CN104716217A - 一种掺钠铜铟镓硒太阳电池器件及其制备方法 - Google Patents

一种掺钠铜铟镓硒太阳电池器件及其制备方法 Download PDF

Info

Publication number
CN104716217A
CN104716217A CN201410531543.6A CN201410531543A CN104716217A CN 104716217 A CN104716217 A CN 104716217A CN 201410531543 A CN201410531543 A CN 201410531543A CN 104716217 A CN104716217 A CN 104716217A
Authority
CN
China
Prior art keywords
substrate
source
temperature
film
soda glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410531543.6A
Other languages
English (en)
Inventor
薛玉明
尹富红
宋殿友
朱亚东
刘君
潘洪刚
李鹏海
冯少君
张嘉伟
刘浩
高林
航伟
乔在祥
冯永旺
刘贵川
闫兵
靳忠杰
胡盛开
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN201410531543.6A priority Critical patent/CN104716217A/zh
Publication of CN104716217A publication Critical patent/CN104716217A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种基于聚酰亚胺膜-苏打玻璃复合衬底的掺钠铜铟镓硒太阳电池器件,其特征在于:衬底由苏打玻璃及生长于其表面的聚酰亚胺膜构成,在该复合衬底表面制备铜铟镓硒太阳电池。本发明的优点是:该种基于聚酰亚胺膜-苏打玻璃复合衬底的铜铟镓硒薄膜附着性优秀,结晶质量好,晶粒大,缺陷少;在完整的铜铟镓硒太阳电池制备完成后,将其与苏打玻璃分离,形成以聚酰亚胺膜为衬底的柔性铜铟镓硒太阳电池,实现以钢性衬底制备柔性电池;其制备方法简单、易于实施,有利于大规模的推广应用,尤其在太空及特殊场合中具有极其重要的应用前景。

