CN104638887A - Output driving circuit capable of realizing output high level conversion - Google Patents

Output driving circuit capable of realizing output high level conversion Download PDF

Info

Publication number
CN104638887A
CN104638887A CN201510050634.2A CN201510050634A CN104638887A CN 104638887 A CN104638887 A CN 104638887A CN 201510050634 A CN201510050634 A CN 201510050634A CN 104638887 A CN104638887 A CN 104638887A
Authority
CN
China
Prior art keywords
output
pmos transistor
inverter
nmos transistor
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510050634.2A
Other languages
Chinese (zh)
Other versions
CN104638887B (en
Inventor
李雪
赵元富
文治平
王宗民
周亮
冯文晓
张硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Microelectronic Technology Institute
Mxtronics Corp
Original Assignee
Beijing Microelectronic Technology Institute
Mxtronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Microelectronic Technology Institute, Mxtronics Corp filed Critical Beijing Microelectronic Technology Institute
Priority to CN201510050634.2A priority Critical patent/CN104638887B/en
Publication of CN104638887A publication Critical patent/CN104638887A/en
Application granted granted Critical
Publication of CN104638887B publication Critical patent/CN104638887B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Logic Circuits (AREA)
  • Electronic Switches (AREA)

Abstract

本发明提出了一种可实现输出高电平转换的输出驱动电路,其特征在于:包括第一电源VDD1,第二电源VDD2、输出控制电路T、上拉P管预驱动电路、上拉输出驱动PMOS管MP2、下拉输出驱动管MN5、输出隔离电路、下拉N管预驱动电路、可变驱动信号MID发生电路、下拉预驱动电路。上拉P管预驱动电路通过电平移位缓冲电路SHIFT的拉升,并利用反馈电路加速,为驱动管MP2提供可变驱动信号MID,使得整个电路在无高压器件的条件下实现输出高电平电压的转换。该技术相比其他电路的特点是:不需要额外的高压器件的输出管;可实现低电平输入高电平输出的不同选择;快速驱动负载;可隔离电源噪声;面积较小;功耗较小。

The present invention proposes an output driving circuit capable of realizing output high level conversion, which is characterized in that it includes a first power supply VDD1, a second power supply VDD2, an output control circuit T, a pull-up P tube pre-driver circuit, and a pull-up output driver PMOS tube MP2, pull-down output drive tube MN5, output isolation circuit, pull-down N tube pre-drive circuit, variable drive signal MID generating circuit, pull-down pre-drive circuit. The pull-up P tube pre-driver circuit is pulled up by the level shift buffer circuit SHIFT and accelerated by the feedback circuit to provide a variable drive signal MID for the drive tube MP2, so that the entire circuit can output high level without high-voltage devices. voltage conversion. Compared with other circuits, the characteristics of this technology are: no additional high-voltage device output tube; different options for low-level input and high-level output; fast drive load; power supply noise isolation; small area; low power consumption Small.

Description

一种可实现输出高电平转换的输出驱动电路An output drive circuit that can realize output high level conversion

技术领域technical field

本发明涉及一种不利用高压器件,也可实现低电平电压转高电平电压的输出驱动电路,更具体地,涉及电平转换器及集成电路I/O设计领域。The invention relates to an output drive circuit capable of converting low-level voltage to high-level voltage without using high-voltage devices, and more specifically relates to the field of level converter and integrated circuit I/O design.

背景技术Background technique

随着集成电路发展的多样化,衍生出在各种电平电压下工作的集成电路。正确的信号电平可以保证系统可靠的工作,防止敏感电路因为过高或过低的电压条件而受损害。未达到所需电平的输入会减少信号噪声的余量,而过大的输入,会造成过多能量的损耗。为有效地传递信号,集成电路通常利用输入/输出(I/O)接口作为低压与高压之间转换的桥梁,使得低压信号完整传递的同时,免受高压信号的干扰。With the diversification of the development of integrated circuits, integrated circuits operating at various levels of voltage have been derived. Proper signal levels ensure reliable system operation and prevent damage to sensitive circuits due to excessively high or low voltage conditions. Inputs below the desired level will reduce the signal noise margin, while inputs that are too large will cause excessive energy loss. In order to effectively transmit signals, integrated circuits usually use input/output (I/O) interfaces as a bridge between low voltage and high voltage, so that low voltage signals can be completely transmitted without interference from high voltage signals.

通常,在设计输出驱动电路时,主要考虑电路驱动大负载的能力、三态输出以及逻辑器件接口电平兼容的问题。典型的CMOS输出驱动电路如图1所示,包括预驱动电路模块,驱动电路和输出保护电路。其中预驱动电路由三态控制电路T、上拉驱动信号LP的预驱动电路和下拉驱动信号LN的预驱动电路组成;三态控制电路T其输入端A接收内部输出信号D,S端受输出控制端OEN信号使能控制;输出端Z1连接上拉P管预驱动电路,输出端Z2连接下拉N管预驱动电路;上下拉预驱动电路通常由逐渐放大的反相器链构成;简化为由图1所示的PMOS管MP01和NMOS管MN01组成的反相器,以及PMOS管MP03和NMOS管MN03组成的反相器;PMOS管MP01的漏极与NMOS管MN01的漏极引出上拉驱动信号LP,PMOS管MP03的漏极和NMOS管MN03的漏极引出下拉驱动信号LN;上拉驱动信号LP和下拉驱动信号LN,分别驱动上拉输出PMOS管MP02和下拉输出NMOS管MN05,它们的漏极之间引出输出端PAD;输出保护电路连接到输出端PAD。Usually, when designing an output drive circuit, the main considerations are the ability of the circuit to drive a large load, the three-state output, and the level compatibility of the logic device interface. A typical CMOS output drive circuit is shown in Figure 1, including a pre-drive circuit module, a drive circuit and an output protection circuit. The pre-drive circuit is composed of a three-state control circuit T, a pre-drive circuit of the pull-up drive signal LP and a pre-drive circuit of the pull-down drive signal LN; the input terminal A of the three-state control circuit T receives the internal output signal D, and the S terminal receives the output signal The control terminal OEN signal enables control; the output terminal Z1 is connected to the pull-up P tube pre-driver circuit, and the output terminal Z2 is connected to the pull-down N tube pre-driver circuit; the pull-up and pull-down pre-driver circuit is usually composed of a gradually enlarged inverter chain; simplified as The inverter composed of PMOS transistor MP01 and NMOS transistor MN01 shown in Figure 1, and the inverter composed of PMOS transistor MP03 and NMOS transistor MN03; the drain of PMOS transistor MP01 and the drain of NMOS transistor MN01 lead to a pull-up drive signal LP, the drain of the PMOS transistor MP03 and the drain of the NMOS transistor MN03 lead to the pull-down drive signal LN; the pull-up drive signal LP and the pull-down drive signal LN respectively drive the pull-up output PMOS transistor MP02 and the pull-down output NMOS transistor MN05, and their drains The output terminal PAD is drawn between the poles; the output protection circuit is connected to the output terminal PAD.

该电路的工作原理如下:使能信号OEN有效,当数据信号D输入低电平,Z1,Z2均输出低电平。此时,PMOS管MP01和MP03导通,使得上拉驱动信号LP和下拉驱动信号LN信号均为高电平,NMOS管MN05导通,PAD输出低电平电压。当输入D为高电平VDD1时,Z1,Z2均输出高电平VDD1。此时,NMOS管MN01和NMOS管MN03导通,使得上拉驱动信号LP和下拉驱动信号LN信号均为低电平,上拉驱动信号LP输出驱动管PMOS管MP02导通,PAD输出高电平电压VDD1。The working principle of the circuit is as follows: the enable signal OEN is valid, and when the data signal D inputs a low level, both Z1 and Z2 output a low level. At this time, the PMOS transistors MP01 and MP03 are turned on, so that the pull-up driving signal LP and the pull-down driving signal LN are both at high level, the NMOS transistor MN05 is turned on, and the PAD outputs a low-level voltage. When input D is high level VDD1, both Z1 and Z2 output high level VDD1. At this time, the NMOS transistor MN01 and the NMOS transistor MN03 are turned on, so that the pull-up drive signal LP and the pull-down drive signal LN signal are both low level, the pull-up drive signal LP output drives the PMOS transistor MP02, and the PAD outputs a high level Voltage VDD1.

所述的输出驱动电路,由电源电压VDD1供电,仅能输出单一高电平信号。这无法满足需要输出大摆幅,由低电平向高电平转换的应用要求。The output drive circuit is powered by the power supply voltage VDD1 and can only output a single high-level signal. This cannot meet the application requirements that require a large output swing and transition from low level to high level.

在现有的CMOS驱动技术中,通常采用电平移位(Level shifter)的方法实现输出驱动电路的升压,如图2。该电路除了输出驱动电路所必须的模块外,还包括一个电平移位模块201,电源VDD2以及高压PMOS器件MP21,MP23,MP22。其中电源VDD2的电平高于电源VDD1的电平值。采用高压器件有效防止电源电压从较低电平VDD1切换到VDD2时,器件的击穿。电平移位模块201替代了图1中由PMOS管MP01和NMOS管MN01组成的上拉驱动信号LP的预驱动电路。该电路具有接受相对较低的电平VDD1的输入信号D,输出高电平VDD2的升压驱动功能。具体来说,当D输入低电平时,Z1,Z2均输出低电平。信号202的低电平电压经过反相器INV21后得到203高电平电压VDD1,使得NMOS管MN23导通,PMOS管MP21的栅压拉到低电平电压,MP21导通,上拉驱动信号LP拉升到VDD2,PMOS管MP22关断。同时,当D输入高电平VDD1时,Z1,Z2均输出VDD1。NMOS管MP21导通使得上拉驱动信号LP接地,高压PMOS管MP02导通,PAD输出具有较高电平的VDD2。In the existing CMOS drive technology, the method of level shift (Level shifter) is usually used to boost the output drive circuit, as shown in Figure 2. In addition to the modules necessary for the output drive circuit, the circuit also includes a level shift module 201, a power supply VDD2 and high-voltage PMOS devices MP21, MP23, and MP22. The level of the power supply VDD2 is higher than the level of the power supply VDD1. The high voltage device is used to effectively prevent the breakdown of the device when the power supply voltage is switched from a lower level VDD1 to VDD2. The level shift module 201 replaces the pre-driver circuit for the pull-up drive signal LP composed of the PMOS transistor MP01 and the NMOS transistor MN01 in FIG. 1 . The circuit has a boost driving function of receiving a relatively low level VDD1 input signal D and outputting a high level VDD2. Specifically, when D inputs low level, both Z1 and Z2 output low level. The low-level voltage of the signal 202 passes through the inverter INV21 to obtain the high-level voltage VDD1 of 203, so that the NMOS transistor MN23 is turned on, the gate voltage of the PMOS transistor MP21 is pulled to a low-level voltage, MP21 is turned on, and the driving signal LP is pulled up. Pull up to VDD2, PMOS transistor MP22 is turned off. At the same time, when D inputs high level VDD1, both Z1 and Z2 output VDD1. The NMOS transistor MP21 is turned on so that the pull-up driving signal LP is grounded, the high-voltage PMOS transistor MP02 is turned on, and the output of the PAD has a relatively high level VDD2.

如上所述,在同种CMOS工艺中,这种电平移位输出驱动电路有几个缺点:1、拉升输出高电平的PMOS管,如MP21,MP22,MP23需要使用高压器件。在同一种工艺设计中,采用高压器件将增加电路设计难度和工艺实现难度,增大版图面积的同时,还会带来多于的功耗开销;2、由于高压器件的阈值高于普通器件,若仍传输较小电平VDD1则可能使得电器件截止,无法正常输出。因此,该电路只具备由VDD1升压到VDD2的功能,不具备相同高电平电压传输功能,无法根据后端电路需要实现输出的电平灵活转换。3、相对输出端接大负载情况,该电路没有快速拉升的机制。As mentioned above, in the same CMOS process, this level-shift output drive circuit has several disadvantages: 1. PMOS transistors that pull up the output high level, such as MP21, MP22, and MP23, need to use high-voltage devices. In the same process design, the use of high-voltage devices will increase the difficulty of circuit design and process implementation. While increasing the layout area, it will also bring excessive power consumption; 2. Since the threshold of high-voltage devices is higher than that of ordinary devices, If the relatively small level VDD1 is still transmitted, the electrical device may be cut off and cannot be output normally. Therefore, this circuit only has the function of boosting voltage from VDD1 to VDD2, but does not have the same high-level voltage transmission function, and cannot flexibly switch the output level according to the needs of the back-end circuit. 3. Compared with the case where the output terminal is connected to a large load, the circuit does not have a fast pull-up mechanism.

发明内容Contents of the invention

本发明的目的是为克服现有技术的不足,提出的一种可实现输出高电平转换的输出驱动电路。利用可变驱动信号MID,使得输出驱动电路无需高压器件仅采用普通器件即可实现升压功能。同时,克服了传统电路单向升压的缺点,使得输出端不仅可以有效升压,还可实现相等电平转移的功能,提高了输出端口输出电平的灵活性。利用反馈电路,解决了输出端接大负载时输出驱动信号拉升不足的问题。增加输出隔离MN4和MP3,有效地隔离电源地引入的噪声干扰,提高了输出接口耐压特性和可靠性。The purpose of the present invention is to overcome the deficiencies of the prior art, and propose an output driving circuit capable of realizing output high-level conversion. Utilizing the variable driving signal MID, the output driving circuit can realize the voltage boosting function without using high-voltage devices and only using ordinary devices. At the same time, it overcomes the disadvantage of unidirectional boosting in the traditional circuit, so that the output terminal can not only effectively boost the voltage, but also realize the function of equal level shifting, which improves the flexibility of the output level of the output port. The feedback circuit is used to solve the problem of insufficient pull-up of the output drive signal when the output terminal is connected to a large load. Increase the output isolation MN4 and MP3, effectively isolate the noise interference introduced by the power ground, and improve the withstand voltage characteristics and reliability of the output interface.

本发明解决的技术方案为:一种可实现输出高电平转换的输出驱动电路,包括第一电源VDD1,第二电源VDD2、输出控制电路T、上拉P管预驱动电路、上拉输出驱动PMOS管MP2、下拉输出驱动管MN5、输出隔离电路、下拉N管预驱动电路、可变驱动信号MID发生电路、下拉预驱动电路;The technical solution solved by the present invention is: an output driving circuit capable of realizing output high level conversion, including a first power supply VDD1, a second power supply VDD2, an output control circuit T, a pull-up P tube pre-driver circuit, and a pull-up output driver PMOS tube MP2, pull-down output drive tube MN5, output isolation circuit, pull-down N tube pre-drive circuit, variable drive signal MID generation circuit, pull-down pre-drive circuit;

输出控制电路T为一个三态控制电路,包括数据信号输入端A、使能信号输入端S、第一输出端Z1、第二输出端Z2;The output control circuit T is a three-state control circuit, including a data signal input terminal A, an enable signal input terminal S, a first output terminal Z1, and a second output terminal Z2;

上拉P管预驱动电路包括第一输出缓冲器BUF1、电平移位缓冲电路SHIFT、第一反相器INV1、第二反相器INV2、第一预驱动PMOS管MP1、第一预驱动NMOS管MN1、输出P管反馈电路;The pull-up P tube pre-driver circuit includes a first output buffer BUF1, a level shift buffer circuit SHIFT, a first inverter INV1, a second inverter INV2, a first pre-drive PMOS transistor MP1, a first pre-drive NMOS transistor MN1, output P tube feedback circuit;

第一输出缓冲器BUF1包括第十反相器INV10、第十一反相器INV11;The first output buffer BUF1 includes a tenth inverter INV10 and an eleventh inverter INV11;

电平移位缓冲电路SHIFT包括第十PMOS管MP10、第十一PMOS管MP11、第十NMOS管MN10、第十一NMOS管MN11、第八反相器INV8、第九反相器INV9;The level shift buffer circuit SHIFT includes a tenth PMOS transistor MP10, an eleventh PMOS transistor MP11, a tenth NMOS transistor MN10, an eleventh NMOS transistor MN11, an eighth inverter INV8, and a ninth inverter INV9;

输出P管反馈电路包括第二预驱动NMOS管MN2、第三预驱动NMOS管MN3、第三反相器INV3、第四反相器INV4;The output P-tube feedback circuit includes a second pre-drive NMOS transistor MN2, a third pre-drive NMOS transistor MN3, a third inverter INV3, and a fourth inverter INV4;

可变驱动信号MID发生电路包括第四PMOS管MP4、第五PMOS管MP5、第六PMOS管MP6、第七PMOS管MP7、第八PMOS管MP8、第九PMOS管MP9、第六NMOS管MN6、第七NMOS管MN7、第八NMOS管MN8、第九NMOS管MN9;The variable driving signal MID generating circuit includes a fourth PMOS transistor MP4, a fifth PMOS transistor MP5, a sixth PMOS transistor MP6, a seventh PMOS transistor MP7, an eighth PMOS transistor MP8, a ninth PMOS transistor MP9, a sixth NMOS transistor MN6, The seventh NMOS transistor MN7, the eighth NMOS transistor MN8, and the ninth NMOS transistor MN9;

下拉预驱动电路包括第二输出缓冲器BUF2、第五反相器INV5、第六反相器INV6、第七反相器INV7;第二输出缓冲器BUF2包括第十二反相器INV12、第十三反相器INV13;The pull-down pre-drive circuit includes a second output buffer BUF2, a fifth inverter INV5, a sixth inverter INV6, and a seventh inverter INV7; the second output buffer BUF2 includes a twelfth inverter INV12, a tenth inverter Three inverters INV13;

输出隔离电路包括第三驱动PMOS管MP3、第四驱动NMOS管MN4;The output isolation circuit includes a third driving PMOS transistor MP3 and a fourth driving NMOS transistor MN4;

输出控制电路T的输入端A接收数据信号D,使能信号输入端S接收使能信号OEN,使能信号OEN控制输出控制电路T,从第一输出端Z1、第二输出端Z2输出两路数据信号;The input terminal A of the output control circuit T receives the data signal D, the enable signal input terminal S receives the enable signal OEN, the enable signal OEN controls the output control circuit T, and outputs two channels from the first output terminal Z1 and the second output terminal Z2 data signal;

第一输出端Z1连接第十反相器INV10的输入端、第十反相器INV10的输出端连接第十一反相器INV11的输入端,第十一反相器INV11的输出端的第一路连接第十二PMOS管MP12的栅极和第十二NMOS管MN12的栅极,第十一反相器INV11的输出端的第二路连接第一反相器INV1的输入端,第一反相器INV1的输出端连接第二反相器INV2的输入端,第二反相器INV2的输出端连接第一预驱动NMOS管MN1的栅极;The first output terminal Z1 is connected to the input terminal of the tenth inverter INV10, the output terminal of the tenth inverter INV10 is connected to the input terminal of the eleventh inverter INV11, and the first channel of the output terminal of the eleventh inverter INV11 The gate of the twelfth PMOS transistor MP12 and the gate of the twelfth NMOS transistor MN12 are connected, the second path of the output terminal of the eleventh inverter INV11 is connected to the input terminal of the first inverter INV1, and the first inverter The output terminal of INV1 is connected to the input terminal of the second inverter INV2, and the output terminal of the second inverter INV2 is connected to the gate of the first pre-driving NMOS transistor MN1;

第八反相器INV8包括第十二PMOS管MP12、第十二NMOS管MN12;The eighth inverter INV8 includes a twelfth PMOS transistor MP12 and a twelfth NMOS transistor MN12;

第九反相器INV9包括第十三PMOS管MP13、第十三NMOS管MN13;The ninth inverter INV9 includes a thirteenth PMOS transistor MP13 and a thirteenth NMOS transistor MN13;

第十二PMOS管MP12的源级和衬底连接第一电源VDD1、第十二PMOS管MP12的漏极和第十二NMOS管MN12的漏极连接第十三PMOS管MP13的栅极和第十三NMOS管MN13的栅极,第十二NMOS管MN12的源级和第十三NMOS管MN13的源级输入MID信号;第十三PMOS管MP13的源级和衬底连接第一电源VDD1,第十三PMOS管MP13的漏极和第十三NMOS管MN13的漏极连接第十一NMOS管MN11的栅极;第十一NMOS管MN11的漏极第一路连接第十PMOS管MP10的栅极,第十一NMOS管MN11的漏极第二路连接第十一PMOS管MP11的漏极;第十一NMOS管MN11的源级和第十NMOS管MN10的源级输入MID信号;第十PMOS管MP10的源级和衬底以及第十一PMOS管MP11的源级和衬底连接第二电源VDD2;第十一PMOS管MP11的栅极、第十PMOS管MP10的漏极和第十NMOS管MN10的漏极同时连接第一预驱动PMOS管MP1的栅极;The source and substrate of the twelfth PMOS transistor MP12 are connected to the first power supply VDD1, the drain of the twelfth PMOS transistor MP12 and the drain of the twelfth NMOS transistor MN12 are connected to the gate of the thirteenth PMOS transistor MP13 and the tenth The gate of the third NMOS transistor MN13, the source of the twelfth NMOS transistor MN12 and the source of the thirteenth NMOS transistor MN13 input the MID signal; the source and substrate of the thirteenth PMOS transistor MP13 are connected to the first power supply VDD1, and the source of the thirteenth NMOS transistor MN13 is connected to the first power supply VDD1. The drain of the thirteenth PMOS transistor MP13 and the drain of the thirteenth NMOS transistor MN13 are connected to the gate of the eleventh NMOS transistor MN11; the drain of the eleventh NMOS transistor MN11 is first connected to the gate of the tenth PMOS transistor MP10 , the drain of the eleventh NMOS transistor MN11 is connected to the drain of the eleventh PMOS transistor MP11 in the second way; the source of the eleventh NMOS transistor MN11 and the source of the tenth NMOS transistor MN10 input the MID signal; the tenth PMOS transistor The source and substrate of MP10 and the source and substrate of the eleventh PMOS transistor MP11 are connected to the second power supply VDD2; the gate of the eleventh PMOS transistor MP11, the drain of the tenth PMOS transistor MP10 and the tenth NMOS transistor MN10 The drain is simultaneously connected to the gate of the first pre-drive PMOS transistor MP1;

第一预驱动PMOS管MP1的衬底和源级连接第二电源VDD2,第一预驱动PMOS管MP1的漏极和第一预驱动NMOS管MN1的漏极的第一路连接第四预驱动PMOS管MP4的栅极,第一预驱动PMOS管MP1的漏极和第一预驱动NMOS管MN1的漏极的第二路连接第三反相器INV3的输入端,第一预驱动NMOS管MN1的漏极的输出预驱动上拉信号LP;第三反相器INV3的输出端第一路连接第三NMOS管MN3的栅极,第三反相器INV3的输出端第二路连接第四反相器INV4的输入端,第四反相器INV4的输出端连接第二NMOS管MN2的栅极,第二NMOS管MN2的源级接地,第三NMOS管MN3的源级输入MID信号;第二NMOS管MN2的漏极和第三NMOS管MN3的漏极连接第一预驱动NMOS管MN1的源级;The substrate and source of the first pre-drive PMOS transistor MP1 are connected to the second power supply VDD2, and the first path between the drain of the first pre-drive PMOS transistor MP1 and the drain of the first pre-drive NMOS transistor MN1 is connected to the fourth pre-drive PMOS The gate of the transistor MP4, the drain of the first pre-drive PMOS transistor MP1 and the drain of the first pre-drive NMOS transistor MN1 are connected to the input terminal of the third inverter INV3, and the first pre-drive NMOS transistor MN1 The output of the drain pre-drives the pull-up signal LP; the first output terminal of the third inverter INV3 is connected to the gate of the third NMOS transistor MN3, and the second output terminal of the third inverter INV3 is connected to the fourth inverter The input end of the inverter INV4, the output end of the fourth inverter INV4 is connected to the gate of the second NMOS transistor MN2, the source level of the second NMOS transistor MN2 is grounded, and the source level of the third NMOS transistor MN3 inputs the MID signal; the second NMOS transistor MN2 The drain of the transistor MN2 and the drain of the third NMOS transistor MN3 are connected to the source of the first pre-driving NMOS transistor MN1;

第二PMOS管MP2的源级和衬底以及第三驱动PMOS管MP3的衬底连接第二电源VDD2,第二PMOS管MP2的漏极连接第三驱动PMOS管MP3的源级,第三驱动PMOS管MP3的栅极输入MID信号,第三驱动PMOS管MP3的漏极和第四驱动NMOS管MN4的漏极作为该可实现输出高电平转换的输出驱动电路的输出;第四驱动NMOS管MN4的栅极连接第一电源VDD1,第四驱动NMOS管MN4的源级连接第七驱动NMOS管MN7的漏极,第七驱动NMOS管MN7的源级接地;第七驱动NMOS管MN7的栅极连接第七反相器INV7的输出端,第七反相器INV7的输入端连接第六反相器INV6的输出端,第六反相器INV6的输入端连接第五反相器INV5的输出端,第五反相器INV5的输入端连接第十三反相器INV13的输出端,第十三反相器INV13的输入端连接第十二反相器INV12的输出端,第十二反相器INV12的输入端连接输出控制电路T的第二输出端Z2;The source and substrate of the second PMOS transistor MP2 and the substrate of the third driving PMOS transistor MP3 are connected to the second power supply VDD2, the drain of the second PMOS transistor MP2 is connected to the source of the third driving PMOS transistor MP3, and the third driving PMOS transistor MP3 The gate of the transistor MP3 inputs the MID signal, and the drain of the third driving PMOS transistor MP3 and the drain of the fourth driving NMOS transistor MN4 are used as the output of the output driving circuit that can realize output high level conversion; the fourth driving NMOS transistor MN4 The gate of the fourth driving NMOS transistor MN4 is connected to the drain of the seventh driving NMOS transistor MN7, the source of the seventh driving NMOS transistor MN7 is grounded; the gate of the seventh driving NMOS transistor MN7 is connected to The output terminal of the seventh inverter INV7, the input terminal of the seventh inverter INV7 is connected to the output terminal of the sixth inverter INV6, the input terminal of the sixth inverter INV6 is connected to the output terminal of the fifth inverter INV5, The input end of the fifth inverter INV5 is connected to the output end of the thirteenth inverter INV13, the input end of the thirteenth inverter INV13 is connected to the output end of the twelfth inverter INV12, and the twelfth inverter INV12 The input terminal is connected to the second output terminal Z2 of the output control circuit T;

第四PMOS管MP4的源级和衬底以及第三PMOS管MP3的衬底连接第二电源VDD2,第四PMOS管MP4的栅极和第四PMOS管MP4的漏极连接第五PMOS管MP5的漏极,第五PMOS管MP5的栅极接地,第五PMOS管MP5的漏极连接第六PMOS管MP6的源级,第六PMOS管MP6的栅极和漏极连接第八NMOS管MN8的栅极和漏极、第七NMOS管MN7的栅极、第六NMOS管MN6的栅极,第八NMOS管MN8的源级连接第七PMOS管MP7的漏极和衬底,第七PMOS管MP7的栅极和源级接地;第六NMOS管MN6的源级和第六NMOS管MN6的漏极相接;第七NMOS管MN7的源级、第九NMOS管MN9的栅极、第八PMOS管MP8的漏极连接并输出MID信号;第八PMOS管MP8的栅极和源级接地;第八PMOS管MP8的衬底连接第九PMOS管MP9的漏极,第九PMOS管MP9的栅极接地,第九PMOS管MP9的衬底和源级连接第一电源VDD1。未加说明的电路均由电源VDD1供电。The source and substrate of the fourth PMOS transistor MP4 and the substrate of the third PMOS transistor MP3 are connected to the second power supply VDD2, the gate of the fourth PMOS transistor MP4 and the drain of the fourth PMOS transistor MP4 are connected to the fifth PMOS transistor MP5 The drain, the gate of the fifth PMOS transistor MP5 is grounded, the drain of the fifth PMOS transistor MP5 is connected to the source of the sixth PMOS transistor MP6, and the gate and drain of the sixth PMOS transistor MP6 are connected to the gate of the eighth NMOS transistor MN8 electrode and drain, the gate of the seventh NMOS transistor MN7, the gate of the sixth NMOS transistor MN6, the source of the eighth NMOS transistor MN8 is connected to the drain and the substrate of the seventh PMOS transistor MP7, the seventh PMOS transistor MP7 The gate and the source are grounded; the source of the sixth NMOS transistor MN6 is connected to the drain of the sixth NMOS transistor MN6; the source of the seventh NMOS transistor MN7, the gate of the ninth NMOS transistor MN9, and the eighth PMOS transistor MP8 The drain of the eighth PMOS transistor MP8 is connected to output the MID signal; the gate and source of the eighth PMOS transistor MP8 are connected to the ground; the substrate of the eighth PMOS transistor MP8 is connected to the drain of the ninth PMOS transistor MP9, and the gate of the ninth PMOS transistor MP9 is grounded. The substrate and source of the ninth PMOS transistor MP9 are connected to the first power supply VDD1. The circuits not illustrated are powered by the power supply VDD1.

本发明的与现有技术相比的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:

(1)本发明提出了一种可实现输出高电平转换的输出驱动电路。利用可变驱动信号MID,将所需高压器件全部替换成普通工作器件。与背景技术中的高压器件技术相比,工艺兼容性提高,实现难度小,免去了高压器件版图面积大的问题,减小了电路功耗开销。(1) The present invention proposes an output driving circuit that can realize output high-level switching. By using the variable driving signal MID, all required high-voltage devices are replaced with ordinary working devices. Compared with the high-voltage device technology in the background art, the process compatibility is improved, the implementation difficulty is small, the problem of large layout area of the high-voltage device is eliminated, and the circuit power consumption cost is reduced.

(2)本发明提出的一种可实现输出高电平转换的输出驱动电路,利用可变驱动信号MID,使得输出端不仅可以有效升压,还可实现相等电平转移的功能,提高了输出端口输出电平的灵活性。(2) The present invention proposes an output drive circuit that can realize output high-level conversion. The variable drive signal MID is used to make the output end not only effectively boost, but also to realize the function of equal level shift, which improves the output Port output level flexibility.

(3)本发明提出的一种可实现输出高电平转换的输出驱动电路,利用预驱动P管反馈模块,快速拉低驱动信号,加速输出驱动。(3) The present invention proposes an output drive circuit that can realize output high-level conversion, uses the pre-drive P-tube feedback module, quickly pulls down the drive signal, and accelerates the output drive.

(4)本发明提出的一种可实现输出高电平转换的输出驱动电路,增加输出隔离MN4和MP3,有效地隔离电源地引入的噪声干扰,提高了输出接口耐压特性和可靠性。(4) The present invention proposes an output drive circuit that can realize output high-level conversion, increases the output isolation MN4 and MP3, effectively isolates the noise interference introduced by the power supply, and improves the withstand voltage characteristics and reliability of the output interface.

附图说明Description of drawings

图1为本发明典型CMOS输出驱动电路原理框图;Fig. 1 is a schematic block diagram of a typical CMOS output drive circuit of the present invention;

图2为本发明带电平移位的输出驱动电路原理框图;Fig. 2 is the functional block diagram of the output drive circuit with level shift of the present invention;

图3为本发明用于实现无高压器件的低输入电平转高输出电平的电路图;Fig. 3 is the circuit diagram that the present invention is used to realize the conversion of low input level to high output level without high voltage device;

图4的(a)为本发明用于实现第一输出缓冲器BUF1的电路原理图,(b)用于实现第二输出缓冲器BUF2的电路原理图;(a) of Fig. 4 is the circuit principle diagram for realizing the first output buffer BUF1 of the present invention, (b) is used for realizing the circuit principle diagram of the second output buffer BUF2;

图5的(a)为本发明用于实现上拉P管预输出电平移位缓冲电路SHIFT的电路原理图,(b)辅助电平移位电路的反相器INV8原理图,(c)辅助电平移位电路的反相器INV9原理图。(a) of Fig. 5 is the circuit schematic diagram that the present invention is used to realize the pull-up P tube pre-output level shift buffer circuit SHIFT, (b) the inverter INV8 schematic diagram of the auxiliary level shift circuit, (c) the auxiliary circuit Schematic diagram of the inverter INV9 of the translation bit circuit.

图6为本发明用于产生可变驱动信号MID的偏置电路原理图。FIG. 6 is a schematic diagram of a bias circuit for generating a variable driving signal MID according to the present invention.

具体实施方式Detailed ways

下面结合附图和具体实施例对本发明进行解释说明。The present invention will be explained below in conjunction with the accompanying drawings and specific embodiments.

如图3所示,本发明提出了一种可实现输出高电平转换的输出驱动电路,包括第一电源VDD1,第二电源VDD2、输出控制电路T、上拉P管预驱动电路、上拉输出驱动PMOS管MP2、下拉输出驱动管MN5、输出隔离电路、下拉N管预驱动电路、可变驱动信号MID发生电路、下拉预驱动电路。As shown in Figure 3, the present invention proposes an output drive circuit that can realize output high-level conversion, including a first power supply VDD1, a second power supply VDD2, an output control circuit T, a pull-up P tube pre-driver circuit, a pull-up Output drive PMOS tube MP2, pull-down output drive tube MN5, output isolation circuit, pull-down N tube pre-drive circuit, variable drive signal MID generation circuit, pull-down pre-drive circuit.

如图3所示,输出控制电路T为一个三态控制电路,包括数据信号输入端A、使能信号输入端S、第一输出端Z1、第二输出端Z2;As shown in Figure 3, the output control circuit T is a three-state control circuit, including a data signal input terminal A, an enable signal input terminal S, a first output terminal Z1, and a second output terminal Z2;

如图3所示,上拉P管预驱动电路包括第一输出缓冲器BUF1、电平移位缓冲电路SHIFT、第一反相器INV1、第二反相器INV2、第一预驱动PMOS管MP1、第一预驱动NMOS管MN1、输出P管反馈电路;As shown in Figure 3, the pull-up P transistor pre-drive circuit includes a first output buffer BUF1, a level shift buffer circuit SHIFT, a first inverter INV1, a second inverter INV2, a first pre-drive PMOS transistor MP1, The first pre-driver NMOS tube MN1, the output P tube feedback circuit;

如图4(a)所示,第一输出缓冲器BUF1包括第十反相器INV10、第十一反相器INV11;As shown in FIG. 4(a), the first output buffer BUF1 includes a tenth inverter INV10 and an eleventh inverter INV11;

如图5所示,电平移位缓冲电路SHIFT包括第十PMOS管MP10、第十一PMOS管MP11、第十NMOS管MN10、第十一NMOS管MN11、第八反相器INV8、第九反相器INV9;第八反相器INV8包括第十二PMOS管MP12、第十二NMOS管MN12;第九反相器INV9包括第十三PMOS管MP13、第十三NMOS管MN13;As shown in FIG. 5, the level shift buffer circuit SHIFT includes a tenth PMOS transistor MP10, an eleventh PMOS transistor MP11, a tenth NMOS transistor MN10, an eleventh NMOS transistor MN11, an eighth inverter INV8, a ninth inverter Inverter INV9; the eighth inverter INV8 includes a twelfth PMOS transistor MP12 and a twelfth NMOS transistor MN12; the ninth inverter INV9 includes a thirteenth PMOS transistor MP13 and a thirteenth NMOS transistor MN13;

如图3所示,输出P管反馈电路包括第二预驱动NMOS管MN2、第三预驱动NMOS管MN3、第三反相器INV3、第四反相器INV4;As shown in FIG. 3 , the output P-tube feedback circuit includes a second pre-drive NMOS transistor MN2, a third pre-drive NMOS transistor MN3, a third inverter INV3, and a fourth inverter INV4;

如图6所示,可变驱动信号MID发生电路包括第四PMOS管MP4、第五PMOS管MP5、第六PMOS管MP6、第七PMOS管MP7、第八PMOS管MP8、第九PMOS管MP9、第六NMOS管MN6、第七NMOS管MN7、第八NMOS管MN8、第九NMOS管MN9;As shown in Figure 6, the variable drive signal MID generation circuit includes a fourth PMOS transistor MP4, a fifth PMOS transistor MP5, a sixth PMOS transistor MP6, a seventh PMOS transistor MP7, an eighth PMOS transistor MP8, a ninth PMOS transistor MP9, The sixth NMOS transistor MN6, the seventh NMOS transistor MN7, the eighth NMOS transistor MN8, and the ninth NMOS transistor MN9;

如图3所示,下拉预驱动电路包括第二输出缓冲器BUF2、第五反相器INV5、第六反相器INV6、第七反相器INV7;As shown in FIG. 3, the pull-down pre-driver circuit includes a second output buffer BUF2, a fifth inverter INV5, a sixth inverter INV6, and a seventh inverter INV7;

如图4(b)所示,第二输出缓冲器BUF2包括第十二反相器INV12、第十三反相器INV13;As shown in FIG. 4(b), the second output buffer BUF2 includes a twelfth inverter INV12 and a thirteenth inverter INV13;

如图3所示,输出隔离电路包括第三驱动PMOS管MP3、第四驱动NMOS管MN4;As shown in FIG. 3, the output isolation circuit includes a third driving PMOS transistor MP3 and a fourth driving NMOS transistor MN4;

如图3所示,输出控制电路T的输入端A接收数据信号D,使能信号输入端S接收使能信号OEN,使能信号OEN控制输出控制电路T,从第一输出端Z1、第二输出端Z2输出两路数据信号。As shown in Figure 3, the input terminal A of the output control circuit T receives the data signal D, the enable signal input terminal S receives the enable signal OEN, and the enable signal OEN controls the output control circuit T, from the first output terminal Z1, the second The output terminal Z2 outputs two data signals.

如图4所示,第一输出端Z1连接第十反相器INV10的输入端、第十反相器INV10的输出端连接第十一反相器INV11的输入端,第十一反相器INV11的输出端的第一路连接第十二PMOS管MP12的栅极和第十二NMOS管MN12的栅极,第十一反相器INV11的输出端的第二路连接第一反相器INV1的输入端,第一反相器INV1的输出端连接第二反相器INV2的输入端,第二反相器INV2的输出端连接第一预驱动NMOS管MN1的栅极;As shown in Figure 4, the first output terminal Z1 is connected to the input terminal of the tenth inverter INV10, the output terminal of the tenth inverter INV10 is connected to the input terminal of the eleventh inverter INV11, and the eleventh inverter INV11 The first path of the output end of the inverter is connected to the gate of the twelfth PMOS transistor MP12 and the gate of the twelfth NMOS transistor MN12, and the second path of the output end of the eleventh inverter INV11 is connected to the input end of the first inverter INV1 , the output terminal of the first inverter INV1 is connected to the input terminal of the second inverter INV2, and the output terminal of the second inverter INV2 is connected to the gate of the first pre-driving NMOS transistor MN1;

如图5所示,第十二PMOS管MP12的源级和衬底连接第一电源VDD1、第十二PMOS管MP12的漏极和第十二NMOS管MN12的漏极连接第十三PMOS管MP13的栅极和第十三NMOS管MN13的栅极,第十二NMOS管MN12的源级和第十三NMOS管MN13的源级输入MID信号;第十三PMOS管MP13的源级和衬底连接第一电源VDD1,第十三PMOS管MP13的漏极和第十三NMOS管MN13的漏极连接第十一NMOS管MN11的栅极;第十一NMOS管MN11的漏极第一路连接第十PMOS管MP10的栅极,第十一NMOS管MN11的漏极第二路连接第十一PMOS管MP11的漏极;第十一NMOS管MN11的源级和第十NMOS管MN10的源级输入MID信号;第十PMOS管MP10的源级和衬底以及第十一PMOS管MP11的源级和衬底连接第二电源VDD2;第十一PMOS管MP11的栅极、第十PMOS管MP10的漏极和第十NMOS管MN10的漏极同时连接第一预驱动PMOS管MP1的栅极;As shown in Figure 5, the source and substrate of the twelfth PMOS transistor MP12 are connected to the first power supply VDD1, the drain of the twelfth PMOS transistor MP12 and the drain of the twelfth NMOS transistor MN12 are connected to the thirteenth PMOS transistor MP13 and the gate of the thirteenth NMOS transistor MN13, the source of the twelfth NMOS transistor MN12 and the source of the thirteenth NMOS transistor MN13 input the MID signal; the source of the thirteenth PMOS transistor MP13 is connected to the substrate The first power supply VDD1, the drain of the thirteenth PMOS transistor MP13 and the drain of the thirteenth NMOS transistor MN13 are connected to the gate of the eleventh NMOS transistor MN11; the drain of the eleventh NMOS transistor MN11 is first connected to the gate of the tenth The gate of the PMOS transistor MP10 and the drain of the eleventh NMOS transistor MN11 are connected to the drain of the eleventh PMOS transistor MP11 in the second way; the source of the eleventh NMOS transistor MN11 and the source of the tenth NMOS transistor MN10 are input to the MID Signal; the source and substrate of the tenth PMOS transistor MP10 and the source and substrate of the eleventh PMOS transistor MP11 are connected to the second power supply VDD2; the gate of the eleventh PMOS transistor MP11 and the drain of the tenth PMOS transistor MP10 and the drain of the tenth NMOS transistor MN10 are simultaneously connected to the gate of the first pre-drive PMOS transistor MP1;

如图3所示,第一预驱动PMOS管MP1的衬底和源级连接第二电源VDD2,第一预驱动PMOS管MP1的漏极和第一预驱动NMOS管MN1的漏极的第一路连接第四预驱动PMOS管MP4的栅极,第一预驱动PMOS管MP1的漏极和第一预驱动NMOS管MN1的漏极的第二路连接第三反相器INV3的输入端,第一预驱动NMOS管MN1的漏极的输出预驱动上拉信号LP;第三反相器INV3的输出端第一路连接第三NMOS管MN3的栅极,第三反相器INV3的输出端第二路连接第四反相器INV4的输入端,第四反相器INV4的输出端连接第二NMOS管MN2的栅极,第二NMOS管MN2的源级接地,第三NMOS管MN3的源级输入MID信号;第二NMOS管MN2的漏极和第三NMOS管MN3的漏极连接第一预驱动NMOS管MN1的源级;As shown in FIG. 3 , the substrate and source of the first pre-driving PMOS transistor MP1 are connected to the second power supply VDD2, and the first path between the drain of the first pre-driving PMOS transistor MP1 and the drain of the first pre-driving NMOS transistor MN1 Connect the gate of the fourth pre-driving PMOS transistor MP4, the second path connecting the drain of the first pre-driving PMOS transistor MP1 and the drain of the first pre-driving NMOS transistor MN1 to the input terminal of the third inverter INV3, the first The output of pre-driving the drain of the NMOS transistor MN1 pre-drives the pull-up signal LP; the first output terminal of the third inverter INV3 is connected to the gate of the third NMOS transistor MN3, and the second output terminal of the third inverter INV3 The road is connected to the input end of the fourth inverter INV4, the output end of the fourth inverter INV4 is connected to the gate of the second NMOS transistor MN2, the source of the second NMOS transistor MN2 is grounded, and the source of the third NMOS transistor MN3 is input MID signal; the drain of the second NMOS transistor MN2 and the drain of the third NMOS transistor MN3 are connected to the source of the first pre-drive NMOS transistor MN1;

如图3所示,第二PMOS管MP2的源级和衬底以及第三驱动PMOS管MP3的衬底连接第二电源VDD2,第二PMOS管MP2的漏极连接第三驱动PMOS管MP3的源级,第三驱动PMOS管MP3的栅极输入MID信号,第三驱动PMOS管MP3的漏极和第四驱动NMOS管MN4的漏极作为该可实现输出高电平转换的输出驱动电路的输出;第四驱动NMOS管MN4的栅极连接第一电源VDD1,第四驱动NMOS管MN4的源级连接第七驱动NMOS管MN7的漏极,第七驱动NMOS管MN7的源级接地;第七驱动NMOS管MN7的栅极连接第七反相器INV7的输出端,第七反相器INV7的输入端连接第六反相器INV6的输出端,第六反相器INV6的输入端连接第五反相器INV5的输出端,第五反相器INV5的输入端连接第十三反相器INV13的输出端,第十三反相器INV13的输入端连接第十二反相器INV12的输出端,第十二反相器INV12的输入端连接输出控制电路T的第二输出端Z2;As shown in Figure 3, the source and substrate of the second PMOS transistor MP2 and the substrate of the third driving PMOS transistor MP3 are connected to the second power supply VDD2, and the drain of the second PMOS transistor MP2 is connected to the source of the third driving PMOS transistor MP3 stage, the gate of the third driving PMOS transistor MP3 inputs the MID signal, the drain of the third driving PMOS transistor MP3 and the drain of the fourth driving NMOS transistor MN4 are used as the output of the output driving circuit that can realize output high level conversion; The gate of the fourth driving NMOS transistor MN4 is connected to the first power supply VDD1, the source of the fourth driving NMOS transistor MN4 is connected to the drain of the seventh driving NMOS transistor MN7, and the source of the seventh driving NMOS transistor MN7 is grounded; the seventh driving NMOS transistor MN7 The gate of the tube MN7 is connected to the output terminal of the seventh inverter INV7, the input terminal of the seventh inverter INV7 is connected to the output terminal of the sixth inverter INV6, and the input terminal of the sixth inverter INV6 is connected to the fifth inverter The output end of the inverter INV5, the input end of the fifth inverter INV5 is connected to the output end of the thirteenth inverter INV13, the input end of the thirteenth inverter INV13 is connected to the output end of the twelfth inverter INV12, and the input end of the thirteenth inverter INV13 is connected. The input terminal of the twelve inverter INV12 is connected to the second output terminal Z2 of the output control circuit T;

如图3所示,第四PMOS管MP4的源级和衬底以及第三PMOS管MP3的衬底连接第二电源VDD2,第四PMOS管MP4的栅极和第四PMOS管MP4的漏极连接第五PMOS管MP5的漏极,第五PMOS管MP5的栅极接地,第五PMOS管MP5的漏极连接第六PMOS管MP6的源级,第六PMOS管MP6的栅极和漏极连接第八NMOS管MN8的栅极和漏极、第七NMOS管MN7的栅极、第六NMOS管MN6的栅极,第八NMOS管MN8的源级连接第七PMOS管MP7的漏极和衬底,第七PMOS管MP7的栅极和源级接地;第六NMOS管MN6的源级和第六NMOS管MN6的漏极相接;第七NMOS管MN7的源级、第九NMOS管MN9的栅极、第八PMOS管MP8的漏极连接并输出MID信号;第八PMOS管MP8的栅极和源级接地;第八PMOS管MP8的衬底连接第九PMOS管MP9的漏极,第九PMOS管MP9的栅极接地,第九PMOS管MP9的衬底和源级连接第一电源VDD1。As shown in FIG. 3, the source and substrate of the fourth PMOS transistor MP4 and the substrate of the third PMOS transistor MP3 are connected to the second power supply VDD2, and the gate of the fourth PMOS transistor MP4 is connected to the drain of the fourth PMOS transistor MP4. The drain of the fifth PMOS transistor MP5, the gate of the fifth PMOS transistor MP5 are grounded, the drain of the fifth PMOS transistor MP5 is connected to the source of the sixth PMOS transistor MP6, and the gate and drain of the sixth PMOS transistor MP6 are connected to the first The gate and drain of the eighth NMOS transistor MN8, the gate of the seventh NMOS transistor MN7, the gate of the sixth NMOS transistor MN6, the source of the eighth NMOS transistor MN8 is connected to the drain and the substrate of the seventh PMOS transistor MP7, The gate and source of the seventh PMOS transistor MP7 are grounded; the source of the sixth NMOS transistor MN6 is connected to the drain of the sixth NMOS transistor MN6; the source of the seventh NMOS transistor MN7 and the gate of the ninth NMOS transistor MN9 1. The drain of the eighth PMOS transistor MP8 is connected to output the MID signal; the gate and source of the eighth PMOS transistor MP8 are grounded; the substrate of the eighth PMOS transistor MP8 is connected to the drain of the ninth PMOS transistor MP9, and the ninth PMOS transistor MP8 The gate of MP9 is grounded, and the substrate and source of the ninth PMOS transistor MP9 are connected to the first power supply VDD1.

实例中VDD1为2.5V,VDD2为可选的3.3V或2.5V,电路有两种工作状态:高阻态和正常工作状态。In the example, VDD1 is 2.5V, VDD2 is optional 3.3V or 2.5V, and the circuit has two working states: high-impedance state and normal working state.

(一)输出电路在高阻工作状态:(1) The output circuit is in a high-impedance working state:

输出控制端OEN为高电平电压2.5V时,输出控制电路T的输出信号Z1和Z2分别输出低电平电压0V和高电平电压2.5V,Z1经BUF1驱动电平移位缓冲电路SHIFT,输出低电平电压MID,驱动PMOS管MP1导通,上拉驱动信号LP被拉至可选的高电平3.3V或2.5V,使得上拉驱动管PMOS管MP2关断。同时,Z2经BUF2和INV5,INV6,INV7组成的反相器链得到LN输出低电平电压0V,下拉驱动管MN5导通关断。电路输出表现为高阻态。When the output control terminal OEN is a high-level voltage of 2.5V, the output signals Z1 and Z2 of the output control circuit T output a low-level voltage of 0V and a high-level voltage of 2.5V respectively, and Z1 drives the level shift buffer circuit SHIFT through BUF1 to output The low-level voltage MID drives the PMOS transistor MP1 to turn on, and the pull-up drive signal LP is pulled to an optional high level of 3.3V or 2.5V, so that the pull-up drive transistor PMOS transistor MP2 is turned off. At the same time, Z2 obtains the LN output low-level voltage 0V through the inverter chain composed of BUF2 and INV5, INV6, and INV7, and the pull-down drive tube MN5 is turned on and off. The output of the circuit behaves as a high-impedance state.

(二)输出电路在正常工作状态:(2) The output circuit is in normal working condition:

输出控制端OEN为低电平电压0V时,输出控制电路T正常输出信号,Z1和Z2响应输入信号D。When the output control terminal OEN is a low-level voltage of 0V, the output control circuit T normally outputs signals, and Z1 and Z2 respond to the input signal D.

(1)当信号D输入低电平电压0V时,Z1经BUF1驱动电平移位缓冲电路SHIFT,钳位输出低电平电压307,值为MID。低压MID信号驱动PMOS管MP1导通,上拉驱动信号LP被拉至高电平3.3V/2.5V,PMOS管MP2关断。此时,由反相器INV1和INV2组成反相器链输出低电平电压0V,NMOS管MN1关闭。并且,上拉驱动信号LP驱动的反相器INV3,INV4输出302高电平电压2.5V,使得NMOS管MN2导通,节点303处的寄生电容电荷通过MN2快速放电至低电平电压0V。同时低电平电压Z2经BUF2和反相器INV5,INV6,INV7组成的反相器链后得到下拉驱动信号LN,此时,LN为高电平电压2.5V,下拉驱动NMOS管MN5导通,输出PAD被拉至低电平电压0V。(1) When the signal D inputs a low-level voltage of 0V, Z1 drives the level-shift buffer circuit SHIFT through BUF1, and clamps and outputs a low-level voltage 307, which is MID. The low-voltage MID signal drives the PMOS transistor MP1 to turn on, the pull-up drive signal LP is pulled to a high level of 3.3V/2.5V, and the PMOS transistor MP2 is turned off. At this time, the inverter chain composed of inverters INV1 and INV2 outputs a low-level voltage of 0V, and the NMOS transistor MN1 is turned off. Moreover, the inverters INV3 and INV4 driven by the pull-up drive signal LP output 302 a high-level voltage of 2.5V, making the NMOS transistor MN2 turn on, and the parasitic capacitor charge at the node 303 is quickly discharged to a low-level voltage of 0V through MN2. At the same time, the low-level voltage Z2 passes through the inverter chain composed of BUF2 and inverters INV5, INV6, and INV7 to obtain the pull-down drive signal LN. At this time, LN is a high-level voltage of 2.5V, and the pull-down drive NMOS transistor MN5 is turned on. The output PAD is pulled to a low level voltage of 0V.

(2)当信号D输入高电平电压2.5V时,Z1,Z2响应输出高电平电压2.5V。Z2经BUF2和INV5,INV6,INV7组成的反相器链得到低电平电压0V的下拉驱动信号LN,下拉驱动管MN5关断。同时,Z1经BUF1后驱动电平移位电路SHIFT,得到输出高电平电压3.3V/2.5V,使得预驱动PMOS管MP1关断。此时,反相器链INV1和INV2输出高电平电压2.5V,使得NMOS管MN1导通,此时,NMOS管MN2还未及时关断,节点303和节点304以及NMOS管MN2上的寄生电荷通过NMOS管MN2放电。随着寄生电荷逐渐减少,上拉驱动信号LP开始下降,直到低于反相器INV3的高阈值电压时,反相器INV3翻转,使得节点305输出高电平电压2.5V,进而使得NMOS管MN3导通。同时,INV4输出低电平电压使得NMOS管MN2关断。节点304上的寄生电荷利用NMOS管MN1和NMOS管MN3进一步加速放电,直到上拉驱动信号LP被拉低至电平电压MID,该电压使得驱动管MP2导通。PAD输出高电平电压3.3V/2.5V。至此,PAD完成了2.5V到3.3/2.5V的电平升压转换。(2) When the signal D inputs a high-level voltage of 2.5V, Z1 and Z2 output a high-level voltage of 2.5V in response. Z2 obtains a pull-down drive signal LN with a low-level voltage of 0V through the inverter chain composed of BUF2 and INV5, INV6, and INV7, and the pull-down drive tube MN5 is turned off. At the same time, Z1 drives the level shift circuit SHIFT after passing through BUF1 to obtain an output high-level voltage of 3.3V/2.5V, so that the pre-drive PMOS transistor MP1 is turned off. At this time, the inverter chains INV1 and INV2 output a high-level voltage of 2.5V, so that the NMOS transistor MN1 is turned on. At this time, the NMOS transistor MN2 has not been turned off in time, and the parasitic charges on the nodes 303 and 304 and the NMOS transistor MN2 Discharge through the NMOS tube MN2. As the parasitic charge gradually decreases, the pull-up drive signal LP begins to drop until it is lower than the high threshold voltage of the inverter INV3, the inverter INV3 flips, so that the node 305 outputs a high-level voltage of 2.5V, and then the NMOS transistor MN3 conduction. At the same time, INV4 outputs a low-level voltage to turn off the NMOS transistor MN2. The parasitic charge on the node 304 is further accelerated to be discharged by the NMOS transistor MN1 and the NMOS transistor MN3 until the pull-up driving signal LP is pulled down to the level voltage MID, which makes the driving transistor MP2 turn on. The PAD outputs a high-level voltage of 3.3V/2.5V. So far, the PAD has completed the level boost conversion from 2.5V to 3.3/2.5V.

需要说明的情况有以下几点:The following points need to be explained:

(1)电平移位电路SHIFT电路的说明。电平移位电路SHIFT如图5(a)所示,在本发明中作为一个输出缓冲的电平移位电路。当A输入0V时,经过反相器INV8和INV9,分别输出电平为2.5V信号501和可变驱动低电平MID信号。INV8和INV9的电路原理如图5(b)和图5(c),由PMOS管MP4和NMOS管MN5组成的反相器,高输出电平为2.5V,低输出电平至MID。此时,NMOS管MN11关断,NMOS管MN10导通,PMOS管MP11导通,交叉锁存使得输出OUT被钳位至低电平电压MID。当A输入为高电平电压2.5V时,反相器INV8输出信号501为低电平电压MID,MN10关断,INV9输出高电平电压2.5V,MN11导通,使得节点502拉低至低电平电压MID,同时PMOS管MP10导通,OUT交叉锁存输出高电平电压3.3V。电平移位缓冲器SHIFT,利用MID信号,在无需高压器件的情况下,获得了可选的高电平3.3V或2.5V输出。(1) Description of the level shift circuit SHIFT circuit. The level shift circuit SHIFT is shown in Fig. 5(a), which is used as an output buffer level shift circuit in the present invention. When A inputs 0V, the inverters INV8 and INV9 respectively output a signal 501 with a level of 2.5V and a variable driving low level MID signal. The circuit principles of INV8 and INV9 are shown in Figure 5(b) and Figure 5(c). The inverter composed of PMOS transistor MP4 and NMOS transistor MN5 has a high output level of 2.5V and a low output level of MID. At this time, the NMOS transistor MN11 is turned off, the NMOS transistor MN10 is turned on, and the PMOS transistor MP11 is turned on, and the cross latch makes the output OUT clamped to the low level voltage MID. When A input is a high-level voltage of 2.5V, the output signal 501 of the inverter INV8 is a low-level voltage MID, MN10 is turned off, INV9 outputs a high-level voltage of 2.5V, and MN11 is turned on, so that the node 502 is pulled down to low Level voltage MID, at the same time the PMOS transistor MP10 is turned on, and the OUT cross latch outputs a high level voltage of 3.3V. The level shift buffer SHIFT uses the MID signal to obtain an optional high-level 3.3V or 2.5V output without the need for high-voltage devices.

(2)可变驱动信号MID信号。MID信号设计为一个中低电平电压值,如图6所示,MID信号接在PMOS驱动管MP2的栅端,作为输出PAD的上拉P管驱动信号LP。如图6(a)所示通常将该电压设计至0V,当使其与电源之间的差值Δ1=0V-2.5V。即是说,使得输出管的VGS=-2.5V时,满足快速输出驱动的要求。要实现升压功能,电源电压必须由2.5V升到3.3V,即是说,栅源之间的电压差升至Δ2=0V-3.3V。按照上述设计的要求,在0.25um工艺条件下,为保证晶体管不会因过压而导致击穿,MP2等必须采用高压器件,这将增加工艺设计难度,不利于CMOS工艺的兼容。本发明中,仍然采用普通工艺的晶体管MP2,提高MID的电压,使得MP2管栅源两端的电压差VGS=Δ3=MID-3.3V约等于-2.5V,以保证在不采用高压器件的情况下,MP2管仍能正常有效地工作。通常,栅源电压差VGS=Δ4=MID-2.5V的绝对值大于PMOS管的阈值的绝对值|Vth,P|,则不会影响输出驱动管的正常工作。由此,可以推出MID的电压范围是大于0.8V,小于2.5-|Vth,p|。本发明中给出了一种MID信号的实现电路,如图6(b)所示。电源电压接3.3V/2.5V,PMOS管MP4,MP6,MP7采用二极管连接作电阻,W/L(栅宽与栅长)的比为1。PMOS管MP5为常通管,NMOS管MN8也采用二极管连接,设计时W/L不易太大。具体的电压值约为VGS,8加上一个PMOS管MP7的过驱动电压。该电压为后级NMOS管MN7提供偏置。PMOS管MP9单独为PMOS管MP8的衬底偏压供电,PMOS管MP8设计为二极管连接的小电阻。节点601和602,分别接NMOS管作MOS电容的MN6和MN9,起到滤波的效果,抑制主电路受信号波动回踢的信号噪声。此设计有效保证了节点601和节点602两边支路的对称性和信号的准确性。根据VDD2选择性的接入3.3V或2.5V,该电路可输出约0.8V或0.5V的低电平MID信号,达到预期效果。(2) Variable drive signal MID signal. The MID signal is designed as a low-medium level voltage value, as shown in Figure 6, the MID signal is connected to the gate terminal of the PMOS driving transistor MP2 as the pull-up P transistor driving signal LP for the output PAD. As shown in FIG. 6( a ), the voltage is usually designed to be 0V, when the difference between it and the power supply is Δ1=0V-2.5V. That is to say, when the VGS of the output transistor=-2.5V, the requirement of fast output driving is satisfied. To realize the boost function, the power supply voltage must be raised from 2.5V to 3.3V, that is to say, the voltage difference between the gate and the source rises to Δ 2 =0V-3.3V. According to the above design requirements, under the 0.25um process condition, in order to ensure that the transistor will not break down due to overvoltage, MP2 must use high-voltage devices, which will increase the difficulty of process design and is not conducive to the compatibility of CMOS process. In the present invention, still adopt the transistor MP2 of common process, improve the voltage of MID, make the voltage difference VGS=Δ 3 =MID-3.3V of MP2 tube gate source two ends be equal to-2.5V approximately, to guarantee not adopting the situation of high-voltage device Under this condition, the MP2 tube can still work normally and effectively. Usually, the absolute value of the gate-source voltage difference VGS=Δ 4 =MID-2.5V is greater than the absolute value |V th,P | of the threshold of the PMOS transistor, which will not affect the normal operation of the output drive transistor. From this, it can be deduced that the voltage range of the MID is greater than 0.8V and less than 2.5-|V th,p |. The present invention provides a realization circuit of MID signal, as shown in Fig. 6(b). The power supply voltage is connected to 3.3V/2.5V, and the PMOS tubes MP4, MP6, and MP7 are connected by diodes as resistors, and the ratio of W/L (gate width to gate length) is 1. The PMOS tube MP5 is a normally-through tube, and the NMOS tube MN8 is also connected by a diode, so the W/L is not too large during design. The specific voltage value is about VGS, 8 plus the overdrive voltage of a PMOS transistor MP7. This voltage provides a bias for the subsequent NMOS transistor MN7. The PMOS transistor MP9 alone supplies power for the substrate bias of the PMOS transistor MP8, and the PMOS transistor MP8 is designed as a small resistor connected by a diode. Nodes 601 and 602 are respectively connected to NMOS transistors as MN6 and MN9 of MOS capacitors, which have the effect of filtering and suppress the signal noise of the main circuit kicked back by signal fluctuations. This design effectively guarantees the symmetry of the branches on both sides of the node 601 and the node 602 and the accuracy of the signal. According to the selective access of VDD2 to 3.3V or 2.5V, the circuit can output a low-level MID signal of about 0.8V or 0.5V to achieve the desired effect.

(3)反馈环路。传统的上拉预驱动电路中,不带反馈环路,如图1所示,仅靠单管MN01放电,因此,无法快速有效地对上拉驱动信号LP进行放电。本发明中,增加的反馈模块可加速LP信号的放电。结合实例进一步说明,由于采用了可变驱动电压MID,当VDD2接3.3V电压时,PMOS管MP2上栅源电压差VGS=Δ3=0.8-3.3V≈-2.5V,上拉输出晶体管MP2栅极输入范围增大,此时,无需反馈模块仍可快速驱动后级负载。但当VDD2接2.5V电压时,PMOS管MP4上栅源电压差的绝对值|VGS|=|Δ3|=|0.5-2.5V|<2.5V。此时,利用反馈电路快速放电至低电平电压,有效地驱动后级负载的同时,加速了对后级负载的驱动,使得上升延迟时间减小。注意,MN2设计为宽小于长的倒比管,起到电阻的作用。(3) Feedback loop. In the traditional pull-up pre-driver circuit, there is no feedback loop, as shown in Figure 1, only the single transistor MN01 is used for discharge, so the pull-up drive signal LP cannot be discharged quickly and effectively. In the present invention, the added feedback module can accelerate the discharge of the LP signal. To further illustrate with an example, since the variable driving voltage MID is adopted, when VDD2 is connected to 3.3V voltage, the gate-source voltage difference VGS=Δ 3 =0.8-3.3V≈-2.5V on the PMOS transistor MP2, the pull-up output transistor MP2 gate The pole input range increases, and at this time, it can quickly drive the post-stage load without a feedback module. But when VDD2 is connected to 2.5V voltage, the absolute value of the gate-source voltage difference on PMOS transistor MP4 |VGS|=|Δ 3 |=|0.5-2.5V|<2.5V. At this time, the feedback circuit is used to quickly discharge to a low-level voltage to effectively drive the subsequent load, and at the same time accelerate the driving of the subsequent load, so that the rising delay time is reduced. Note that MN2 is designed as an inverting tube with a width smaller than its length, which acts as a resistor.

(4)反相器个数说明。如图所示,Z1支路上的NMOS管MN1可看作一级反相器,因此,从ZI的输出端至驱动管MP2的栅极一共经过了五级反向驱动。在设计时,缓冲器BUF1的两个支路的反相器个数应保持一致。Z2支路上由缓冲器BUF2和反相器INV5、INV6、INV7组成的反相器链一共也经过了五级反向驱动。在设计时,才能保持Z1支路与Z2支路的延时一致,使得输出驱动信号的上升沿延时和下降沿延时基本相等。(4) Description of the number of inverters. As shown in the figure, the NMOS transistor MN1 on the Z1 branch can be regarded as a first-stage inverter. Therefore, a total of five stages of reverse driving have been performed from the output terminal of ZI to the gate of the drive transistor MP2. During design, the number of inverters in the two branches of the buffer BUF1 should be consistent. The inverter chain composed of the buffer BUF2 and the inverters INV5, INV6, and INV7 on the Z2 branch also undergoes five stages of reverse driving. In the design, the delay of the Z1 branch and the Z2 branch can be kept consistent, so that the rising edge delay and falling edge delay of the output driving signal are basically equal.

本发明说明书中未作详细描述的内容属本领域专业技术人员的公知技术。虽然结合附图描述了本发明的实施方式,但是本领域普通技术人员可以在所附权利要求的范围内做出各种变形或修改。The content that is not described in detail in the description of the present invention belongs to the well-known technology of those skilled in the art. Although the embodiments of the present invention have been described with reference to the accompanying drawings, various variations or modifications may be made by those skilled in the art within the scope of the appended claims.

Claims (6)

1.一种可实现输出高电平转换的输出驱动电路,其特征在于:包括第一电源VDD1,第二电源VDD2、输出控制电路T、上拉P管预驱动电路、上拉输出驱动PMOS管MP2、下拉输出驱动管MN5、输出隔离电路、下拉N管预驱动电路、可变驱动信号MID发生电路、下拉预驱动电路;1. An output drive circuit that can realize output high-level conversion, characterized in that: it includes a first power supply VDD1, a second power supply VDD2, an output control circuit T, a pull-up P tube pre-driver circuit, and a pull-up output drive PMOS tube MP2, pull-down output drive tube MN5, output isolation circuit, pull-down N tube pre-drive circuit, variable drive signal MID generation circuit, pull-down pre-drive circuit; 输出控制电路T为一个三态控制电路,包括数据信号输入端A、使能信号输入端S、第一输出端Z1、第二输出端Z2;The output control circuit T is a three-state control circuit, including a data signal input terminal A, an enable signal input terminal S, a first output terminal Z1, and a second output terminal Z2; 上拉P管预驱动电路包括第一输出缓冲器BUF1、电平移位缓冲电路SHIFT、第一反相器INV1、第二反相器INV2、第一预驱动PMOS管MP1、第一预驱动NMOS管MN1、输出P管反馈电路;The pull-up P tube pre-driver circuit includes a first output buffer BUF1, a level shift buffer circuit SHIFT, a first inverter INV1, a second inverter INV2, a first pre-drive PMOS transistor MP1, a first pre-drive NMOS transistor MN1, output P tube feedback circuit; 第一输出缓冲器BUF1包括第十反相器INV10、第十一反相器INV11;The first output buffer BUF1 includes a tenth inverter INV10 and an eleventh inverter INV11; 电平移位缓冲电路SHIFT包括第十PMOS管MP10、第十一PMOS管MP11、第十NMOS管MN10、第十一NMOS管MN11、第八反相器INV8、第九反相器INV9;The level shift buffer circuit SHIFT includes a tenth PMOS transistor MP10, an eleventh PMOS transistor MP11, a tenth NMOS transistor MN10, an eleventh NMOS transistor MN11, an eighth inverter INV8, and a ninth inverter INV9; 输出P管反馈电路包括第二预驱动NMOS管MN2、第三预驱动NMOS管MN3、第三反相器INV3、第四反相器INV4;The output P-tube feedback circuit includes a second pre-drive NMOS transistor MN2, a third pre-drive NMOS transistor MN3, a third inverter INV3, and a fourth inverter INV4; 可变驱动信号MID发生电路包括第四PMOS管MP4、第五PMOS管MP5、第六PMOS管MP6、第七PMOS管MP7、第八PMOS管MP8、第九PMOS管MP9、第六NMOS管MN6、第七NMOS管MN7、第八NMOS管MN8、第九NMOS管MN9;The variable driving signal MID generating circuit includes a fourth PMOS transistor MP4, a fifth PMOS transistor MP5, a sixth PMOS transistor MP6, a seventh PMOS transistor MP7, an eighth PMOS transistor MP8, a ninth PMOS transistor MP9, a sixth NMOS transistor MN6, The seventh NMOS transistor MN7, the eighth NMOS transistor MN8, and the ninth NMOS transistor MN9; 下拉预驱动电路包括第二输出缓冲器BUF2、第五反相器INV5、第六反相器INV6、第七反相器INV7;第二输出缓冲器BUF2包括第十二反相器INV12、第十三反相器INV13;The pull-down pre-drive circuit includes a second output buffer BUF2, a fifth inverter INV5, a sixth inverter INV6, and a seventh inverter INV7; the second output buffer BUF2 includes a twelfth inverter INV12, a tenth inverter Three inverters INV13; 输出隔离电路包括第三驱动PMOS管MP3、第四驱动NMOS管MN4;The output isolation circuit includes a third driving PMOS transistor MP3 and a fourth driving NMOS transistor MN4; 输出控制电路T的输入端A接收数据信号D,使能信号输入端S接收使能信号OEN,使能信号OEN控制输出控制电路T,从第一输出端Z1、第二输出端Z2输出两路数据信号;The input terminal A of the output control circuit T receives the data signal D, the enable signal input terminal S receives the enable signal OEN, the enable signal OEN controls the output control circuit T, and outputs two channels from the first output terminal Z1 and the second output terminal Z2 data signal; 第一输出端Z1连接第十反相器INV10的输入端、第十反相器INV10的输出端连接第十一反相器INV11的输入端,第十一反相器INV11的输出端的第一路连接第十二PMOS管MP12的栅极和第十二NMOS管MN12的栅极,第十一反相器INV11的输出端的第二路连接第一反相器INV1的输入端,第一反相器INV1的输出端连接第二反相器INV2的输入端,第二反相器INV2的输出端连接第一预驱动NMOS管MN1的栅极;The first output terminal Z1 is connected to the input terminal of the tenth inverter INV10, the output terminal of the tenth inverter INV10 is connected to the input terminal of the eleventh inverter INV11, and the first channel of the output terminal of the eleventh inverter INV11 The gate of the twelfth PMOS transistor MP12 and the gate of the twelfth NMOS transistor MN12 are connected, the second path of the output terminal of the eleventh inverter INV11 is connected to the input terminal of the first inverter INV1, and the first inverter The output terminal of INV1 is connected to the input terminal of the second inverter INV2, and the output terminal of the second inverter INV2 is connected to the gate of the first pre-driving NMOS transistor MN1; 第八反相器INV8包括第十二PMOS管MP12、第十二NMOS管MN12;The eighth inverter INV8 includes a twelfth PMOS transistor MP12 and a twelfth NMOS transistor MN12; 第九反相器INV9包括第十三PMOS管MP13、第十三NMOS管MN13;The ninth inverter INV9 includes a thirteenth PMOS transistor MP13 and a thirteenth NMOS transistor MN13; 第十二PMOS管MP12的源级和衬底连接第一电源VDD1、第十二PMOS管MP12的漏极和第十二NMOS管MN12的漏极连接第十三PMOS管MP13的栅极和第十三NMOS管MN13的栅极,第十二NMOS管MN12的源级和第十三NMOS管MN13的源级输入MID信号;第十三PMOS管MP13的源级和衬底连接第一电源VDD1,第十三PMOS管MP13的漏极和第十三NMOS管MN13的漏极连接第十一NMOS管MN11的栅极;第十一NMOS管MN11的漏极第一路连接第十PMOS管MP10的栅极,第十一NMOS管MN11的漏极第二路连接第十一PMOS管MP11的漏极;第十一NMOS管MN11的源级和第十NMOS管MN10的源级输入MID信号;第十PMOS管MP10的源级和衬底以及第十一PMOS管MP11的源级和衬底连接第二电源VDD2;第十一PMOS管MP11的栅极、第十PMOS管MP10的漏极和第十NMOS管MN10的漏极同时连接第一预驱动PMOS管MP1的栅极;The source and substrate of the twelfth PMOS transistor MP12 are connected to the first power supply VDD1, the drain of the twelfth PMOS transistor MP12 and the drain of the twelfth NMOS transistor MN12 are connected to the gate of the thirteenth PMOS transistor MP13 and the tenth The gate of the third NMOS transistor MN13, the source of the twelfth NMOS transistor MN12 and the source of the thirteenth NMOS transistor MN13 input the MID signal; the source and substrate of the thirteenth PMOS transistor MP13 are connected to the first power supply VDD1, and the source of the thirteenth NMOS transistor MN13 is connected to the first power supply VDD1. The drain of the thirteenth PMOS transistor MP13 and the drain of the thirteenth NMOS transistor MN13 are connected to the gate of the eleventh NMOS transistor MN11; the drain of the eleventh NMOS transistor MN11 is first connected to the gate of the tenth PMOS transistor MP10 , the drain of the eleventh NMOS transistor MN11 is connected to the drain of the eleventh PMOS transistor MP11 in the second way; the source of the eleventh NMOS transistor MN11 and the source of the tenth NMOS transistor MN10 input the MID signal; the tenth PMOS transistor The source and substrate of MP10 and the source and substrate of the eleventh PMOS transistor MP11 are connected to the second power supply VDD2; the gate of the eleventh PMOS transistor MP11, the drain of the tenth PMOS transistor MP10 and the tenth NMOS transistor MN10 The drain is simultaneously connected to the gate of the first pre-drive PMOS transistor MP1; 第一预驱动PMOS管MP1的衬底和源级连接第二电源VDD2,第一预驱动PMOS管MP1的漏极和第一预驱动NMOS管MN1的漏极的第一路连接第四预驱动PMOS管MP4的栅极,第一预驱动PMOS管MP1的漏极和第一预驱动NMOS管MN1的漏极的第二路连接第三反相器INV3的输入端,第一预驱动NMOS管MN1的漏极的输出预驱动上拉信号LP;第三反相器INV3的输出端第一路连接第三NMOS管MN3的栅极,第三反相器INV3的输出端第二路连接第四反相器INV4的输入端,第四反相器INV4的输出端连接第二NMOS管MN2的栅极,第二NMOS管MN2的源级接地,第三NMOS管MN3的源级输入MID信号;第二NMOS管MN2的漏极和第三NMOS管MN3的漏极连接第一预驱动NMOS管MN1的源级;The substrate and source of the first pre-drive PMOS transistor MP1 are connected to the second power supply VDD2, and the first path between the drain of the first pre-drive PMOS transistor MP1 and the drain of the first pre-drive NMOS transistor MN1 is connected to the fourth pre-drive PMOS The gate of the transistor MP4, the drain of the first pre-drive PMOS transistor MP1 and the drain of the first pre-drive NMOS transistor MN1 are connected to the input terminal of the third inverter INV3, and the first pre-drive NMOS transistor MN1 The output of the drain pre-drives the pull-up signal LP; the first output terminal of the third inverter INV3 is connected to the gate of the third NMOS transistor MN3, and the second output terminal of the third inverter INV3 is connected to the fourth inverter The input end of the inverter INV4, the output end of the fourth inverter INV4 is connected to the gate of the second NMOS transistor MN2, the source level of the second NMOS transistor MN2 is grounded, and the source level of the third NMOS transistor MN3 inputs the MID signal; the second NMOS transistor MN2 The drain of the transistor MN2 and the drain of the third NMOS transistor MN3 are connected to the source of the first pre-driving NMOS transistor MN1; 第二PMOS管MP2的源级和衬底以及第三驱动PMOS管MP3的衬底连接第二电源VDD2,第二PMOS管MP2的漏极连接第三驱动PMOS管MP3的源级,第三驱动PMOS管MP3的栅极输入MID信号,第三驱动PMOS管MP3的漏极和第四驱动NMOS管MN4的漏极作为该可实现输出高电平转换的输出驱动电路的输出;第四驱动NMOS管MN4的栅极连接第一电源VDD1,第四驱动NMOS管MN4的源级连接第七驱动NMOS管MN7的漏极,第七驱动NMOS管MN7的源级接地;第七驱动NMOS管MN7的栅极连接第七反相器INV7的输出端,第七反相器INV7的输入端连接第六反相器INV6的输出端,第六反相器INV6的输入端连接第五反相器INV5的输出端,第五反相器INV5的输入端连接第十三反相器INV13的输出端,第十三反相器INV13的输入端连接第十二反相器INV12的输出端,第十二反相器INV12的输入端连接输出控制电路T的第二输出端Z2;The source and substrate of the second PMOS transistor MP2 and the substrate of the third driving PMOS transistor MP3 are connected to the second power supply VDD2, the drain of the second PMOS transistor MP2 is connected to the source of the third driving PMOS transistor MP3, and the third driving PMOS transistor MP3 The gate of the transistor MP3 inputs the MID signal, and the drain of the third driving PMOS transistor MP3 and the drain of the fourth driving NMOS transistor MN4 are used as the output of the output driving circuit that can realize output high level conversion; the fourth driving NMOS transistor MN4 The gate of the fourth driving NMOS transistor MN4 is connected to the drain of the seventh driving NMOS transistor MN7, the source of the seventh driving NMOS transistor MN7 is grounded; the gate of the seventh driving NMOS transistor MN7 is connected to The output terminal of the seventh inverter INV7, the input terminal of the seventh inverter INV7 is connected to the output terminal of the sixth inverter INV6, the input terminal of the sixth inverter INV6 is connected to the output terminal of the fifth inverter INV5, The input end of the fifth inverter INV5 is connected to the output end of the thirteenth inverter INV13, the input end of the thirteenth inverter INV13 is connected to the output end of the twelfth inverter INV12, and the twelfth inverter INV12 The input terminal is connected to the second output terminal Z2 of the output control circuit T; 第四PMOS管MP4的源级和衬底以及第三PMOS管MP3的衬底连接第二电源VDD2,第四PMOS管MP4的栅极和第四PMOS管MP4的漏极连接第五PMOS管MP5的漏极,第五PMOS管MP5的栅极接地,第五PMOS管MP5的漏极连接第六PMOS管MP6的源级,第六PMOS管MP6的栅极和漏极连接第八NMOS管MN8的栅极和漏极、第七NMOS管MN7的栅极、第六NMOS管MN6的栅极,第八NMOS管MN8的源级连接第七PMOS管MP7的漏极和衬底,第七PMOS管MP7的栅极和源级接地;第六NMOS管MN6的源级和第六NMOS管MN6的漏极相接;第七NMOS管MN7的源级、第九NMOS管MN9的栅极、第八PMOS管MP8的漏极连接并输出MID信号;第八PMOS管MP8的栅极和源级接地;第八PMOS管MP8的衬底连接第九PMOS管MP9的漏极,第九PMOS管MP9的栅极接地,第九PMOS管MP9的衬底和源级连接第一电源VDD1。The source and substrate of the fourth PMOS transistor MP4 and the substrate of the third PMOS transistor MP3 are connected to the second power supply VDD2, the gate of the fourth PMOS transistor MP4 and the drain of the fourth PMOS transistor MP4 are connected to the fifth PMOS transistor MP5 The drain, the gate of the fifth PMOS transistor MP5 is grounded, the drain of the fifth PMOS transistor MP5 is connected to the source of the sixth PMOS transistor MP6, and the gate and drain of the sixth PMOS transistor MP6 are connected to the gate of the eighth NMOS transistor MN8 electrode and drain, the gate of the seventh NMOS transistor MN7, the gate of the sixth NMOS transistor MN6, the source of the eighth NMOS transistor MN8 is connected to the drain and the substrate of the seventh PMOS transistor MP7, the seventh PMOS transistor MP7 The gate and the source are grounded; the source of the sixth NMOS transistor MN6 is connected to the drain of the sixth NMOS transistor MN6; the source of the seventh NMOS transistor MN7, the gate of the ninth NMOS transistor MN9, and the eighth PMOS transistor MP8 The drain of the eighth PMOS transistor MP8 is connected to output the MID signal; the gate and source of the eighth PMOS transistor MP8 are connected to the ground; the substrate of the eighth PMOS transistor MP8 is connected to the drain of the ninth PMOS transistor MP9, and the gate of the ninth PMOS transistor MP9 is grounded. The substrate and source of the ninth PMOS transistor MP9 are connected to the first power supply VDD1. 2.根据权利要求1所述的一种可实现输出高电平转换的输出驱动电路,其特征在于:所述PMOS管MP1、PMOS管MP4均为普通工艺晶体管。2 . The output driving circuit capable of outputting high-level conversion according to claim 1 , wherein the PMOS transistor MP1 and the PMOS transistor MP4 are common process transistors. 3 . 3.根据权利要求1所述的一种可实现输出高电平转换的输出驱动电路,其特征在于:所述第二电源VDD2的电平等于或高于第一电源VDD1的电平。3 . The output driving circuit capable of outputting high-level switching according to claim 1 , wherein the level of the second power supply VDD2 is equal to or higher than the level of the first power supply VDD1 . 4.根据权利要求1所述的一种可实现输出高电平转换的输出驱动电路,其特征在于:所述MID信号的电平的范围大于VDD2-VDD1,且小于VDD1-|Vth, p2|,其中Vth,p2为上拉驱动PMOS管MP2的阈值电压。4. A kind of output driving circuit capable of outputting high-level conversion according to claim 1, characterized in that: the range of the level of the MID signal is greater than VDD2-VDD1, and less than VDD1-|V th, p2 |, where V th, p2 is the threshold voltage of the pull-up drive PMOS transistor MP2. 5.根据权利要求1所述的一种可实现输出高电平转换的输出驱动电路,其特征在于:所述第三反相器INV3和第四反相器INV4,第二NMOS管MN2,第三NMOS管MN3构成的反馈电路,能够形成正反馈结构,快速拉低驱动信号,加速输出驱动。5. An output drive circuit capable of outputting high-level conversion according to claim 1, characterized in that: the third inverter INV3 and the fourth inverter INV4, the second NMOS transistor MN2, the second inverter The feedback circuit composed of three NMOS transistors MN3 can form a positive feedback structure, quickly pull down the drive signal, and accelerate the output drive. 6.根据权利要求1所述的一种可实现输出高电平转换的输出驱动电路,其特征在于:所述第三PMOS管MP3第四NMOS管MN4,有效地隔离电源地引入的噪声干扰,提高了该可实现输出高电平转换的输出驱动电路输出接口的耐压特性和可靠性。6. The output driving circuit capable of outputting high-level conversion according to claim 1, characterized in that: the third PMOS transistor MP3 and the fourth NMOS transistor MN4 effectively isolate the noise interference introduced by the power ground, The withstand voltage characteristics and reliability of the output interface of the output driving circuit capable of outputting high-level conversion are improved.
CN201510050634.2A 2015-01-30 2015-01-30 Output driving circuit capable of realizing output high level conversion Active CN104638887B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510050634.2A CN104638887B (en) 2015-01-30 2015-01-30 Output driving circuit capable of realizing output high level conversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510050634.2A CN104638887B (en) 2015-01-30 2015-01-30 Output driving circuit capable of realizing output high level conversion

