Development System and method for advanced oxidation of treated sewage effluent
DE102020106761A1 (de) * 2020-03-12 2021-09-16 Hochschule Für Technik Und Wirtschaft Des Saarlandes Verfahren zur Aufbereitung von Wasser und Wasseraufbereitungsanlage
KR102540068B1 (ko) * 2022-12-07 2023-06-05 한국건설기술연구원 Uv-vis 스펙트럼의 푸리에 변환 기법을 이용한 고농도 유기폐수 처리 실시간 모니터링 시스템 및 방법

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525278A (en) 1979-02-21 1985-06-25 Federal Paper Board Company, Inc. Method of treating chemical process water
US4280910A (en) 1980-03-10 1981-07-28 Baumann Edward J Method and apparatus for controlling aeration in biological treatment processes
US4816145A (en) 1984-01-16 1989-03-28 Autotrol Corporation Laser disinfection of fluids
DK96989D0 (da) 1989-02-28 1989-02-28 Faxe Kalkbrud Aktieselskabet Fremgangsmaade til overvaagning af biologiske processer
US5053140A (en) * 1989-07-26 1991-10-01 American Water Purification, Inc. Process and apparatus for removing impurities from water used in food processing utilizing a mixture of ozone and air
US5017284A (en) 1990-04-27 1991-05-21 Environmental Water Technology, Inc. Fluid purifying apparatus and method of purifying fluids
GB9405871D0 (en) 1994-03-24 1994-05-11 Thames Water Utilities Improvements in biological aerated flooded filters
US5711887A (en) 1995-07-31 1998-01-27 Global Water Industries, Inc. Water purification system
US6464877B1 (en) * 1997-05-08 2002-10-15 Asahi Kasei Kabushiki Kaisha Water treating method
US5939030A (en) * 1997-05-08 1999-08-17 Moxley; Douglas A. System and method for generating ozonated water
US6126842A (en) * 1998-01-30 2000-10-03 Decker; R. Scott Low-concentration ozone waste water treatment
JP2000051882A (ja) * 1998-08-06 2000-02-22 Mitsubishi Electric Corp 空気供給システム
US6616843B1 (en) * 1998-12-18 2003-09-09 Omnium De Traitement Et De Valorisation Submerged membrane bioreactor for treatment of nitrogen containing water
KR100303811B1 (ko) 1999-05-04 2001-09-13 염병호 생물·산화 여과장치
US6365048B1 (en) 2000-07-19 2002-04-02 Board Of Trustees Of Michigan State University Method for treatment of organic matter contaminated drinking water
JP2004528163A (ja) 2001-02-23 2004-09-16 ヴイ.エイ.アイ. リミテッド 排水の生物学的処理方法と装置
US20050218074A1 (en) 2004-04-06 2005-10-06 Pollock David C Method and apparatus providing improved throughput and operating life of submerged membranes
KR20010078879A (ko) * 2001-05-08 2001-08-22 조효석 오존(o3)을 이용하여 미생물을 활성화 한 폐수처리방법 및그 장치
US20020195397A1 (en) * 2001-06-22 2002-12-26 Teran Alfredo J. Method for treating dye wastewater
US6916427B2 (en) 2002-05-03 2005-07-12 Ira E Whitlock Electrochemical method for treating wastewater
JP4655447B2 (ja) * 2002-10-17 2011-03-23 栗田工業株式会社 水処理装置、水処理方法及び水処理プログラム
US7001571B2 (en) 2002-10-24 2006-02-21 Georgia Tech Research Corporation Systems and methods for disinfection
US8080165B2 (en) 2002-10-24 2011-12-20 Georgia Tech Research Corporation Systems and methods for disinfection
US6824695B2 (en) * 2003-02-28 2004-11-30 Gerard F. Tempest, Jr. System and method for water purification
US7108782B1 (en) 2003-06-27 2006-09-19 The United States Of America As Represented By The Secretary Of The Navy Marine vessel onboard wastewater treatment system
US7002161B2 (en) 2004-01-20 2006-02-21 Greene Ralph G Treated water dispensing system
WO2005084720A1 (en) 2004-03-10 2005-09-15 Trojan Technologies Inc. System for predicting reduction in concentration of a target material in a flow of fluid
US7371323B1 (en) 2004-08-11 2008-05-13 Spielman Rick B System and method for reducing wastewater contaminants
US7481937B2 (en) 2005-01-19 2009-01-27 Heavy Industry Technology Solutions, Llc Methods and systems for treating wastewater using ozone activated flotation
US7767093B2 (en) 2005-01-21 2010-08-03 Bernard Frank Method for end-to-end control of water quality
US7497957B2 (en) 2005-01-21 2009-03-03 Bernard Frank System, method and apparatus for end-to-end control of water quality
US7520978B2 (en) 2005-06-17 2009-04-21 Philips Lumileds Lighting Co., Llc Fluid purification system with ultra violet light emitters
US7531096B2 (en) 2005-12-07 2009-05-12 Arizona Public Service Company System and method of reducing organic contaminants in feed water
JP4557912B2 (ja) 2006-03-17 2010-10-06 株式会社東芝 プロセス制御システム
US20080093277A1 (en) 2006-06-13 2008-04-24 John Armour Cadence detection in a sequence of video fields
US7569148B2 (en) 2006-08-23 2009-08-04 Siemens Water Technologies Corp. Continuous membrane filtration and solids reduction
FR2914919B1 (fr) * 2007-04-13 2011-09-16 Orege Procede et dispositif d'epuration d'effluents liquides.
WO2008150541A1 (en) * 2007-06-04 2008-12-11 Schwartzel David T Aqueous treatment apparatus utilizing precursor materials and ultrasonics to generate customized oxidation-reduction-reactant chemistry environments in electrochemical cells and/or similar devices
US7699988B2 (en) 2007-08-02 2010-04-20 Ecosphere Technologies, Inc. Enhanced water treatment for reclamation of waste fluids and increased efficiency treatment of potable waters
US20100206787A1 (en) * 2007-09-17 2010-08-19 Ytzhak Rozenberg Control of oxidation processes in ultraviolet liquid treatment systems
US8900459B2 (en) 2008-04-09 2014-12-02 Puresafe Water Systems, Inc. Versatile water purification systems and methods
FR2934586B1 (fr) * 2008-07-29 2010-08-27 Otv Sa Procede et installation de traitement des eaux residuaires en vue d'en abattre l'effet perturbateur endocrinien et/ou l'effet toxique ou genotoxique.
CA2644329C (en) 2008-11-20 2012-08-28 Udo Staschik Water disinfection apparatus
CA2756035A1 (en) 2009-03-20 2010-09-23 Algal Scientific Corporation System and method for treating wastewater via phototactic heterotrophic microorganism growth
CN101519265B (zh) 2009-04-09 2011-07-13 孙友峰 一种污水处理工艺及系统
US8486275B2 (en) * 2009-05-14 2013-07-16 Omni Water Solutions, Inc. Self-contained portable multi-mode water treatment system and methods
US8372274B2 (en) 2010-01-13 2013-02-12 Daniel M. Early Wastewater treatment system and method
EP2560922A4 (en) 2010-04-21 2015-10-07 Evoqua Water Technologies Pte Ltd METHOD AND SYSTEMS FOR WASTEWATER PROCESSING
CN102276050B (zh) * 2011-05-30 2013-02-27 广东省微生物研究所 包装饮用水臭氧消毒副产物溴酸盐控制装置