Description

一种掺钠铜铟镓硒太阳电池器件及其制备方法
技术领域
本发明涉及薄膜太阳电池技术领域,特别是一种基于聚酰亚胺膜-苏打玻璃复合衬底的掺钠铜铟镓硒太阳电池器件及其制备。
背景技术
铜铟镓硒材料(CIGS)属于I-III-VI族四元化合物半导体,具有黄铜矿的晶体结构。铜铟镓硒薄膜太能电池自20世纪70年代出现以来,得到非常迅速的发展,并将逐步实现产业化。此电池有以下特点:①铜铟镓硒的禁带宽度可以在1.04ev-1.67ev范围内调整。②铜铟镓硒是一种直接带隙半导体,对可见光的吸收系数高达105cm-1。铜铟镓硒吸收层厚度只需1.5~2.5μm,整个电池的厚度为3~4μm。③抗辐照能力强,比较适合作为空间电源。④转换效率高。2010年德国太阳能和氢能研究中心(ZSW)研制的小面积铜铟镓硒太阳电池转换效率已高达20.3%。⑤弱光特性好。因此铜铟镓硒多晶薄膜太阳电池有望成为下一代太阳电池的主流产品之一。
航空航天领域需要太阳电池有较高的质量比功率,即希望单位质量的太阳电池能发出更多的电量。对于地面光伏建筑物的曲面造型和移动式的光伏电站等要求太阳电池具有柔性、可折叠性和不怕摔碰,这就促进了柔性太阳电池的发展。由于相对较强的耐高温能力和较为适合的膨胀系数,聚酰亚胺(PI)在其中脱颖而出。
然而聚酰亚胺的热膨胀系数还是无法与铜铟镓硒材料本身很好的匹配。在温度较高时,聚酰亚胺会产生较大的形变,导致铜铟镓硒薄膜较为疏松,容易脱落。所以,目前基于聚酰亚胺衬底的铜铟镓硒制备时衬底温度较低。从而导致生长出的薄膜结晶质量较差,晶粒细小,缺陷较多,增加了载流子的复合,缩短了少子的寿命,进而影响了电池性能。
铜铟镓硒薄膜中掺入适量的钠(Na)可使铜铟镓硒太阳电池的性能提高30-50%。在传统苏打玻璃衬底的铜铟镓硒太阳电池的制备中,钠可由衬底向铜铟镓硒吸收层自发扩散而实现Na的掺杂。但是由于聚酰亚胺膜中不含有钠元素,并且其高分子的结构阻止复合衬底中钠进入铜铟镓硒吸收层。因此,向基于聚酰亚胺膜-苏打玻璃复合衬底的铜铟镓硒吸收层薄膜中掺入钠就变得极为重要。
发明内容
有鉴于此,为克服现有技术的不足,本发明提供了一种基于聚酰亚胺膜-苏打玻璃复合衬底的掺钠铜铟镓硒太阳电池器件及其制备方案,首先将聚酰亚胺胶涂 于苏打玻璃表面,固化成聚酰亚胺膜-苏打玻璃复合衬底,其次在其表面依次制备背接触层、铜铟镓硒吸收层、氟化钠预制层、硫化镉缓冲层、透明窗口层和上电极,在完整的铜铟镓硒太阳电池制备完成后,将其与苏打玻璃衬底分离,得到以聚酰亚胺膜为衬底的柔性铜铟镓硒太阳电池。其核心特点为:以钢性衬底制备柔性电池。此种基于聚酰亚胺膜-苏打玻璃复合衬底的铜铟镓硒薄膜附着性优秀,结晶质量好,晶粒大,缺陷少。
本发明的技术方案:
一种基于聚酰亚胺膜-苏打玻璃复合衬底的掺钠铜铟镓硒太阳电池器件,其特征在于:其衬底由苏打玻璃及生长于其表面的聚酰亚胺膜构成,其中苏打玻璃的厚度为1.5-2mm,聚酰亚胺膜厚度为25-30μm,采用匀胶、固化制备工艺;钼背接触层生长于聚酰亚胺膜-苏打玻璃复合衬底之上,分为高阻层和低阻层,其中高阻层的厚度为80-120nm,低阻层的厚度为600-700nm,采用直流磁控溅射系统制备;铜铟镓硒吸收层生长于氟化钠预制层薄膜之上,化学分子式为CuIn1-xGaxSe2,式中x为0.25-0.35,导电类型为p型,厚度为1.5-2μm,采用硒化炉薄膜制备系统,应用共蒸发改进型一步法制备工艺;氟化钠预制层薄膜生长于铜铟镓硒吸收层之上,化学分子式为NaF,厚度为20-30nm,采用硒化炉薄膜制备系统,应用共蒸发制备工艺;硫化镉缓冲层生长于铜铟镓硒吸收层表面,化学分子式为CdS,导电类型为n型,厚度为45-50nm,采用化学水浴法制备工艺;透明窗口层生长于硫化镉缓冲层之上,分为高阻本征氧化锌薄膜和低阻氧化锌铝薄膜,导电类型为n型,其中本征氧化锌薄膜的厚度为50-100nm,氧化锌铝薄膜的厚度为0.4-0.6μm,分别采用射频磁控溅射制备系统和直流磁控溅射制备系统制备;铝上电极薄膜生长于透明窗口层之上,其后为为0.8-1.5μm,采用共蒸发制备系统制备。
聚酰亚胺膜-苏打玻璃复合衬底的制备步骤如下:
1)对苏打玻璃进行表面清理;
2)将聚酰亚胺胶涂覆于苏打玻璃表面,采用匀胶工艺进行匀胶;
3)将匀胶后的样品放入烘箱内进行固化,即可得到聚酰亚胺膜-苏打玻璃复合衬底。
所述对苏打玻璃表面清洗方法为:①将10cm×10cm的苏打玻璃放入重铬酸钾溶液(由300克重铬酸钾、3升浓硫酸和300毫升去离子水配置而成的溶液)中浸泡2h;②之后将苏打玻璃取出用去离子水冲洗;③将冲洗洁净的苏打玻璃置于浓度为99.5%的丙酮溶液中,放入超声波清洗机中清洗(超声波频率为20-30kHz,时间为20-25min)④将苏打玻璃从丙酮溶液中取出,用去离子水冲洗;⑤将苏打玻璃置于浓度为99.7%的酒精中,放入超声波清洗机中清洗(超声 波频率为20-30kHz,时间为20-25min);⑥最后将苏打玻璃从酒精中取出,放入盛有去离子水的烧杯中,放入超声波清洗机中清洗3遍(超声波频率为20-30kHz,时间为20-25min)。
所述匀胶工艺的工艺参数为:转速为1300-1500r/min,时间为35-45s。
所述固化工艺参数为:①烘箱温度于室温25℃升温至125-135℃,升温时间为10-15min;②烘箱温度于125-135℃维持25-30min;③烘箱温度于125-135℃升温至150-160℃,升温时间为5-10min;④烘箱温度于150-160℃维持10-15min;⑤烘箱温度于150-160℃升温至200-210℃,升温时间为5-10min;⑥烘箱温度于200-210℃维持15-20min;⑦烘箱温度于200-210℃升温至250-260℃,升温时间为5-10min;⑧烘箱温度于250-260℃维持15-20min;⑨烘箱温度于250-260℃升温至340-350℃,升温时间为5-10min;⑩烘箱温度于340-350℃维持10-15min,之后缓慢降温至室温。
钼背接触层的制备步骤如下:
在直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的Mo为靶材,采用射频磁控溅射制备系统在衬底表面分别沉积一层高阻和低阻的钼薄膜。
所述在衬底表面沉积一层高阻薄膜的工艺参数为:本底真空:3.0×10-4Pa,工作气压为1-2Pa,衬底温度为室温25-50℃,射频功率为500-700W,Ar气流量为30-50sccm,基靶行走速度为4-6mm/s,沉积时间(基靶的往复次数)为2-4次。
所述在衬底表面沉积一层低阻薄膜的工艺参数为:工作气压为0-0.5Pa,衬底温度为室温25-50℃,射频功率为1500-2000W,Ar气流量为15-20sccm,基靶行走速度为4-6mm/s,沉积时间(基靶的往复次数)为4-6次。
铜铟镓硒吸收层薄膜的制备步骤如下:
1)本底真空为3.0×10-4Pa,衬底温度为350-400℃,共蒸发In、Ga、Se高Ga含量预制层,其中In蒸发源温度为820-850℃,Ga蒸发源温度为920-950℃,Se蒸发源温度为240-280℃,蒸发时间为2-3min,控制原子比例In∶Ga=0.3∶0.7,(In+Ga)/Se=2∶3;
2)衬底温度为550-580℃,共蒸发Cu、In、Ga、Se,其中Cu蒸发源温度为1120-1160℃,In蒸发源温度为850-900℃,Ga蒸发源温度为880-920℃,Se蒸发源温度为240-280℃,蒸发时间为25-30min;
3)将衬底冷却,当蒸发Se的同时将衬底冷却到350℃时的衬底温度时,关闭Se蒸发源,再将衬底冷却到室温。
氟化钠预置层薄膜的制备步骤如下:
1)本底真空为8.0×10-4Pa,衬底温度为200-300℃,共蒸发NaF预置层,其 中NaF蒸发源的温度为800-850℃,蒸发时间为1-2min。
2)衬底温度为400-450℃,在Se气氛下进行退火,其中Se蒸发源的温度为240-280℃,退火时间为20-30min。
硫化镉缓冲层的制备步骤如下:
1)配置溶液,制备硫脲SC(NH2)2溶液1L,浓度为0.01mol/L;醋酸镉(CH3COO)2Cd和醋酸氨CH3COONH4混合溶液1L,其中醋酸镉溶液浓度为0.001mol/L,醋酸氨溶度为0.003mol/L;氨水NH3·H2O溶度为1.3×10-3mol/L。
2)配置反应溶液1L,取第一步中所配置的各种溶液;其中硫脲溶液25mL,醋酸镉和醋酸氨混合溶液25mL,氨水溶液4滴。搅拌均匀。
3)将样品放入烧杯中,并将烧杯放入水浴锅内。水浴温度设置为78-80℃,制备时间为50-60min。
4)制备完成后,将样品用去离子水冲洗干净。
本征氧化锌薄膜的制备步骤如下:
在直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的i-ZnO为靶材,采用射频磁控溅射制备系统在衬底表面沉积一层本征氧化锌薄膜。
所述在衬底表面沉积一层氧化锌铝薄膜的工艺参数为:本底真空:3.0×10-4Pa,衬底温度为室温25-50℃,射频功率为800-1000W,Ar气流量为10-20sccm,O2气流量为2-6sccm,基靶行走速度为2-6mm/s,沉积时间(基靶的往复次数)为6-10次。
氧化锌铝薄膜的制备步骤如下:
在直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的ZnO:Al为靶材,采用直流磁控溅射工艺在衬底表面沉积一层ZnO:Al薄膜。
所述在衬底表面沉积一层氧化锌铝薄膜的工艺参数为:本底真空:3.0×10-4Pa,衬底温度为25-50℃,直流功率为1000-1200W,Ar气流量为12-18sccm,基靶行走速度为2-6mm/s,沉积时间(基靶的往复次数)为10-15次。
铝上电极的制备步骤如下:
1)本底真空:3.0×10-4Pa,给予加热丝20A电流,持续1-2min;给予加热丝50A电流,持续1-2min;给予加热丝80A电流,持续1-2min;给予加热丝120A电流,持续5-8min。
2)待观察窗玻璃被铝膜完全覆盖之后,停止加热,缓慢降低给予加热丝电流,之后冷却。
本发明的原理分析:
为了满足制备附着性优秀,结晶质量较好,晶粒粗大,缺陷较少的铜铟镓硒柔性薄膜太阳电池的要求,必须选用衬底柔软、轻便,热膨胀系数与铜铟镓硒薄 膜较为匹配的衬底。聚酰亚胺膜-苏打玻璃复合衬底可以依托苏打玻璃与铜铟镓硒吸收层薄膜热膨胀系数较为接近的特点,在复合衬底上制备铜铟镓硒薄膜太阳电池。之后再将薄膜太阳电池以聚酰亚胺为衬底从苏打玻璃表面分离,得到柔性铜铟镓硒薄膜太阳电池,实现以钢性衬底制备柔性太阳电池。
基于聚酰亚胺膜-苏打玻璃复合衬底的掺钠铜铟镓硒太阳电池的优势分析:
1)将聚酰亚胺胶涂于玻璃表面,可以较好改善衬底的粗糙度。
2)聚酰亚胺本身的热膨胀系数较大,不能很好地与铜铟镓硒材料本身进行匹配。在较高温度下容易变形,导致薄膜疏松,极易脱落。而生长于玻璃表面的聚酰亚胺,依靠与玻璃之间的附着力,使其不易发生较大形变,与铜铟镓硒材料更加匹配。
3)由于对一步法工艺的改进,制备了一层高Ga含量的预制层,大大提高CIGS薄膜在聚酰亚胺膜上的附着性。
4)由于与玻璃接触,不易发生形变,可以给予聚酰亚胺较为接近其耐温上限的温度,有助于铜铟镓硒薄膜更好的生长。
5)其表面生长的铜铟镓硒薄膜结晶质量好,晶粒大,缺陷少。
6)钠元素的掺入,可有效地提升铜铟镓硒吸收层薄膜的电学特性,提高电池的开路电压和填充因子,进而提升组件电池的性能。
7)在完整的铜铟镓硒太阳电池制备完成后,将其从玻璃上分离,就可以制备出具有较大柱状晶粒的柔性铜铟镓硒太阳电池。
本发明的优点是:该种基于聚酰亚胺膜-苏打玻璃复合衬底的掺钠铜铟镓硒太阳电池吸收层薄膜附着性优秀,结晶质量好,晶粒粗大,缺陷少,利用钢性衬底制备柔性太阳电池;其制备方法简单、易于实施,有利于大规模的推广应用,尤其在太空及特殊场合中具有极其重要的应用前景。
附图说明
附图1为基于聚酰亚胺膜-苏打玻璃复合衬底的掺钠铜铟镓硒太阳电池器件结构示意图。
附图2 CIGS真空蒸发系统结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和实施方式对本发明作进一步的详细说明。
实施例1:
基于聚酰亚胺膜-苏打玻璃复合衬底的掺钠铜铟镓硒太阳电池的制备,其制备步骤如下:
1)苏打玻璃的清洗
①将10cm×10cm的苏打玻璃放入重铬酸钾溶液(由300克重铬酸钾、3升浓 硫酸和300毫升去离子水配置而成的溶液)中浸泡2h;②之后将苏打玻璃取出用去离子水冲洗;③将冲洗洁净的苏打玻璃置于浓度为99.5%的丙酮溶液中,放入超声波清洗机中清洗(超声波频率为20kHz,时间为25min)④将苏打玻璃从丙酮溶液中取出,用去离子水冲洗;⑤将苏打玻璃置于浓度为99.7%的酒精中,放入超声波清洗机中清洗(超声波频率为20kHz,时间为25min);⑥最后将苏打玻璃从酒精中取出,放入盛有去离子水的烧杯中,放入超声波清洗机中清洗3遍(超声波频率为20kHz,时间为25min)。
2)聚酰亚胺预制膜的制备
把清洗过后的苏打玻璃用氮气吹干,放在匀胶机的转盘上,将聚酰亚胺胶涂覆于苏打玻璃表面。以1300r/min的转速匀速匀胶45s,即可得到聚酰亚胺预制膜。
3)聚酰亚胺预制膜的固化
①烘箱温度于室温25℃升温至125℃,升温时间为15min;②烘箱温度于125℃维持30min;③烘箱温度于125℃升温至150℃,升温时间为5min;④烘箱温度于150℃维持15min;⑤烘箱温度于150℃升温至200℃,升温时间为5min;⑥烘箱温度于200℃维持20min;⑦烘箱温度于200℃升温至250℃,升温时间为5min;⑧烘箱温度于250℃维持20min;⑨烘箱温度于250℃升温至350℃,升温时间为10min;⑩烘箱温度于350℃维持10min,之后缓慢降温至室温即可得到聚酰亚胺膜-苏打玻璃复合衬底。
4)钼背接触层的制备
在直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的Mo为靶材,采用射频磁控溅射制备系统在衬底表面分别沉积一层高阻和低阻的钼薄膜。①本底真空:3.0×10-4Pa,工作气压为1Pa,衬底温度为室温25℃,射频功率为600W,Ar气流量为40sccm,基靶行走速度为4mm/s,沉积时间(基靶的往复次数)为2次。②工作气压为0.1Pa,衬底温度为室温25℃,射频功率为1500W,Ar气流量为15sccm,基靶行走速度为4mm/s,沉积时间(基靶的往复次数)为6次。
5)铜铟镓硒吸收层薄膜的制备
①本底真空为3.0×10-4Pa,衬底温度为380℃,共蒸发In、Ga、Se高Ga含量预制层,其中In蒸发源温度为840℃,Ga蒸发源温度为930℃,Se蒸发源温度为260℃,蒸发时间为2min,控制原子比例In∶Ga=0.3∶0.7,(In+Ga)/Se=2∶3;②衬底温度为560℃,共蒸发Cu、In、Ga、Se,其中Cu蒸发源温度为1140℃,In蒸发源温度为860℃,Ga蒸发源温度为900℃,Se蒸发源温度为260℃,蒸发时间为28min;③将衬底冷却,当蒸发Se的同时将衬底冷却到350℃时的衬底温度时,关闭Se蒸发源,再将衬底冷却到室温。
6)氟化钠预置层的制备
①本底真空为8.0×10-4Pa,衬底温度为200℃,共蒸发NaF预置层,其中NaF蒸发源的温度为810℃,蒸发时间为2min。②衬底温度为400℃,在Se气氛下进行退火,其中Se蒸发源的温度为250℃,退火时间为30min。
7)硫化镉缓冲层薄膜的制备
①配置溶液,制备硫脲SC(NH2)2溶液1L,浓度为0.01mol/L;醋酸镉(CH3COO)2Cd和醋酸氨CH3COONH4混合溶液1L,其中醋酸镉溶液浓度为0.001mol/L,醋酸氨溶度为0.003mol/L;氨水NH3·H2O溶度为1.3×10-3mol/L。
②配置反应溶液1L,取第一步中所配置的各种溶液;其中硫脲溶液25mL,醋酸镉和醋酸氨混合溶液25mL,氨水溶液4滴。搅拌均匀。③将样品放入烧杯中,并将烧杯放入水浴锅内。水浴温度设置为78℃,制备时间为60min。④制备完成后,将样品用去离子水冲洗干净。
8)本征氧化锌薄膜的制备
在直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的i-ZnO为靶材,采用射频磁控溅射制备系统在衬底表面沉积一层本征氧化锌薄膜。工艺参数为:本底真空:3.0×10-4Pa,衬底温度为室温35℃,射频功率为800W,Ar气流量为10sccm,O2气流量为3sccm,基靶行走速度为4mm/s,沉积时间(基靶的往复次数)为8次。
9)氧化锌铝薄膜的制备
在直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的ZnO:Al为靶材,采用直流磁控溅射工艺在衬底表面沉积一层ZnO:Al薄膜。工艺参数为:本底真空:3.0×10-4Pa,衬底温度为室温25℃,直流功率为1000W,Ar气流量为15sccm,基靶行走速度为6mm/s,沉积时间(基靶的往复次数)为10次。
10)铝上电极的制备
①本底真空:3.0×10-4Pa,给予加热丝20A电流,持续2min;给予加热丝50A电流,持续2min;给予加热丝80A电流,持续2min;给予加热丝120A电流,持续6min。②待观察窗玻璃被铝膜完全覆盖之后,停止加热,缓慢降低给予加热丝电流,之后冷却。
附图1 为基于聚酰亚胺膜-苏打玻璃复合衬底的掺钠铜铟镓硒太阳电池器件结构示意图。
附图2 CIGS真空蒸发系统结构示意图。
实施例2:
基于聚酰亚胺膜-苏打玻璃复合衬底的掺钠铜铟镓硒太阳电池的制备,其制备 步骤如下:
1)苏打玻璃的清洗
①将10cm×10cm的苏打玻璃放入重铬酸钾溶液(由300克重铬酸钾、3升浓硫酸和300毫升去离子水配置而成的溶液)中浸泡2h;②之后将苏打玻璃取出用去离子水冲洗;③将冲洗洁净的苏打玻璃置于浓度为99.5%的丙酮溶液中,放入超声波清洗机中清洗(超声波频率为30kHz,时间为20min)④将苏打玻璃从丙酮溶液中取出,用去离子水冲洗;⑤将苏打玻璃置于浓度为99.7%的酒精中,放入超声波清洗机中清洗(超声波频率为30kHz,时间为20min);⑥最后将苏打玻璃从酒精中取出,放入盛有去离子水的烧杯中,放入超声波清洗机中清洗3遍(超声波频率为30kHz,时间为20min)。
2)聚酰亚胺预制膜的制备
把清洗过后的苏打玻璃用氮气吹干,放在匀胶机的转盘上,将聚酰亚胺胶涂覆于苏打玻璃表面。以1400r/min的转速匀速匀胶40s,即可得到聚酰亚胺预制膜。
3)聚酰亚胺预制膜的固化
①烘箱温度于室温25℃升温至130℃,升温时间为20min;②烘箱温度于130℃维持25min;③烘箱温度于130℃升温至160℃,升温时间为10min;④烘箱温度于160℃维持10min;⑤烘箱温度于160℃升温至210℃,升温时间为10min;⑥烘箱温度于210℃维持20min;⑦烘箱温度于210℃升温至260℃,升温时间为10min;⑧烘箱温度于260℃维持20min;⑨烘箱温度于260℃升温至345℃,升温时间为10min;⑩烘箱温度于345℃维持15min,之后缓慢降温至室温即可得到聚酰亚胺膜-苏打玻璃复合衬底。
4)钼背接触层薄膜的制备
在直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的Mo为靶材,采用射频磁控溅射制备系统在衬底表面分别沉积一层高阻和低阻的钼薄膜。①本底真空:3.0×10-4Pa,工作气压为1.5Pa,衬底温度为室温25℃,射频功率为700W,Ar气流量为50sccm,基靶行走速度为5mm/s,沉积时间(基靶的往复次数)为4次。②工作气压为0.5Pa,衬底温度为室温25℃,射频功率为1800W,Ar气流量为20sccm,基靶行走速度为6mm/s,沉积时间(基靶的往复次数)为6次。
5)铜铟镓硒吸收层薄膜的制备
①本底真空为3.0×10-4Pa,衬底温度为380℃,共蒸发In、Ga、Se高Ga含量预制层,其中In蒸发源温度为840℃,Ga蒸发源温度为930℃,Se蒸发源温度为260℃,蒸发时间为3min,控制原子比例In∶Ga=0.3∶0.7,(In+Ga)/Se=2∶3;②衬底温度为580℃,共蒸发Cu、In、Ga、Se,其中Cu蒸发源温度为1140℃, In蒸发源温度为890℃,Ga蒸发源温度为920℃,Se蒸发源温度为260℃,蒸发时间为25min;③将衬底冷却,当蒸发Se的同时将衬底冷却到350℃时的衬底温度时,关闭Se蒸发源,再将衬底冷却到室温。
6)氟化钠预置层的制备
①本底真空为8.0×10-4Pa,衬底温度为250℃,共蒸发NaF预置层,其中NaF蒸发源的温度为840℃,蒸发时间为1min。②衬底温度为450℃,在Se气氛下进行退火,其中Se蒸发源的温度为260℃,退火时间为25min。
7)硫化镉缓冲层薄膜的制备
①配置溶液,制备硫脲SC(NH2)2溶液1L,浓度为0.01mol/L;醋酸镉(CH3COO)2Cd和醋酸氨CH3COONH4混合溶液1L,其中醋酸镉溶液浓度为0.001mol/L,醋酸氨溶度为0.003mol/L;氨水NH3·H2O溶度为1.3×10-3mol/L。
②配置反应溶液1L,取第一步中所配置的各种溶液;其中硫脲溶液25mL,醋酸镉和醋酸氨混合溶液25mL,氨水溶液4滴。搅拌均匀。③将样品放入烧杯中,并将烧杯放入水浴锅内。水浴温度设置为80℃,制备时间为50min。④制备完成后,将样品用去离子水冲洗干净。
8)本征氧化锌薄膜的制备
在直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的i-ZnO为靶材,采用射频磁控溅射制备系统在衬底表面沉积一层本征氧化锌薄膜。工艺参数为:本底真空:3.0×10-4Pa,衬底温度为室温50℃,射频功率为1000W,Ar气流量为15sccm,O2气流量为4sccm,基靶行走速度为6mm/s,沉积时间(基靶的往复次数)为8次。
9)氧化锌铝薄膜的制备
在直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的ZnO:Al为靶材,采用直流磁控溅射工艺在衬底表面沉积一层ZnO:Al薄膜。工艺参数为:本底真空:3.0×10-4Pa,衬底温度为室温25℃,直流功率为1200W,Ar气流量为17sccm,基靶行走速度为4mm/s,沉积时间(基靶的往复次数)为12次。
10)铝上电极的制备
①本底真空:3.0×10-4Pa,给予加热丝20A电流,持续1min;给予加热丝50A电流,持续1min;给予加热丝80A电流,持续2min;给予加热丝120A电流,持续5min。②待观察窗玻璃被铝膜完全覆盖之后,停止加热,缓慢降低给予加热丝电流,之后冷却。
测试结果与实施例1相同。
综上所述,为制备高转换效率的柔性铜铟镓硒电池,本发明提供了一种基于聚酰亚胺膜-苏打玻璃复合衬底的掺钠铜铟镓硒太阳电池器件的制备方案,将聚 酰亚胺胶涂于苏打玻璃表面,固化成聚酰亚胺膜-苏打玻璃复合衬底,并在其表面制备铜铟镓硒太阳电池,在完整的铜铟镓硒太阳电池制备完成后,将其与苏打玻璃分离,形成以聚酰亚胺膜为衬底的柔性铜铟镓硒太阳电池,实现以钢性衬底制备柔性电池。该制备方法工艺条件方便易行,有利于大规模的推广应用,尤其在太空及特殊场合中具有极其重要的应用前景。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

1.一种铜铟镓硒吸收层薄膜的制备方法,其特征在于:采用硒化炉薄膜制备系统,应用共蒸发一步法制备工艺,制备步骤如下:
1)本底真空为3.0×10-4Pa,衬底温度为550-580℃,共蒸发Cu、In、Ga、Se,其中Cu蒸发源温度为1120-1160℃,In蒸发源温度为850-900℃,Ga蒸发源温度为880-920℃,Se蒸发源温度为240-280℃,蒸发时间为25-30min;
2)将衬底冷却。
2.根据权利要求1所述的共蒸发装置其特征如下:在封闭的真空室内安装自行设计的加工Cu,In,Ga,Se独立蒸发源,衬底支架和衬底加热器,蒸发源是由4个陶瓷坩埚,缠绕Mo加热丝,加上坩埚底下有热电偶,使用PID自动温度控制检测控制温度。
3.根据权利要求2所述的坩埚排列和与衬底之间距离其特征如下:采用Cu,In,Ga源成品字结构,距离衬底280mm,有一定的倾斜的角度,偏离垂直方向5°,由于Se源蒸发温度较低,很容易蒸发出来,需要比其他源要低,距离衬底200mm。
4.根据权利要求1所描述的PID控制各蒸发源实际需要调节的电流电压值其特征为:Cu源,电流18.5A,电压7.4V,In源,电流13.6A,电压4.5V,Ga源电流为15.3A,电压5.6V,Se源电流为3A,电压为2V。
CN201410531543.6A 2014-09-30 2014-09-30 一种掺钠铜铟镓硒太阳电池器件及其制备方法 Pending CN104716217A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410531543.6A CN104716217A (zh) 2014-09-30 2014-09-30 一种掺钠铜铟镓硒太阳电池器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410531543.6A CN104716217A (zh) 2014-09-30 2014-09-30 一种掺钠铜铟镓硒太阳电池器件及其制备方法

Publications (1)

Publication Number Publication Date
CN104716217A true CN104716217A (zh) 2015-06-17

Family

ID=53415359

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410531543.6A Pending CN104716217A (zh) 2014-09-30 2014-09-30 一种掺钠铜铟镓硒太阳电池器件及其制备方法

Country Status (1)

Country Link
CN (1) CN104716217A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111206207A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 沉积腔室、镀膜设备及镀膜方法
CN111206219A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 沉积腔室、镀膜设备及镀膜方法
CN111206203A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 沉积腔室、镀膜设备及镀膜方法
CN111206220A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 一种镀膜设备及镀膜方法
CN111206224A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 沉积腔室、镀膜设备及镀膜方法
CN111206221A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 一种镀膜设备及镀膜方法
CN111206205A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 沉积腔室、镀膜设备及镀膜方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111206207A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 沉积腔室、镀膜设备及镀膜方法
CN111206219A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 沉积腔室、镀膜设备及镀膜方法
CN111206203A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 沉积腔室、镀膜设备及镀膜方法
CN111206220A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 一种镀膜设备及镀膜方法
CN111206224A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 沉积腔室、镀膜设备及镀膜方法
CN111206221A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 一种镀膜设备及镀膜方法
CN111206205A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 沉积腔室、镀膜设备及镀膜方法

Similar Documents

Publication Publication Date Title
CN104716217A (zh) 一种掺钠铜铟镓硒太阳电池器件及其制备方法
CN101692357B (zh) 一种绒面掺杂氧化锌透明导电薄膜的制备方法
CN102800719B (zh) 一种柔性CdTe薄膜太阳能电池及其制备方法
CN101609860A (zh) CdTe薄膜太阳能电池制备方法
CN103346194B (zh) 一种铜铟镓硒太阳电池器件及其制备方法
CN103296092B (zh) 一种铜铟镓硒太阳电池器件及其制备方法
CN103311357A (zh) 一种铜铟镓硒太阳电池器件及其制备方法
CN105977318A (zh) 一种基于复合衬底的掺钠铜铟镓硒薄膜及其制备方法
CN103311322B (zh) 一种铜铟镓硒太阳电池器件及其制备方法
CN104393089A (zh) 一种掺钠铜铟镓硒太阳电池器件及其制备方法
CN104241421A (zh) 一种掺钠铜铟镓硒太阳电池器件及其制备方法
CN106024934A (zh) 一种后掺钠铜铟镓硒太阳电池器件及其制备方法
CN104779307A (zh) 一种铜锌锡硒太阳电池器件及其制备方法
CN108831939A (zh) 一种四元共蒸aigs薄膜及其制备方法和应用
CN106409941A (zh) 一种铜锌锡硒太阳电池器件及其制备方法
CN104425655A (zh) 三步法吸收层后掺钠柔性太阳电池的制备方法
CN104241422A (zh) 一种掺钠铜铟镓硒太阳电池器件及其制备方法
CN104425650A (zh) 三步法吸收层前掺钠柔性太阳电池的制备方法
CN104425648A (zh) 一步法吸收层前掺钠柔性太阳电池的制备方法
CN105938857A (zh) 一种铜铟镓硒太阳电池器件及其制备方法
CN104409535A (zh) 一种铜锌锡硫薄膜太阳电池器件及其制备方法
CN101673786B (zh) 磁场下CdTe太阳电池的制备方法
CN103311328A (zh) 一种基于复合衬底的铜铟镓硒薄膜及其制备方法
CN104409559A (zh) 一种铜锌锡硫薄膜太阳电池器件及其制备方法
CN104867996A (zh) 一种铜锌锡硒太阳电池器件及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150617