CN104682735B - 电源转换电路 - Google Patents

电源转换电路 Download PDF

Info

Publication number
CN104682735B
CN104682735B CN201310625830.9A CN201310625830A CN104682735B CN 104682735 B CN104682735 B CN 104682735B CN 201310625830 A CN201310625830 A CN 201310625830A CN 104682735 B CN104682735 B CN 104682735B
Authority
CN
China
Prior art keywords
circuit
port
switching circuit
power
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310625830.9A
Other languages
English (en)
Other versions
CN104682735A (zh
Inventor
孙持平
信飞
杨修文
杨圣骞
蒋云龙
崔艳云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Electric Shenzhen Co Ltd
Original Assignee
Johnson Electric Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Electric Shenzhen Co Ltd filed Critical Johnson Electric Shenzhen Co Ltd
Priority to CN201310625830.9A priority Critical patent/CN104682735B/zh
Priority to DE102014117154.3A priority patent/DE102014117154A1/de
Priority to KR1020140167281A priority patent/KR102246884B1/ko
Priority to JP2014241053A priority patent/JP2015122945A/ja
Priority to US14/555,941 priority patent/US9407168B2/en
Publication of CN104682735A publication Critical patent/CN104682735A/zh
Application granted granted Critical
Publication of CN104682735B publication Critical patent/CN104682735B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/443Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/45Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明提供一种电源转换电路,用于向电感性负载提供电源,包括转换电路、开关电路、控制电路以及能量存储电路。转换电路用于将交流电转换为直流电。开关电路包括连接至控制电路的控制端口及分别连接至转换电路及能量存储电路的第一及第二受控端口。控制电路用于控制两个受控端口交替地断开及导通。能量存储电路和电感性负载在开关电路导通的时段内存储能量,并在开关电路断开的时段内向H桥驱动电路释放能量。当交流电源电压到达过零点同时电感性负载存在电压时,由于开关电路的作用,感性负载充电时间可被控制得较短以使存储能量较小从而可较快释放完能量,不存在需要释放大量放电电流而导致出现负功率的情况。因此,有利于能源的有效利用率。

Description

电源转换电路
技术领域
本发明涉及电源转换电路,尤其涉及一种可用于无刷直流电机的驱动电路中并且可减少电流相移,减少负功率的情况,提高有效输出功率的电源转换电路。
背景技术
无刷直流电机的定子或转子上缠绕有线圈,其为电感性元件。该电机可通过一个将交流转换为直流的电源转换电路连接至一个交流电源。请结合图1,该电机在接通电源瞬间,电流进入无刷直流电机定子的线圈,能量存储在由线圈所产生的磁场中。由于线圈是感性负载,因此电流的相位滞后于电压的相位。电机在接通电源瞬间,电机是静止的,线圈还没有产生反电动势,随着电源电压逐渐加大,电流进入线圈,通电线圈与磁场相互作用,电机转子开始转动,线圈便产生电动势VB。由于在电源电压大于反电动势VB这个较长的时段内感性负载一直被充电,所以其存储的能量较大。当电源电压降低至等于反电动势VB时,电源停止供电,同时存储在感性负载中的能量开始释放。一般放电周期会延续至交流电压经过零点电压之后,如阴影部分所示。然而这部分电流却导致了负功率的出现。在这种情形下,电源的有效功率变小。如此,不但电机的有效输出降低了,而且导致了负功率的出现,使得部分电能回流电网。由于电网有电阻,所以回流的电流会消耗能量,浪费能源。
发明内容
有鉴于此,本发明提供一种可减少电流相移的电源转换电路。
一种电源转换电路,用于向感性负载提供电源,该电源转换电路包括转换电路、开关电路、控制电路以及能量存储电路。该转换电路用于将交流电转换为直流电,包括用于连接至一个交流电源的第一及第二输入端口,以及用于输出直流电的第一及第二直流端口。该开关电路包括控制端口及由该控制端口控制相互导通与否的第一及第二受控端口,该第一受控端口连接至该第一直流端口。该控制电路连接至该控制端口,用于产生使该第一及第二受控端口之间交替地断开及导通的控制信号。该能量存储电路连接至该第二受控端口及该第二直流端口,并包括用于连接该感性负载提的第一及第二输出端口。该能量存储电路用于在该第一及第二受控端口相互导通的时段内存储能量,并在该第一及第二受控端口相互断开的时段内向该感性负载提释放能量。
本发明的能量存储电路中由于开关电路是交替地断开及导通,感性负载充电时间较短,其中存储的能量也比较小,因此可以较快地释放完。如此,不存在像背景技术中由于能量存储电路需要释放大量能量而产生的导致出现负功率的放电电流(阴影部分)。因此,上述电源转换电路的负功率较小,有效功率较大,有利于提升电机的有效输出及降低电网中的损耗,从而降低能源浪费。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而所附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
图1是现有技术下,交流电源的电压、电流与功率的波形示意图。
图2是本发明的电源转换电路的模块示意图。
图3是本发明第一实施方式的电源转换电路的原理示意图。
图4是图3的电路中交流电源的电压及电流波形示意图。
图5是本发明第二实施方式的电源转换电路的原理示意图。
图6是图5的电路中交流电源的电压及电流波形示意图。
图7是本发明第三实施方式的电源转换电路的原理示意图。
图8是图7的电路中交流电源的电压及电流波形示意图。
图9是本发明第四实施方式的电源转换电路的原理示意图。
具体实施方式
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其他有益效果显而易见。附图仅提供参考与说明用,并非用来对本发明加以限制。
请参阅图2,本发明的电源转换电路10用于向一个感性负载(在下述实施方式中均为一个无刷直流电机及其H桥驱动电路)62提供电源。电源转换电路10包括一个转换电路20、一个开关电路30、一个控制电路40以及一个能量存储电路50。
转换电路20用于将交流电转换为直流电,包括第一输入端口21、第二输入端口22、第一直流端口23以及第二直流端口24。第一及第二输入端口21、22用于连接至一个交流电源61。第一及第二直流端口23、24用于输出直流电。