Also Published As

Publication number Publication date
US9365437B2 (en) 2016-06-14
EP2882691A4 (en) 2016-02-10
CN104768876A (zh) 2015-07-08
WO2014025478A1 (en) 2014-02-13
AU2013300098A1 (en) 2015-02-19
EP2882691A1 (en) 2015-06-17
US20150218011A1 (en) 2015-08-06
CL2015000315A1 (es) 2015-11-13

Similar Documents

Publication Publication Date Title
CN104768876B (zh) 利用紫外和可见光谱测量以及氧化还原电势来监测和控制臭氧化和曝气过滤的方法和装置
DK2585407T3 (en) ADVANCED BIOLOGICAL WATER TREATMENT USING ALGES
JP4264111B2 (ja) 紫外線照射システムおよび水質監視装置
Pulkkinen et al. Startup and effects of relative water renewal rate on water quality and growth of rainbow trout (Oncorhynchus mykiss) in a unique RAS research platform
ES2715514T3 (es) Procedimiento y dispositivo de regulación para un tratamiento de aguas
CN104163540B (zh) 用于臭氧-生物组合工艺的臭氧投加自动控制系统
WO1998004124A1 (fr) Appareil de pisciculture
JP2010532246A (ja) 水産養殖システムから出る魚廃棄物を改変uasbリアクタを用いてメタンに変換する方法
Lin et al. Removal of Solids and Oxygen Demand from Aquaculture Wastewater with a Constructed Wetland System in the Start‐Up Phase
JP7337583B2 (ja) 水生生物を飼育するための水槽内の水のきれいさを判定する判定システム、および水槽内の水質を維持するための水処理システムおよび水処理方法
RU2565175C2 (ru) Способ очистки воды
Mohammed et al. Optimization of solar photocatalytic biodegradability of seawater using statistical modelling
Lidén et al. Uses of fluorescence excitation-emissions indices in predicting water treatment efficiency
JP2000246263A (ja) 浄水処理方法及び浄水処理装置
JP4660211B2 (ja) 水処理制御システム及び水処理制御方法
JP4655447B2 (ja) 水処理装置、水処理方法及び水処理プログラム
Hadiyanto et al. Rubber wastewater treatment using UV, ozone, and UV/ozone and its effluent potency for microalgae Spirulina platensis cultivation medium
US20140131285A1 (en) Method and Arrangement for a Water Treatment
KR100957119B1 (ko) 수처리공정 자동제어장치
KR102589312B1 (ko) 순환여과 양식시설 및 순환여과 양식시설의 원수처리방법
Santosa et al. Performance Of Wastewater Treatment Plant (Wwtp) Phytoremidiation Water Hyacinth In Treating Tofu Wastewater
JP4331048B2 (ja) オゾンによる水処理制御システム
Santos et al. Performance evaluation of a hybrid enhanced membrane bioreactor (eMBR) system treating Synthetic Textile Effluent
JP2014223583A (ja) 紫外線処理装置
JP3223726B2 (ja) プロセス用の紫外線吸光度測定方法及び装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant