CN104703947B - 基于黝铜矿结构的用于热电设备的热电材料 - Google Patents

基于黝铜矿结构的用于热电设备的热电材料 Download PDF

Info

Publication number
CN104703947B
CN104703947B CN201380036033.5A CN201380036033A CN104703947B CN 104703947 B CN104703947 B CN 104703947B CN 201380036033 A CN201380036033 A CN 201380036033A CN 104703947 B CN104703947 B CN 104703947B
Authority
CN
China
Prior art keywords
tetrahedrite
concentration
thermoelectric
layer
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380036033.5A
Other languages
English (en)
Other versions
CN104703947A (zh
Inventor
唐纳德·T·莫雷利
卢旭
维德伍德斯·奥索林斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Michigan State University MSU
Original Assignee
University of California
Michigan State University MSU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California, Michigan State University MSU filed Critical University of California
Publication of CN104703947A publication Critical patent/CN104703947A/zh
Application granted granted Critical
Publication of CN104703947B publication Critical patent/CN104703947B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • C04B2235/3291Silver oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/81Materials characterised by the absence of phases other than the main phase, i.e. single phase materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Silicon Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

公开了用于热电设备的基于黝铜矿结构热电材料的和生产热电材料和设备的方法。

Description

基于黝铜矿结构的用于热电设备的热电材料
政府权利
本发明根据美国能源部门的给予的批准号DE-SC0001054在政府支持下进行的。美国政府具有本发明的某些权利。
相关申请的交叉引用
本申请要求2012年7月6日提交的美国临时申请号61/668,766的权益。上述申请的全部内容通过引用并入本文。
技术领域
本公开涉及基于黝铜矿(tetrahedrite)结构的用于热电设备的热电材料,并且更具体地,涉及黝铜矿类热电材料的制造和使用。
背景技术
本章节提供与本公开相关的背景信息,其没必要是现有技术。热电材料可用于直接将热转换成电,并且因此,可大大增加能量工艺的效率。当前情况的热电材料由低丰度并且通常毒性的元素组成。
过去数十年,热电(TE)材料在已经成为在固态物理学和材料科学中的焦点话题,原因是它们可能用于废热收集或珀耳帖冷却。通过品质因数(ZT=S2σT/κ)来评估热电材料的效率,其中S是赛贝克(Seebeck)系数,σ是电导率,T是绝对温度,κ是导热系数。已经许多年,良好热电材料的基准一直是尺度为1(order unity)的ZT,典型是商业上使用的热电冷却模块的Bi2Te3和其合金。
改善块状(bulk)固体的ZT的一条成功路径是降低晶格导热系数。例如,引入了“声子玻璃/电子晶体(PGEC)”的概念,以描述展示如玻璃或非晶固体般晶格导热系数以及良好晶体的电子特性的材料。对于非晶或玻璃固体,声子平均自由行程接近一个原子间间隔;比一个原子间间隔更短的声子平均自由行程丧失其意义,因此该类型的热传输称为“最小”导热系数。不幸地,这种非晶固体的差的导电性阻碍展示品质因数的高值。从热电的角度更感兴趣的是结晶固体,其因强的固有声子散射而展示最小导热系数。这样的例子除了上述方钴矿,包括复合笼结构(complex cage structure),比如笼形物(clathrate)。最近,在晶体岩盐结构I-V-VI2化合物(例如,AgSbTe2)中发现了最小导热系数,该化合物是特征在于玻璃或非晶系统的晶格导热系数的半导体。这些材料展示良好晶体的电子特性特征并且因此表明良好的热电行为。
最近,Skoug和Morelli鉴定了含Sb的三元半导体的最小导热系数和存在孤对Sb之间的相关性。孤对电子诱导大的晶格非简谐性,其产生热抗性。使用密度泛函理论计算,已经清晰表明Cu3SbSe3化合物中出现大格林爱森(Grüneisen)参数,并且使用这些参数计算声子散射比能够定量解释使用Debye-Callaway模型的导热系数。
在过去的15年中,利用对半导体的电子和热传输更完整的理解、合成方法的更好控制和纳米技术的成功应用,已经发现和开发了ZT值大于1(unity)的新材料体系,包括薄膜超晶格、填充方钴矿和块状纳米结构硫属化合物。不幸地,许多这些新材料不适于大规模应用,因为复杂和昂贵的合成程序,或使用稀少或毒性元素。当前的挑战是发现便宜的、环境友好、容易合成并且由地球丰富的元素形成的新热电材料。
发明内容
本文所述的化学组分由地球丰富的材料合成并且在一些情况下可以随时可用的形式从地球的外壳中提取。此外,化合物由低原子量的元素组成,使得化合物的密度明显小于本领域化合物现有状态。这些化合物可用于提供用于大规模将热转换成电的轻量、低成本热电设备。
根据本教导,热电设备具有一对导体和布置在一对导体之间的黝铜矿层。热电材料可以是Cu12-xMxSb4S13
根据另一教导,提供的热电设备具有一对导体和布置在一对导体之间的黝铜矿层。黝铜矿包括Cu12-xMxSb4-yAsyS13,其中M选自Ag、Zn、Fe、Mn、Hg和其组合。
根据另一教导,热电材料以形成为具有Cu12-xMxSb4-yAsyS13的烧结的黝铜矿的形式存在。M选自浓度0<x<2.0的Zn、浓度0<x<1.5的Fe和其组合。
根据另一教导,提供的热电设备具有一对导体和布置在导体之间的Cu12-xMxSb4S13,其中M是Zn和Fe之一。
根据另一教导,提供的热电设备具有一对导体。p型热电材料布置在导体之间,热电材料由烧结的黝铜矿粉末形成。
根据另一教导,公开了生产热电设备的方法。方法包括形成包括Cu12-xMxSb4S13的黝铜矿,其中M选自浓度0<x<2.0的Zn、浓度0<x<1.5的Fe和其组合。粉碎黝铜矿并且热压形成粒料。粒料布置在一对电导体之间。
从本文提供的说明中,进一步的应用范围将显而易见。该概述中的说明和具体的实施例仅仅为了阐释的目的,并且不旨在限制本公开的范围。
附图说明
本文所述的附图仅仅用于选择的实施方式和所有可能的实施的示意性目的,并且不旨在限制本公开的范围。
图1表示根据本教导的黝铜矿结构;
图2a表示组分Cu12-xZnxSb4S13的合成黝铜矿在室温之上的电阻率;
图2b表示组分Cu12-xZnxSb4S13的黝铜矿的赛贝克系数,样品名称如图2a中;
图3a Cu12-xZnxSb4S13的总晶格导热系数;
图3b表示Cu12-xZnxSb4S13的晶格导热系数;
图4a表示黝铜矿Cu12-xZnxSb4S13作为温度函数的无量纲热电品质因数ZT;
图4b表示Cu12-xMxSb4S13(M=Zn、Fe)的相对于布里渊区占据数的品质因数;
图5a和5b表示a)Cu12-xZn2-xSb4S13和b)Cu12-xFe2-xSb4S13样品的X射线衍射图;
图6a和6b表示合成黝铜矿样品的a)热扩散系数和b)比热容;
图6c表示合成物质相对于T-1的电导率;
图7表示Cu12-xZn2-xSb4S13相对于温度倒数的低温导电性;
图8表示根据本教导的热电设备;
图9表示生产根据本教导的材料的方法;
图10和11表示材料在不同的制造阶段的TEM图;和
图12-16表示上述材料的各种材料特性。
遍及附图的数个图,相应的参考数值指示相应的部件。
具体实施方式
现参考附图更充分描述示例性实施方式。热电材料可将废热转化成电,潜在地在工业和日常生活中都提高能量利用效率。不幸地,已知的良好热电材料通常由低丰度和/或有毒性的元素组成,并且通常需要小心地掺杂和复杂的合成过程。这里,Cu12-xTMxSb4S13形式的化合物的高热电品质因数,其中TM是过渡金属,比如Zn或Fe。在这些化合物中,无量纲品质因数在673K附近达到0.9,与本领域的p型热电材料在相同温度范围的其他情况相当。重要地,对于宽范围的x值,品质因数仍较高。主题组分是形成称为黝铜矿的天然矿物质类的那些。由地球丰富的元素组成的热电为许多新的低成本热电能源的产生机会铺平道路。
下面详细描述了基于黝铜矿化合物的合成和热电特性的测量。一般而言,纯的Cu12Sb4S13在673K(400℃)下展示的ZT值为0.56。该纯的12-4-13组分不存在于天然矿物质中。但是,天然黝铜矿是典型的组分Cu12-xMxSb4S13并且是非常常见的磺酸盐,相当典型地以M=Zn、Fe、Hg和Mn出现。最常见的替代元素是在Cu位置的Zn和Fe,在天然矿物质中多达15%,对于Cu12-x(Zn,Fe)xSb4S13,对于Zn和Fe,分别x=0-1.5和x=0-0.7,已经测量了在673K附近多达0.91的ZT值。该结果强调了直接使用天然黝铜矿矿物质作为热电材料源,而不需要在合成过程或精确掺杂中花费时间和能量。
使用真空、退火和热压过程来合成纯Cu12Sb4S13和在Cu位置用Fe和Zn替代的化合物。样品是单相并且密度≥95%,且优选地≥98%的理论密度。图2a显示373K–673K温度范围下Cu12-xZnxSb4S13的电阻率,x范围从0至1.5。低温电阻显示半导体般的特征,但是其不能适合简单的激活行为;而是,电导率行为更符合跳跃机制(hopping-type mechanism)。尝试使用霍尔效应测量空穴浓度证明未成功;即使在大的场中,测量了接近零的霍尔系数RH。根据上面给出的晶体-化学论证,这暗示至少一些标称二价Cu离子为一价或混合价态,产生部分填充的布里渊区和金属行为。
带结构计算显示Cu12Sb4S13是金属。在纯的和稍微Zn-替代的样品(x=0、0.5和1)中,电阻率为10-3Ωcm的数量级,其与其他良好的热电材料相当。当Zn含量增加至x=1.5时,与纯样品相比电阻增加一个数量级,并且发现x=2.0的Zn-替代的样品,该材料电绝缘。因为期望Zn离子严格为Zn2+态,这符合用Zn2+离子替代Cu2+离子、完全填充布里渊区和存在真正的半导体状态。
随着Zn浓度增加,赛贝克系数(图2b)相应地升高,对于x=1.5样品在最高温度下超过200μVK-1。这符合当锌替代铜时价带中空穴的填充。在室温之下,赛贝克系数平缓下降至零。在室温之上,电阻值在10-3Ωcm范围并且赛贝克系数为~100–200μVK-1,在该温度范围内,这些黝铜矿具有与一些最佳热电材料,如PbTe相当的热电功率因子。