开关电路30包括控制端口33及由控制端口33控制相互导通与否的第一受控端口31及第二受控端口32。第一受控端口31连接至第一直流端口23。控制电路40连接至控制端口33,并用于产生控制信号使该第一及第二受控端口31、32之间交替地断开及导通。
能量存储电路50连接至第二受控端口32及第二直流端口24,并包括用于连接H桥驱动电路62的第一输出端口51及第二输出端口52。能量存储电路50用于在第一及第二受控端口31、32相互导通的时段内存储能量,并在第一及第二受控端口31、32相互断开的时段内向负载释放能量,以维持无刷直流电机的运行。
当然,第一受控端口31也可连接至第二直流端口24,此时,能量存储电路50连接至第二受控端口32及第一直流端口23(图未示)。下面通过多个实施方式来解释本发明的工作原理及其有益效果。
第一实施方式
请结合图3,本发明第一实施方式的电源转换电路10中的转换电路20可以为一个半桥式的二极管整流桥(图未示)。开关电路30可以是BJT或MOSFET晶体管,其集电极及射极(或者漏极及源极)为上述第一及第二受控端口31及32,其基极(或者栅极)为上述控制端口33。第一受控端口31连接至第一直流端口23。控制电40路可以包括PWM信号发生器或者单片机等信号发生器。能量存储电路50为一个第二电容C2,其两端连接至第二受控端口32及第二直流端口24,同时也是上述第一及第二输出端口51及52。H桥驱动电路包括4个开关,该4个开关两两串联在第一及第二输出端口51及52之间,电机连接至相串联的两个开关之间的节点。H桥驱动电路中的开关由一个控制器控制其导通的顺序,以使电机正常运转。该控制器可以集成在上述控制电路40中。
请再结合图4,工作过程中,转换电路20将交流电源61的交流电转换为直流电,并将直流电从第一及第二直流端口23、24输出。开关电路30在控制电路40的控制下交替地断开及导通。在第一及第二受控端口31、32相互导通时,电压加载至无刷直流电机,此时无刷直流电机转动,线圈产生反电动势VB。当交流电源61所加载的电压逐渐增大至高于反电动势VB时(图中A点处),交流电源开始供应电流,在此(A点处)之前,交流电源处没有电流。
在任何时段内,开关电路30一直受控制电路40的控制保持在交替地断开及导通的状态。在交流电源的电压处于大于反电动势VB的时段内(A,B点之间),交流电源保持着供电状态。当开关电路30导通时,交流电源61通过转换电路20、开关电路30、无刷直流电机及其H桥驱动电路62形成第一回路,交流电源61还通过转换电路20、开关电路30、能量存储电路50(第二电容C2)形成第二回路,能量存储电路50中存储了能量。在开关电路30断开的状态下,由于无法形成上述第一或第二回路,交流电源61的电流截止,此时能量存储电路50(电容C2)向H桥驱动电路及无刷直流电机释放其存储能量,以维持无刷直流电机的正常运行。如此,交流电源61提供一连串电流脉冲,并且在交流电压零点后不会造成电流相移。
当交流电压下降至与反电动势VB相等时(B点处),甚至交流电源电压到达过零点后,若直流电机M的线圈内存储有能量(即电感性负载中仍存在电压),当开关电路30导通时,直流电机M中存储的能量通过H桥驱动电路及开关电路30回流至交流电源。该放电周期与开关电路30的开关频率及开关电路30导通时间的长短(对应控制电路40的控制信号的占空比)有关。由于开关电路30是交替地断开及导通,直流电机M的线圈充电时间较短,其中存储的能量也比较小,因此可以较快地释放完能量,从而可减少流进交流电源的放电电流的量,从而减少电流相移,减少负功率。
如此,不存在像背景技术中由于感性负载需要释放大量能量而产生的导致出现负功率的放电电流(阴影部分)。因此,上述电源转换电路10的负功率较小,有利于提升电机的有效输出及降低电网的损耗,从而提高能源的有效利用率。可见,开个电路30开关的频率越高,和/或控制信号的占空比越小,负功率便较小。
优选地,第一及第二直流端口23、24之间还连接有一个滤波电路,用于对从第一及第二直流端口23、24输出的直流电进行滤波。在本实施方式及下述实施方式中,滤波电路均包括一个第一电容C1。当然,滤波电路也可以是LC电路,其中的电感连接在电容与桥式的二极管整流桥之间;或者仅是电感,下面的实施方式将不再赘述。
在对应A,B点之间的过程中,调节开关电路30导通时间的长短(对应控制电路40的控制信号的占空比)可控制电机的转速。同时,在这个过程中,控制电路40的控制信号的占空比越大(即,开关电路30开启的时间越长),能量存储电路中存储的能量越大,其在B点后所能释放的能量也越多,负功率便越大。
另外,从以上描述可见,开关电路30连接在第二直流端口24与能量存储电路50之间也可起到相同的作用,即使说,开关电路30也可以连接在第二直流端口24与能量存储电路50之间(图未示)。
第二实施方式
请结合图5,本发明第二实施方式的电源转换电路10b与上述第一实施方式的电源转换电路10的不同之处在于能量存储电路50b。第二实施方式的转换电路50b包括一个二极管D及一个电感L。二极管D连接在第二受控端口32及第二直流端口24之间,电感L连接在第二受控端口32与第一输出端口51之间。电感L的一端形成上述第一输出端口51,二极管D的一端形成上述第二输出端口52。
请再结合图6,工作过程中,同上所述,当直流电机M转到产生反电动势并且交流电源61的电压逐渐增大至大于反电动势VB时(图中A点处),交流电源开始供应电流。在交流电源的电压处于大于反电动势VB的时段内(A,B点之间),当开关电路30导通时,交流电源61通过转换电路20、开关电路30、能量存储电路50的电感L、无刷直流电机及其H桥驱动电路形成回路,能量存储电路50的电感L中存储了能量。在开关电路30断开的状态下,由于无法形成上述回路,交流电源61的电流截止,此时能量存储电路50向H桥驱动电路及无刷直流电机释放其存储能量,并通过二极管D形成放电回路(如图中箭头所示),以维持无刷直流电机的正常运行。如此,交流电源61供应着一连串的电流脉冲,如图6所示。
当交流电压下降至与反电动势VB相等时(B点处),直流电机M的线圈内存储的能量通过H桥驱动电路及开关电路30回流至交流电源。由于开关电路30是交替地断开及导通,直流电机M的线圈充电时间较短,其中存储的能量也比较小,因此可以较快地释放完能量。如此,不存在像背景技术中由于感性负载需要释放大量能量而产生的导致出现负功率的放电电流(阴影部分)。因此,上述电源转换电路10的负功率较小,有利于提升电机的有效输出及降低电网中的损耗,从而提高能源的有效利用率。另外,电感L的使用可降低电流谐波及电磁干扰。
从以上描述还可见,电感L连接在第二直流端口24与第二输出端口52之间也可起到相同的作用,即使说,电感L也可以连接在第二直流端口24与第二输出端口52之间(可参考图7)。再者,无论电感L位于上述两个位置中的哪一个,同第一实施方式所述,开关电路30也可以连接在第二直流端口24与能量存储电路50之间(图未示)。
第三实施方式
请结合图7,本发明第三实施方式的电源转换电路10c与上述第一实施方式的电源转换电路10的不同之处在于能量存储电路50c。第三实施方式的转换电路50c包括一个二极管D、一个电感L及一个第二电容C2。二极管D连接在第二受控端口32及第二直流端口24之间,电感L一端连接至第二直流端口24,另一端通过第二电容C2连接至第二受控端口32,第二电容C2的两端形成上述第一输出端口51及第二输出端口52。
请再结合图8,工作过程中,同上所述,当直流电机M转到产生反电动势并且交流电源61的电压逐渐增大至大于反电动势VB时(图中A点处),交流电源开始供应电流。在交流电源的电压处于大于反电动势VB的时段内(A,B点之间),当开关电路30导通时,交流电源61通过转换电路20、开关电路30、能量存储电路50的电感L、无刷直流电机及其H桥驱动电路形成第一回路,交流电源61还通过转换电路20、开关电路30、能量存储电路50的第二电容C2形成第二回路,同时能量存储电路50中的电感L及第二电容C2存储了能量。在开关电路30断开的状态下,由于无法形成上述回路,交流电源61的电流截止,此时电感L向H桥驱动电路及无刷直流电机释放其存储能量,并通过二极管D形成第一放电回路;同时第二电容也向H桥驱动电路及无刷直流电机释放其存储能量(如图中箭头所示),以维持无刷直流电机的正常运行。如此,交流电源61供应着一连串的电流脉冲,如图8所示。
当交流电压下降至与反电动势VB相等时(B点处),直流电机M的线圈内存储的能量通过H桥驱动电路及开关电路30回流至交流电源。由于开关电路30是交替地断开及导通,直流电机M的线圈充电时间较短,其中存储的能量也比较小,因此可以较快地释放完能量。如此,不存在像背景技术中由于感性负载需要释放大量能量而产生的导致出现负功率的放电电流(阴影部分)。因此,上述电源转换电路10的负功率较小,有利于提升电机的有效输出及降低电网的损耗,从而提高能源的有效利用率。另外,同时使用电感L及第二电容C2可降低电流谐波及电磁干扰,同时还可稳定直流电机M两段的电压值从而稳定直流电机M的转速。
另外,从以上描述还可见,电感L两端也可分别连接至第二受控端口32及第一输出端口51(可参考图5)。再者,无论电感L位于上述两个位置中的哪一个,同第一实施方式所述,开关电路30也可以连接在第二直流端口24与能量存储电路50之间(图未示)。
第四实施方式
请结合图9,本发明第四实施方式的电源转换电路10d与上述第三实施方式的电源转换电路10c的不同之处在于能量存储电路50d的二极管D、电感L及第二电容C2的位置。电感L连接在第二受控端口32及第二直流端口24之间,二极管D一端连接至第二受控端口32并且另一端通过第二电容C2连接至第二直流端口24,第二电容C2的两端形成上述第一输出端口51及第二输出端口52。其中,二极管D及第二电容C2的极性方向与第三实施方式相反。
请再结合图8,工作过程中,同上所述,当直流电机M转到产生反电动势并且交流电源61的电压逐渐增大至大于反电动势VB时(图中A点处),交流电源开始供应电流,在此(A点处)之前,交流电源处没有电流。在交流电源的电压处于大于反电动势VB的时段内(A,B点之间),当开关电路30导通时,交流电源61通过转换电路20、开关电路30、能量存储电路50的电感L形成回路,为电感L充电。当开关电路30断开时,电感L释放能量,通过第二电容C2及二极管D形成回路(电流方向如电感L旁边箭头所示),当第二电容C2充满电后,其为H桥驱动电路提供伏击的直流母线电压。当开关电路30再导通时,交流电源61通过转换电路20、开关电路30、电感L形成回路以为电感L充电;同时,第二电容C2通过H桥驱动电路及无刷直流电机形成回路以维持电机工作(电流方向如第二电容C2旁边箭头所示)。当开关电路30再断开时,工作过程同上所述,在此不做赘述。
从上述描述可见,相对于第三实施方式的能量存储电路50c,本实施方式的能量存储电路50d通过改变内部元件的位置及极性方向,改变了第一输出端口51及第二输出端口52的极性,从而可适用不同极性需求的电机。
同理,由于开关电路30是交替地断开及导通,直流电机M的线圈充电时间较短,其中存储的能量也比较小,因此可以较快地释放完能量。如此,不存在像背景技术中由于感性负载需要释放大量能量而产生的导致出现负功率的放电电流(阴影部分)。因此,上述电源转换电路10的负功率较小,有利于提升电机的有效输出及降低电网的损耗,从而提高能源的有效利用率。
另外,从以上描述可见,二极管D连接在第二输出端口52及第二直流端口24之间也可起到相同的作用,当然此时二极管的极性方向得调转(图未示)。再者,无论二极管D位于上述两个位置中的哪一个,同第一实施方式所述,开关电路30也可以连接在第二直流端口24与能量存储电路50之间(图未示)。
需要指出的是,在本发明各实施方式中,除非指出是直接连接,在只说明两者之间连接的情况下,不排除所述两者之间不直接连接的情况。
另外,在本发明各实施方式中,转换电路20、开关电路30、控制电路40以及能量存储电路50可以有多种集成程度。比如说,在实际电路中,开关电路30与控制电路40集成封装在一起,开关电路30、控制电路40与部分能量存储电路50集成封装在一起,或者转换电路20、开关电路30、控制电路40与部分能量存储电路50集成封装在一起等等。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种电源转换电路,用于向感性负载提供电源,包括:
转换电路,其用于将交流电转换为直流电,并包括用于连接至一个交流电源的第一及第二输入端口,以及用于输出直流电的第一及第二直流端口;
开关电路,其包括控制端口及由该控制端口控制相互导通与否的第一及第二受控端口,该第一受控端口连接至该第一直流端口;
控制电路,其连接至该控制端口,并用于产生使该第一及第二受控端口之间交替地断开及导通的控制信号使得所述开关电路导通的时间小于断开的时间;及
能量存储电路,其连接至该第二受控端口及该第二直流端口,并包括用于连接该感性负载的第一及第二输出端口;该能量存储电路用于在该第一及第二受控端口相互导通的时段内存储能量,并在该第一及第二受控端口相互断开的时段内向该感性负载释放能量。
2.如权利要求1所述的电源转换电路,其特征在于,该控制电路包括PWM信号发生器。
3.如权利要求1所述的电源转换电路,其特征在于,还包括连接在第一及第二直流端口之间的滤波电路。
4.如权利要求3所述的电源转换电路,其特征在于,该滤波电路包括连接在第一及第二直流端口之间的第一电容。
5.如权利要求1所述的电源转换电路,其特征在于,该能量存储电路包括连接在该第二受控端口及该第二直流端口之间的二极管,以及连接在该第二受控端口与第一输出端口之间或者在该第二直流端口与第二输出端口之间的电感。
6.如权利要求1所述的电源转换电路,其特征在于,该能量存储电路包括连接在该第一及第二输出端口之间的电容。
7.如权利要求6所述的电源转换电路,其特征在于,该第一及第二输出端口分别直接连接至该第二受控端口及该第二直流端口。
8.如权利要求6所述的电源转换电路,其特征在于,该能量存储电路还包括连接在该第二受控端口及该第二直流端口之间的二极管,以及连接在该第二受控端口与第一输出端口之间或者在该第二直流端口与第二输出端口之间的电感。
9.如权利要求6所述的电源转换电路,其特征在于,该能量存储电路还包括连接在该第二受控端口及该第二直流端口之间的电感,以及连接在该第二受控端口与第一输出端口之间或者在该第二直流端口与第二输出端口之间的二极管。
10.如权利要求1至9任一项所述的电源转换电路,其特征在于,该转换电路、开关电路、控制电路以及能量存储电路中的任意两个或者两个以上的电路集成封装在一起。
CN201310625830.9A 2013-11-28 2013-11-28 电源转换电路 Expired - Fee Related CN104682735B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201310625830.9A CN104682735B (zh) 2013-11-28 2013-11-28 电源转换电路
DE102014117154.3A DE102014117154A1 (de) 2013-11-28 2014-11-24 Strom- oder Leistungswandlungsschaltung
KR1020140167281A KR102246884B1 (ko) 2013-11-28 2014-11-27 전력 변환 회로
JP2014241053A JP2015122945A (ja) 2013-11-28 2014-11-28 電力変換回路
US14/555,941 US9407168B2 (en) 2013-11-28 2014-11-28 Power converting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310625830.9A CN104682735B (zh) 2013-11-28 2013-11-28 电源转换电路

Publications (2)

Publication Number Publication Date
CN104682735A CN104682735A (zh) 2015-06-03
CN104682735B true CN104682735B (zh) 2019-05-03

Family

ID=53182084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310625830.9A Expired - Fee Related CN104682735B (zh) 2013-11-28 2013-11-28 电源转换电路

Country Status (5)

Country Link
US (1) US9407168B2 (zh)
JP (1) JP2015122945A (zh)
KR (1) KR102246884B1 (zh)
CN (1) CN104682735B (zh)
DE (1) DE102014117154A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170294848A1 (en) * 2016-04-07 2017-10-12 Visic Technologies Ltd. Method and device for ac fed switch mode power supply based on normally on transistors
CN107488987B (zh) * 2017-09-08 2020-05-19 无锡小天鹅电器有限公司 洗衣机和电机及其控制装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101185044A (zh) * 2005-04-28 2008-05-21 国际整流器公司 功率因数校正的数字实现
CN102570800A (zh) * 2011-12-28 2012-07-11 上海微频莱机电科技有限公司 恒压输出装置
CN103036418A (zh) * 2011-09-30 2013-04-10 财团法人工业技术研究院 降压式功率因子修正系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4864483A (en) * 1986-09-25 1989-09-05 Wisconsin Alumni Research Foundation Static power conversion method and apparatus having essentially zero switching losses and clamped voltage levels
US5293308A (en) * 1991-03-26 1994-03-08 Auckland Uniservices Limited Inductive power distribution system
US5968398A (en) * 1997-05-16 1999-10-19 The Lepel Corporation Apparatus and method for non-contact detection and inductive heating of heat retentive food server warming plates
JPH1189282A (ja) * 1997-09-08 1999-03-30 Hitachi Ltd 空気調和機
JP4415428B2 (ja) 1999-09-17 2010-02-17 株式会社富士通ゼネラル モータの制御方法
US6850019B2 (en) * 2003-06-12 2005-02-01 Mcmillan Electric Company Single coil, direct current permanent magnet brushless motor with voltage boost
CA2808490C (en) * 2009-08-17 2015-02-03 Ideal Power Converters Inc. Power conversion with added pseudo-phase
TWI397252B (zh) * 2009-10-26 2013-05-21 Metal Ind Res & Dev Ct 應用於超音波馬達之單極具零電流切換之驅動電路
JP5413505B2 (ja) * 2010-04-21 2014-02-12 トヨタ自動車株式会社 モータ駆動システムのための制御装置およびそれを搭載した車両
US8723487B2 (en) * 2012-03-09 2014-05-13 Majid Pahlevaninezhad Zero voltage switching interleaved boost AC/DC converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101185044A (zh) * 2005-04-28 2008-05-21 国际整流器公司 功率因数校正的数字实现
CN103036418A (zh) * 2011-09-30 2013-04-10 财团法人工业技术研究院 降压式功率因子修正系统
CN102570800A (zh) * 2011-12-28 2012-07-11 上海微频莱机电科技有限公司 恒压输出装置

Also Published As

Publication number Publication date
DE102014117154A1 (de) 2015-06-11
US9407168B2 (en) 2016-08-02
KR102246884B1 (ko) 2021-05-03
JP2015122945A (ja) 2015-07-02
KR20150062141A (ko) 2015-06-05
CN104682735A (zh) 2015-06-03
US20150145453A1 (en) 2015-05-28

Similar Documents

Publication Publication Date Title
US11876396B2 (en) Power battery charging method, motor control circuit, and vehicle
CN101128973B (zh) 电力转换装置
KR101029198B1 (ko) 파워그리드에 전기에너지를 공급하는 장치 및 이런 장치용 dc 전압컨버터
US9054567B2 (en) High power density SRMs
CN100566110C (zh) 电力转换装置
CN101682278B (zh) 电机驱动器
CN109391166A (zh) 一种变换电路、控制方法和供电设备
CN104868517B (zh) 电路、电动力系和用于对电池充电的方法
CN103081347A (zh) 具有集成充电装置的开放式三角电机驱动器
CN101889387B (zh) 用于控制电控制部件中的电流或其端子间的电压的电路
CN103227610B (zh) 电机控制电路和汽车
CA3066649A1 (en) Constant current fast charging of electric vehicles via dc grid using dual inverter drive
CN102077460A (zh) Pm电动机驱动电源装置
CN103296712B (zh) 用于储能装置的充电电路和为储能装置充电的方法
CN104348375A (zh) 电源装置和其运转方法
CN105580233A (zh) 冲击电流限制电路及功率转换装置
CN103296714B (zh) 用于储能装置的充电电路以及给储能装置充电的方法
CN104682735B (zh) 电源转换电路
CN106301055A (zh) 基于虚拟同步发电机控制策略的逆变器并联环流抑制系统
CN206506455U (zh) 用于将直流电功率转换为三相电功率的系统及其功率模块及电机系统
CN104682734B (zh) 电源转换电路
Hu et al. On the flywheel/battery hybrid energy storage system for DC microgrid
JP6953634B2 (ja) Dc/dcコンバータを備える車両充電器
WO2017125769A1 (en) System for dc link precharging in active front end frequency converters
Meng et al. Development of switched reluctance motor drives with power factor correction charging function for electric vehicle application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190503

CF01 Termination of patent right due to non-payment of annual fee