现转向导热系数,图3a显示源自室温之上热扩散系数测量值的导热系数。在整个温度范围内,导热系数低于1.5W m-1K-1。随着增加Zn替代,导热系数单调下降。这反映下降的导热系数的电子组分和增加的晶格贡献的组合作用。如果应用,维德曼–夫兰兹定理(Wiedemann-Franz law)评估电子贡献,引出的是样品的晶格导热系数。这些结果显示在图3b中。如所显示,尽管纯样品随着温度上升仍具有下降的晶格导热系数,Zn替代的样品都具有范围为0.2–0.5W m-1K-1的晶格导热系数,并且事实上即使纯黝铜矿样品在最高温度下也落入该范围。该晶格导热系数值接近等于原子间间隔的声子平均自由行程的“最小”导热系数。
这些化合物的高热电功率因子和低导热系数的组合导致大的热电品质因数(图4a)。尽管x=1.5样品的功率因子小于x=0样品的一半,x=1.5的ZT值仍大于纯样品的,在673K下接近0.7。对于x=1获得0.91的最大ZT值。由于来自导热系数减少的补偿作用,对于相对大的Zn替代保持了最高ZT值。从图4a可见,x=1.5样品的总导热系数在高温下降低至纯样品的三分之一。总导热系数的下降可主要归因于下降的电子导热系数。因为这些化合物中的晶格导热系数如此低,降低功率因子实际上导致对于Zn替代的x=1的情况,ZT值60%的增加,原因是电子导热系数的下降。
也测量了Cu12-xFexSb4S13(x=0.2、0.5和0.7)的热电特性。如它们Zn替代的等价物,Fe替代的样品展示电阻增加、赛贝克系数增强和总导热系数降低的类似趋势。ZT值在x=0.5达到0.83的最大值并且对于更大的x值下降。令人感兴趣地,Cu11FeSb4S13的电阻比Cu12Sb4S13的大三个数量级。Fe和Zn替代之间的该区别源于黝铜矿中Fe和Zn的不同价态,其中合成Cu12-xFexSb4S13中的Fe对于0<x<1为三价和对于1≤x≤2为二价。这暗示,在这里测量的x范围内,与每个Zn原子相比,每个Fe原子可提供额外的电子来填充布里渊区,并且解释了为什么Fe替代造成对于相同x值的电阻的更大增加。
为了理解填充布里渊区和所得ZT值之间的关系,布里渊区的占据分数的概念:占据分数=替代原子的数量*贡献的电子/2。例如,对于x=0.5Fe替代,分数是0.5,而对于x=0.5Zn替代,分数是0.25。图4b显示了占据分数和测量的ZT值之间的关系。对于两种替代,在0.5达到最大ZT值并且对于更高的占据分数,ZT开始下降。从该图,在令人吃惊的大范围的布里渊区占据中可得到大于0.6的ZT值;高的ZT非常强健抵抗Cu12Sb4S13中在铜位点的杂质替代,多达0.8的占据分数保持高的值,即使替代是大于一种原子的混合。
合成的单相和高密度Zn和Fe替代的Cu12Sb4S13提供优选的热电特性。与现有热电材料相比,在600–700K范围下固有的低晶格导热系数产生高的ZT值。对于Zn和Fe替代,最大ZT值分别是0.91和0.83。可在大范围的置换水平下保持大于0.6的热电品质因数,并且与布里渊区的占据分数相关。不像需要小心控制掺杂水平和合成条件的传统热电材料,矿物黝铜矿可能用更少的处理努力而可使用,因为高性能热电物质的地球丰富的资源。
如图8中所显示,Cu12Sb4S13样品可通过开始元素-Cu(99.99%,Alfa-Aesar)、Sb(99.9999%,Alfa-Aesar)和S、Zn、Fe(99.999%,Alfa-Aesar)的直接固态反应来合成。这些原料以化学计量比载入排空至<10-5Torr的石英安瓿。然后,将装载的安瓿放入竖直熔炉并且以0.3℃min-1加热至650℃保持在该温度12小时。随后,它们以0.4℃min-1的速度缓慢冷却至室温。所得反应的材料放入不锈钢小瓶并且在SPEX样品制备机器中球磨五分钟。这些球磨的粉末然后被冷压成粒料(pellet)并且在真空下再装入安瓿用于在450℃下退火两周。退火后的终产物球磨30分钟成为细微粉末并且在氩气氛下80MP压力和430℃下热压30分钟。该研究中使用的所有热压的样品大于98%的理论密度,如使用Archimedes方法测量。
如果未退火,已经发现可能形成影响特性的非期望的相。在这点上,可形成具有高热系数(thermo-coefficient)的相,比如Cu3SbS4。退火步骤对于减少二元和三元相的数量是有用的。粉碎和热压增加密度因此改善导电性和改善操作特性。
通过使用Rigaku Miniflex II bench-top X射线衍射仪(Cu Kα辐射)进行XRD分析,并且使用Jade软件包分析结果。在氩下在Ulvac ZEM-3系统中,测量高温(373K-673K)赛贝克系数和电阻率。在使用四探针技术的低温恒温器(cryostat)中对来自与用于高温测量值不同批次但是具有相同名义组分的样品测量低温赛贝克系数和电阻。分别使用激光闪光法(Netzsch,LFA 457)和差示扫描量热法(Netzsch,DSC200F3),测量从373K至673K的热扩散系数(D)和热容(Cp)。在使用Anter Flashline 5000热扩散系数装置和热量表的第二实验室中也独立地确认了该数据。用于这些测量的样品来自如用于高温电阻和赛贝克系数的那些相同粒料的邻近部分。使用κ=D*Cp*密度,计算高温导热系数。
图2a表示组分Cu12-xZnxSb4S13的合成黝铜矿在室温之上的电阻率(圆圈:x=0;正方形:x=0.5;三角形:x=1.0;菱形:x=1.5)。低温电阻显示电阻随着温度增加急剧下降并且符合跳跃机制。在高温下,电阻的量级在典型的良好热电材料的范围内。对于更高的Zn替代,价带中的空穴被填充并且x=2的材料变得绝缘。
图2b显示组分Cu12-xZnxSb4S13的黝铜矿的赛贝克系数,样品名称如图2a中。赛贝克系数随着温度和Zn含量急剧上升,达到超过200uV K-1的值。
图3a表示Cu12-xZnxSb4S13的总导热系数,而图3b表示Cu12-xZnxSb4S13的晶格导热系数。传导性的数量级与典型热电材料,如碲化铅或方钴矿的相当或甚至更小。含Zn样品在大部分温度范围内接近最小导热系数值,如纯黝铜矿在最高测量温度下那样。
图4a表示黝铜矿Cu12-xZnxSb4S13作为温度函数的无量纲热电品质因数ZT。ZT随着Zn含量增加至x=1.0而增加,但是甚至对于x=1.5仍为大值。因为这些化合物的晶格导热系数如此小,电子导热系数对于控制它们的热电特性起特别作用。随着Zn含量增加,电阻上升,造成功率因子下降,但是这大于电子导热系数下降的补偿。
图4b表示Cu12-xMxSb4S13(M=Zn、Fe)的相对于布里渊区占据数的品质。ZT在对于Fe的更小浓度达到最大,由于其变化的价态。
如图9中可见,通过开始元素-Cu(99.99%,Alfa-Aesar)、Sb(99.9999%,Alfa-Aesar)和S、Zn、Fe(99.999%,Alfa-Aesar)的直接反应合成Cu12(Fe,Zn)2Sb4S13样品。使用高精度Mettler天平以化学计量比例称重元素;典型的物料为总共5克的量级,以0.0005g(0.5mg)精度称重单个元素质量。元素的化学计量比放入内径10mm和壁厚0.5mm的石英安瓿。使用turbo分子泵使安瓿排空空气;典型的终压力<10-5Torr。在动态真空下使用氧/甲烷火焰使安瓿密封并且在顶部配备小的石英罩。金属丝连接至该罩并且安瓿悬停在室温下的竖直Thermolyne管熔炉中。以0.3℃min-1加热熔炉至650℃在该温度下保持12小时。随后,熔炉以0.4℃min-1的速度冷却至室温。
将反应的材料放入不锈钢小瓶并且在SPEX样品制备机器中球磨五分钟。这些球磨的粉末然后冷压成粒料并且在真空下再装入安瓿用于在450℃下退火两周。预期该材料可退火更少的时间或在不同的温度下退火。退火后的终产物球磨30分钟成为细微粉末并且在氩气氛下80MP压力和430℃下热压30分钟。该研究中使用的所有热压的样品大于98%的理论密度,如使用Archimedes方法测量。预期热罐的样品可具有≥95%的理论密度。每个Cu12-xZn2-xSb4S13和Cu12-xFe2-xSb4S13,合成两个批次的样品。对于每个组分,本文呈现的高温热电特性结果都收集自相同的粒料。对于一些低温数据,使用相同名义组分的不同粒料。
如图10和11中所显示,通过使用Rigaku Miniflex II bench-top X射线衍射仪(Cu Kα辐射)进行所有合成样品的X射线衍射分析,并且使用Jade软件包分析结果。对于每个样品,使少量的热压材料粉末化,分散在显微镜载玻片上,并且放入到X射线束中。图5a和5b显示分别对代表性Cu12-xZn2-xSb4S13和Cu12-xFe2-xSb4S13样品X射线扫描的结果。所有的峰指示黝铜矿相。也显示了从天然矿物质样品收集的X射线扫描;再次,峰指示黝铜矿相。天然矿物质相对于合成的样品,峰的位置有小的偏移,很可能是因为天然矿物质在半金属位置包含Sb和As的混合物。在这点上,根据本教导的材料可包含Cu12-xMxSb4-yAsyS13
在Ulvac ZEM-3系统中氩下测量高温(373K-673K)赛贝克系数和电阻率。该测量的典型的样品尺寸是3x3x8mm3,沿着长度维度进行测量。分别使用激光闪光法(Netzsch,LFA457)和差示扫描量热法(Netzsch,DSC200F3),测量从373K至673K的热扩散系数(D)和热容(Cp)。在使用Anter Flashline 5000热扩散系数装置和热量表的第二实验室中也独立地确认了该数据。热扩散系数和热容的数据的例子显示在图6a和6b中。图6a和6b表示合成的黝铜矿样品的a)热扩散系数和b)比热容。b)也显示了用于比较的Dulong-Petit值。图6c描绘a)Cu12-xZn2-xSb4S13(圆圈:x=0;正方形:x=0.5;三角形:x=1.0;菱形:x=1.5)和b)Cu12- xFe2-xSb4S13(圆圈:x=0;正方形:x=0.2;三角形:x=0.5;菱形:x=0.7)的低温电阻率。用于热容和扩散性测量的样品来自如用于高温电阻和赛贝克系数的那些相同粒料的临近部分。使用κ=D*Cp*密度,计算高温导热系数。使用Archimedes方法进行密度测量,水作为悬浮流体。在使用四探针技术的低温恒温器中对来自与用于高温测量值不同批次但是具有相同名义组分的样品测量低温电阻。所得数据显示在图6c中。
图7显示含Zn样品相对于T-1的电导率的图,如人们可能对于载体激活预期。结果未能很好地适合该模型。但是,数据被跳跃模型更好描述。可类似地描述含Fe样品。对一系列含Zn样品在流动(flow)低温恒温器中使用稳态方法测量低温赛贝克系数。棱镜形样品的一端连接至低温恒温器的冷却头,而嵌入铜中的小金属薄膜加热器/电阻器附接至另一端。两个康铜热电偶沿着样品的长度附接,以检测温差dT。热电偶的铜臂用于测量赛贝克电压。高温和低温赛贝克测量值也测量碲化铋赛贝克标准样品(NIST SRM-xxxx),并且发现测量值和校准值之间的差异在80–573K范围内不大于5%。含Zn样品的低温赛贝克测量值显示在图6c中。室温附近的值与图2c中显示的那些稍微不同,因为在低温下测量的样品来自不同批次的相同名义组分。预期了样品间绝对值的稍微差异,因为特性取决于Zn的实际含量。
图7表示Cu12-xZn2-xSb4S13相对于温度倒数的低温导电性(圆圈:x=0;正方形:x=0.5;三角形:x=1.0;菱形:x=1.5)。通过简单的激活能未能较好描述数据。通过跳跃模型较好描述了电导率(插图,其中相对T-1/4绘制电导率)。Cu12-xZn2-xSb4S13的低温赛贝克系数。圆圈:x=0;正方形:x=0.5;三角形:x=1.0;菱形:x=1。
下面描述合成基础组分Cu12-xMxSb4S13的化合物,其中x=Fe、Zn或Mn并且0<x<2。简单地,期望化学计量比的元素在真空下在石英安瓿中熔解在一起。将所得铸块粉碎成粉末,压成粒料,并且退火。粒料可再粉碎成粉末并且热压成密度>98%的粒料。x=0的组分具有低电阻(在300K下10-3Ωcm)、中等赛贝克系数(在300K下75dV/K)和中等低导热系数(1W/m/K)。用Fe、Zn或Mn掺杂增加电阻和赛贝克系数二者,并且基本上降低导热系数。在宽范围的Zn浓度内(0<x<2.0和优选地0.5<x<1.5)或宽范围的Fe浓度(0<x<1.5和优选地0.2<x<1.0),热电品质因数在673K下保持在0.6-0.9的范围,与现有热电材料在该温度范围内的类似或甚至更好。重要地,展示良好热电特性的组分横跨广泛分布范围的天然矿物质黝铜矿化合物Cu12-xMx(Sb,As)4S13,M=Ag、Zn、Fe、Mn或Hg。任选地,碲可替代为S的百分比,或在某些分数下Cd可替代Cu。这意思是这些天然矿物质一旦加工成颗粒或薄膜结构,可直接或以小的组分修饰用作热电设备的资源材料。
本发明是优越的,因为其描述了下述化合物:1)由地球丰富的元素制造并且它们本身是地球地壳中常见和广泛分布的矿物质;2)由轻原子量元素组成,导致低密度和最终低重量设备;3)不需要熔解、退火和粉末处理之外的专用处理;4)展示可在宽范围的组成内保持的大的热电品质因数,简化了合成过程;和5)组成横跨黝铜矿和砷黝铜矿的大矿物质家族组成的范围,表明这些矿物质可直接用作高效率热电的资源材料,导致显著的成本节约。
图12-16表示根据本教导的0<x<1.5的各种材料的材料特性。该教导的可能应用是广泛的。使用该材料的热电设备可用于将热转化成电或用于将电产生热梯度。这样,它们可用于,例如,将来自汽车发动机或其他交通工具的废热转化成有用的电能。其他潜在的工业目标包括发电厂(烧煤和天然气的发电厂)、钢铁生产和居民/商业锅炉和热水器中的废热转化。此外,热电材料开发为直接将太阳热能转化成电,从而用于补充传统的太阳能电池技术。如图8中所显示,热电设备98可具有一对导体100和布置在一对导体之间的黝铜矿层102。黝铜矿层具有Cu12-xMxSb4S13,M选自Zn、Fe和其组合。可选地M选自浓度0<x<2.0的Zn或浓度0<x<1.5的Fe,或其组合。
热电设备可具有一对导体和布置在一对导体之间的黝铜矿层。黝铜矿层具有Cu12-xMxSb4-yAsyS13,其中M选自浓度0<x<2.0的Zn、浓度0<x<1.5的Fe和其组合。设备可使用烧结的黝铜矿,其包括Cu12-xMxSb4-yAsyS13,其中M选自浓度0<x<2.0的Zn、浓度0<x<1.5的Fe和其组合。
为了生产热电设备,包括Cu12-xMxSb4S13的材料(其中M选自浓度0<x<2.0的Zn、浓度0<x<1.5的Fe和其组合)被烧结以形成黝铜矿微观结构。使用研磨机粉碎烧结的材料,并且热压至大于95%的密度以形成粒料。粒料放置在一对电导体之间。
提供示例性实施方式从而本公开是完整的,并且充分覆盖本领域技术人员的范围。阐释许多具体的细节比如具体组分、设备和方法的例子,以提供对本公开实施方式的完整理解。对本领域技术人员显而易见,不需要采用具体的细节,示例性实施方式可具体化为许多不同的形式并且既不应解释为限制本公开的范围。在一些具体的实施方式中,未详细描述熟知的工艺、熟知的设备结构和熟知的技术。
本文使用的术语仅仅为了描述具体示例性实施方式的目的并且不旨在是限制性的。如本文所使用,单数形式“一个(a)”、“一个(an)”和“所述”可旨在也包括复数形式,除非上下文清楚地相反指出。术语“包括(comprises)”、“包括(comprising)”、“包含(including)”和“具有”是涵盖性的并且所以规定存在叙述的特征、整数、步骤、操作、元素和/或组分,但是不排除存在或添加一个或多个其他特征、整数、步骤、操作、元素、组分和/或其组。本文所述的方法步骤、过程和操作不解释为必须以讨论或阐释的具体顺序实施,除非具体指出实施的顺序。也应理解,可采用另外或可选的步骤。
当元素或层被指“在另一元素或层上”、“与另一元素或层咬合”、“连接至另一元素或层”或“与另一元素或层结合”时,其可直接在其他元素或层上、与另一元素或层咬合、连接至另一元素或层或与另一元素或层结合,或可存在中间元素或层可。相反,当元素被指“直接在另一元素或层上”、“直接咬合另一元素或层”“直接连接至另一元素或层”或“直接与另一元素或层结合”时,可不存在中间元素或层。用于描述元素之间关系的其他措辞应以相似的方式解释(例如,“之间”对“直接之间”“临近”对“直接临近”等)。如本文所使用,术语“和/或”包括一个或多个相关列举项目的任何和所有的组合。
尽管本文可使用术语第一、第二、第三等描述各种元素、组分、区域、层和/或部分,但是这些元素、组分、区域、层和/或部分不应被这些术语限制。这些术语可仅仅用于区分一个元素、组分、区域、层或部分与另一区域、层或部分。当本文使用术语比如“第一”、“第二”和其他数值术语时,不暗示次序或顺序,除非上下问清楚指出。因此,下面描述的第一元素、组分、区域、层或部分可称为第二元素、组分、区域、层或部分,而不背离示例性实施方式的教导。
本文可使用空间关系术语,比如“内部”、“外部”、“下方”、“之下”、“之上”、“上方”等用于方便描述图中阐释的一个元素或特征与另一元素(一个或多个)或特征(一个或多个)的关系。空间关系术语可旨在包括使用设备的或操作不同定向以及图中描绘的定向。例如,如果翻转图中的设备,描述为在其他元素或特征“之下”或“下方”的元素将定向为其他元素或特征“上方”。因此,示例性术语“之下”可包括之上和之下但是两个定向。设备可以其他方式定向(旋转90度或其他定向)并且相应地解释本文使用的空间关系描述语。
为了阐释和描述的目的已经提供了实施方式的前述描述。其不旨在是穷尽性的或限制本公开。具体实施方式的个体要素或特征一般不限于该具体的实施方式,而是,在可用的情况下,与选择的实施方式可交换并且可用于选择的实施方式,即使未具体显示或描述。其也可在许多情况下改变。这种变化不认为背离本公开,并且所有这种修饰旨在包括在本公开的范围内。

Claims (9)

1.热电设备,其包括一对导体和布置在所述一对导体之间的黝铜矿层,所述黝铜矿是Cu12-xMxSb4S13,M选自浓度0<x<1.5的Zn、浓度0<x<0.7的Fe和其组合,且所述黝铜矿层的布里渊区的占据分数小于0.8。
2.根据权利要求1所述的热电设备,其中所述黝铜矿层包括Cu12-xMx(Sb,As)4S13
3.根据权利要求1所述的热电设备,其中所述黝铜矿层还包括Cu12-xMx(Sb,As)4S13,其中M选自Ag、Zn、Fe、Mn、Hg和其组合。
4.根据权利要求3所述的热电设备,其中包括碲作为Cu12-xMxSb4S13和Cu12-xMx(Sb,As)4S13中的至少一个的一部分Cu。
5.热电材料,其包括:
包括Cu12-xMxSb4S13的烧结的黝铜矿,其中M选自浓度0<x<1.5的Zn、浓度0<x<0.7的Fe和其组合,且黝铜矿层的布里渊区的占据分数小于0.8。
6.生产热电设备的方法,其包括:
通过化学计量比的Cu、M、Sb和S在真空下在石英安瓿中熔解在一起以形成铸块,来制造包括Cu12-xMxSb4S13的黝铜矿,其中M选自浓度0<x<2.0的Zn、浓度0<x<1.5的Fe和其组合,
粉碎所述铸块以形成黝铜矿粉末;
热压粉碎的黝铜矿粉末,以形成粒料,且所述黝铜矿的粒料的布里渊区的占据分数小于0.8;和
将所述粒料布置在一对电导体之间。
7.根据权利要求6所述的方法,其中M选自浓度0<x<1.5的Zn、浓度0<x<0.7的Fe和其组合。
8.热电材料,其包括具有Cu12-xMxSb4S13的化学计量的单相黝铜矿,其中M是布里渊区的占据分数小于0.8的过渡金属,
M选自浓度0<x<1.5的Zn、浓度0<x<0.7的Fe和其组合。
9.热电设备,其包括
一对导体;和
布置在所述导体之间的p型热电材料,所述p型热电材料包括布置在所述一对导体之间的单相黝铜矿层,
所述单相黝铜矿具有为Cu12-xMxSb4S13的黝铜矿的化学计量,其中M是布里渊区的占据分数小于0.8的过渡金属,并且M选自浓度0<x<1.5的Zn、浓度0<x<0.7的Fe和其组合。
CN201380036033.5A 2012-07-06 2013-07-03 基于黝铜矿结构的用于热电设备的热电材料 Expired - Fee Related CN104703947B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261668766P 2012-07-06 2012-07-06
US61/668,766 2012-07-06
PCT/US2013/049350 WO2014008414A1 (en) 2012-07-06 2013-07-03 Thermoelectric materials based on tetrahedrite structure for thermoelectric devices

Publications (2)

Publication Number Publication Date
CN104703947A CN104703947A (zh) 2015-06-10
CN104703947B true CN104703947B (zh) 2019-05-07

Family

ID=48874501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380036033.5A Expired - Fee Related CN104703947B (zh) 2012-07-06 2013-07-03 基于黝铜矿结构的用于热电设备的热电材料

Country Status (8)

Country Link
US (2) US9673369B2 (zh)
EP (1) EP2870118A1 (zh)
JP (1) JP6219386B2 (zh)
KR (1) KR20150044883A (zh)
CN (1) CN104703947B (zh)
AU (1) AU2013286602A1 (zh)
CA (1) CA2878448A1 (zh)
WO (1) WO2014008414A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2870118A1 (en) 2012-07-06 2015-05-13 Board of Trustees of Michigan State University Thermoelectric materials based on tetrahedrite structure for thermoelectric devices
JP2016529699A (ja) 2013-07-03 2016-09-23 ボード オブ トラスティーズ オブ ミシガン ステート ユニバーシティ 熱電素子のための四面銅鉱構造に基づく熱電材料
JP6593870B2 (ja) * 2014-08-05 2019-10-23 国立研究開発法人産業技術総合研究所 熱電変換材料、およびそれを用いた熱電発電素子、ペルチェ冷却用素子
JP6389085B2 (ja) * 2014-08-27 2018-09-12 株式会社日本触媒 熱電変換材料
CA2963265A1 (en) * 2014-10-02 2016-04-07 Alphabet Energy, Inc. Thermoelectric generating unit and methods of making and using same
EP3241247A1 (en) * 2014-12-31 2017-11-08 Alphabet Energy, Inc. Electrical and thermal contacts for bulk tetrahedrite material, and methods of making the same
EP3271954B1 (en) * 2015-03-19 2020-07-15 Rockwool International A/S Composite material for thermoelectric devices
WO2017023353A1 (en) * 2015-08-06 2017-02-09 Board Of Trustees Of Michigan State University Thermoelectric materials based on tetrahedrite structure for thermoelectric devices
JP6668645B2 (ja) 2015-09-04 2020-03-18 ヤマハ株式会社 熱電変換モジュール及びその製造方法
WO2017100718A1 (en) * 2015-12-10 2017-06-15 Alphabet Energy, Inc. Multi-layer thermoelectric generator
JP6847410B2 (ja) * 2016-06-10 2021-03-24 国立研究開発法人産業技術総合研究所 熱電変換材料及び熱電変換モジュール
KR102571834B1 (ko) * 2017-02-16 2023-08-30 웨이크 포리스트 유니버시티 복합 나노입자 조성물 및 어셈블리
KR102290764B1 (ko) 2019-10-04 2021-08-18 한국교통대학교 산학협력단 테트라헤드라이트계 열전재료 및 그의 제조방법
CN111883640A (zh) * 2020-07-30 2020-11-03 河南理工大学 一种立方相Cu3SbS3基热电材料及其制备方法
CN112331761A (zh) * 2020-11-02 2021-02-05 安徽信息工程学院 天然斑铜矿石高性能热电材料及其快速制备方法和应用
CA3166015A1 (en) * 2021-06-30 2022-12-30 Crh Nederland B.V. A concrete composite
EP4113637A1 (en) * 2021-06-30 2023-01-04 CRH Nederland B.V. A coated substrate
CN114246065A (zh) * 2021-12-28 2022-03-29 南通欧贝黎新能源电力股份有限公司 一种利用太阳能的新型智能无人收割机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101573309A (zh) * 2006-12-20 2009-11-04 皇家飞利浦电子股份有限公司 轴向热压方法
CN101993247A (zh) * 2009-08-28 2011-03-30 中国科学院物理研究所 一种基于钙钛矿结构的单相铁基超导材料及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3256702A (en) 1962-01-29 1966-06-21 Monsanto Co Thermoelectric unit and process of using to interconvert heat and electrical energy
FI57090C (fi) * 1977-12-28 1980-06-10 Outokumpu Oy Saett att reglera vaermeinnehaollet och utjaemna temperaturer i olika sulfideringsprocesser
FI58353C (fi) * 1978-06-26 1981-01-12 Outokumpu Oy Foerfarande foer selektiv avlaegsning av foereningar fraon sulfidiska komplexmalmer blandmalmer eller -koncentrat
JP2002270907A (ja) 2001-03-06 2002-09-20 Nec Corp 熱電変換材料とそれを用いた素子
JP3929880B2 (ja) * 2002-11-25 2007-06-13 京セラ株式会社 熱電材料
JP4630012B2 (ja) 2004-06-30 2011-02-09 財団法人電力中央研究所 鉛・テルル系熱電材料および熱電素子
JP5099976B2 (ja) * 2005-03-24 2012-12-19 株式会社東芝 熱電変換材料の製造方法
CN100391021C (zh) 2005-10-21 2008-05-28 清华大学 Ag-Pb-Sb-Te热电材料及其制备方法
US8883047B2 (en) 2008-04-30 2014-11-11 Massachusetts Institute Of Technology Thermoelectric skutterudite compositions and methods for producing the same
US8524362B2 (en) 2009-08-14 2013-09-03 Rensselaer Polytechnic Institute Doped pnictogen chalcogenide nanoplates, methods of making, and assemblies and films thereof
CN104396021B (zh) 2012-01-31 2016-10-12 陶氏环球技术有限责任公司 包括改进的磷属元素化物半导体膜的光伏器件的制造方法
EP2870118A1 (en) 2012-07-06 2015-05-13 Board of Trustees of Michigan State University Thermoelectric materials based on tetrahedrite structure for thermoelectric devices
WO2014168963A1 (en) 2013-04-08 2014-10-16 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State Semiconductor materials
JP2016529699A (ja) 2013-07-03 2016-09-23 ボード オブ トラスティーズ オブ ミシガン ステート ユニバーシティ 熱電素子のための四面銅鉱構造に基づく熱電材料
WO2017023353A1 (en) 2015-08-06 2017-02-09 Board Of Trustees Of Michigan State University Thermoelectric materials based on tetrahedrite structure for thermoelectric devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101573309A (zh) * 2006-12-20 2009-11-04 皇家飞利浦电子股份有限公司 轴向热压方法
CN101993247A (zh) * 2009-08-28 2011-03-30 中国科学院物理研究所 一种基于钙钛矿结构的单相铁基超导材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Thermoelectric Properties of Mineral Tetrahedrites Cu10Tr2Sb4S13 with Low Thermal Conductivity";Koichiro Suekuni et al.;《Applied Physics Express》;20120510(第5期);第051201-1~4页

Also Published As

Publication number Publication date
KR20150044883A (ko) 2015-04-27
US20150200345A1 (en) 2015-07-16
US20170331023A1 (en) 2017-11-16
JP6219386B2 (ja) 2017-10-25
US10658560B2 (en) 2020-05-19
CN104703947A (zh) 2015-06-10
JP2015528208A (ja) 2015-09-24
CA2878448A1 (en) 2014-01-09
WO2014008414A1 (en) 2014-01-09
AU2013286602A1 (en) 2015-01-29
EP2870118A1 (en) 2015-05-13
US9673369B2 (en) 2017-06-06

Similar Documents

Publication Publication Date Title
CN104703947B (zh) 基于黝铜矿结构的用于热电设备的热电材料
US10622534B2 (en) Thermoelectric materials based on tetrahedrite structure for thermoelectric devices
Peng et al. Structure and thermoelectric performance of β-Cu2Se doped with Fe, Ni, Mn, In, Zn or Sm
Fu et al. Understanding the combustion process for the synthesis of mechanically robust SnSe thermoelectrics
Prem Kumar et al. Thermoelectric properties of Bi doped tetrahedrite
Zhu et al. Improved thermoelectric performance in n-type BiTe facilitated by defect engineering
Lee et al. Preparation and thermoelectric properties of famatinite Cu 3 SbS 4
Chen et al. Scanning laser melting for rapid and massive fabrication of filled skutterudites with high thermoelectric performance
Gonçalves et al. Fast and scalable preparation of tetrahedrite for thermoelectrics via glass crystallization
CN107710429A (zh) P型方钴矿热电材料、其制备方法和包含其的热电装置
Chen Synthesis and thermoelectric properties of Cu-Sb-S compounds
Liang et al. CuPbBi5S9 thermoelectric material with an intrinsic low thermal conductivity: Synthesis and properties
Gainza et al. Nanostructured thermoelectric chalcogenides
Aminzare et al. Effect of spark plasma sintering and Sb doping on the thermoelectric properties of Co4Ge6Te6 skutterudite
Çetin Karakaya et al. Effects of K substitution on thermoelectric and magnetic properties of Bi 2 Sr 2 Co 2 O y ceramic
US20180233646A1 (en) Thermoelectric materials based on tetrahedrite structure for thermoelectric devices
Dehkordi An Experimental Investigation Towards Improvement of Thermoelectric Properties of Strontium Titanate Ceramics
CN110177759B (zh) 含硫属元素的化合物、其制备方法和包含其的热电元件
CN109415208B (zh) 含有硫属元素的化合物、其制备方法和包含其的热电元件
Yan et al. Increasing the thermoelectric power factor via Ag substitution at Zn site in Ba (Zn1-xAgx) 2Sb2
CN106796980A (zh) 化合物半导体及其制备方法
Chen Synthesis and thermoelectric properties of higher manganese silicides for waste heat recovery
Lu Thermoelectric properties of natural mineral based tetrahedrite compounds
Liu Fabrication and performance of P-type ceramic based materials
Cai Design of High-Performance Thermoelectric Materials through All-Scale Architecture Construction and Band Structure Tailoring

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190507

Termination date: 20210703

CF01 Termination of patent right due to non-payment of annual fee