Publications (2)

Publication Number Publication Date
CN104638887A true CN104638887A (en) 2015-05-20
CN104638887B CN104638887B (en) 2017-02-22

Family

ID=53217310

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510050634.2A Active CN104638887B (en) 2015-01-30 2015-01-30 Output driving circuit capable of realizing output high level conversion

Country Status (1)

Country Link
CN (1) CN104638887B (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105528322A (en) * 2015-09-01 2016-04-27 北京中电华大电子设计有限责任公司 A hot-swapping-preventing drive-selectable output drive circuit
CN106505988A (en) * 2016-11-10 2017-03-15 中国电子科技集团公司第四十七研究所 Configurable I based on FPGA/O voltage holding circuits
CN107493100A (en) * 2016-06-12 2017-12-19 深圳芯启航科技有限公司 A kind of level translator
CN108206689A (en) * 2016-12-19 2018-06-26 上海安其威微电子科技有限公司 Level conversion driving circuit
CN109245757A (en) * 2018-11-08 2019-01-18 苏州云芯微电子科技有限公司 One kind being based on capacity coupled common mode electrical level conversion circuit
CN109741778A (en) * 2018-12-29 2019-05-10 西安紫光国芯半导体有限公司 A kind of DRAM output driving circuit and its method for reducing electric leakage
CN109818492A (en) * 2019-01-28 2019-05-28 上海华虹宏力半导体制造有限公司 A kind of secondary power supply generation circuit reducing interference
CN110601690A (en) * 2019-10-10 2019-12-20 无锡安趋电子有限公司 Low-working-voltage rapid downlink level shift circuit
CN110729999A (en) * 2016-03-22 2020-01-24 华为技术有限公司 Mode Control Circuits and Devices
CN111404368A (en) * 2020-03-24 2020-07-10 上海华虹宏力半导体制造有限公司 Anti-coupling interference power generation circuit
CN111446948A (en) * 2020-05-12 2020-07-24 河北新华北集成电路有限公司 PMOS drive circuit and drive device
CN111884648A (en) * 2020-06-18 2020-11-03 华南理工大学 Output feedback logic circuit and chip based on unipolar transistor
CN112688682A (en) * 2020-12-25 2021-04-20 上海华力微电子有限公司 Level conversion circuit
CN113395063A (en) * 2020-03-13 2021-09-14 中芯国际集成电路制造(上海)有限公司 Level shift circuit
CN113659813A (en) * 2021-08-12 2021-11-16 广东省大湾区集成电路与系统应用研究院 Driving circuit
CN113852182A (en) * 2021-09-06 2021-12-28 成都锐成芯微科技股份有限公司 Power supply selection circuit with floatable input
CN115664408A (en) * 2022-11-10 2023-01-31 江苏谷泰微电子有限公司 Level shifter with unknown voltage domain
CN115694140A (en) * 2022-12-28 2023-02-03 西安水木芯邦半导体设计有限公司 Driving circuit applied to step-down DC-DC converter
CN115765704A (en) * 2022-11-11 2023-03-07 杭州瑞盟科技股份有限公司 Power MOS tube gate driver and power MOS tube gate drive system
CN116827333A (en) * 2023-08-28 2023-09-29 苏州锴威特半导体股份有限公司 Level shift circuit
CN116979946A (en) * 2023-07-28 2023-10-31 北京中科格励微科技有限公司 Control circuit of adjustable pull-up resistor
CN117318697A (en) * 2023-09-15 2023-12-29 辰芯半导体(深圳)有限公司 Level shift circuit and power supply device
CN119401827A (en) * 2024-12-30 2025-02-07 苏州旗芯微半导体有限公司 Voltage conversion circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736869A (en) * 1996-05-16 1998-04-07 Lsi Logic Corporation Output driver with level shifting and voltage protection
CN1992526A (en) * 2005-12-28 2007-07-04 日本电气株式会社 Level shift circuit and driver circuit using the same
US20110025380A1 (en) * 2009-07-29 2011-02-03 Samsung Electronics Co., Ltd. Output driver operable over wide range of voltages
CN102089666A (en) * 2008-07-29 2011-06-08 高通股份有限公司 High signal level compliant input/output circuits
CN104124957A (en) * 2014-08-14 2014-10-29 灿芯半导体(上海)有限公司 Level switching circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736869A (en) * 1996-05-16 1998-04-07 Lsi Logic Corporation Output driver with level shifting and voltage protection
CN1992526A (en) * 2005-12-28 2007-07-04 日本电气株式会社 Level shift circuit and driver circuit using the same
CN102089666A (en) * 2008-07-29 2011-06-08 高通股份有限公司 High signal level compliant input/output circuits
US20110025380A1 (en) * 2009-07-29 2011-02-03 Samsung Electronics Co., Ltd. Output driver operable over wide range of voltages
CN104124957A (en) * 2014-08-14 2014-10-29 灿芯半导体(上海)有限公司 Level switching circuit

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105528322A (en) * 2015-09-01 2016-04-27 北京中电华大电子设计有限责任公司 A hot-swapping-preventing drive-selectable output drive circuit
CN105528322B (en) * 2015-09-01 2019-05-07 北京中电华大电子设计有限责任公司 A kind of optional output driving circuit of anti-hot plug driving
CN110729999B (en) * 2016-03-22 2024-04-09 华为技术有限公司 Mode control circuit and apparatus
CN110729999A (en) * 2016-03-22 2020-01-24 华为技术有限公司 Mode Control Circuits and Devices
CN107493100A (en) * 2016-06-12 2017-12-19 深圳芯启航科技有限公司 A kind of level translator
CN107493100B (en) * 2016-06-12 2023-03-31 深圳芯启航科技有限公司 Level converter
CN106505988A (en) * 2016-11-10 2017-03-15 中国电子科技集团公司第四十七研究所 Configurable I based on FPGA/O voltage holding circuits
CN106505988B (en) * 2016-11-10 2019-06-04 中国电子科技集团公司第四十七研究所 Configurable I based on FPGA/O voltage holding circuit
CN108206689A (en) * 2016-12-19 2018-06-26 上海安其威微电子科技有限公司 Level conversion driving circuit
CN108206689B (en) * 2016-12-19 2024-02-23 上海安其威微电子科技有限公司 Level shift driving circuit
CN109245757A (en) * 2018-11-08 2019-01-18 苏州云芯微电子科技有限公司 One kind being based on capacity coupled common mode electrical level conversion circuit
CN109741778A (en) * 2018-12-29 2019-05-10 西安紫光国芯半导体有限公司 A kind of DRAM output driving circuit and its method for reducing electric leakage
CN109818492A (en) * 2019-01-28 2019-05-28 上海华虹宏力半导体制造有限公司 A kind of secondary power supply generation circuit reducing interference
CN110601690A (en) * 2019-10-10 2019-12-20 无锡安趋电子有限公司 Low-working-voltage rapid downlink level shift circuit
CN113395063B (en) * 2020-03-13 2023-12-12 中芯国际集成电路制造(上海)有限公司 Level shift circuit
CN113395063A (en) * 2020-03-13 2021-09-14 中芯国际集成电路制造(上海)有限公司 Level shift circuit
CN111404368A (en) * 2020-03-24 2020-07-10 上海华虹宏力半导体制造有限公司 Anti-coupling interference power generation circuit
CN111404368B (en) * 2020-03-24 2024-01-19 上海华虹宏力半导体制造有限公司 Coupling interference resistant power supply generating circuit
CN111446948A (en) * 2020-05-12 2020-07-24 河北新华北集成电路有限公司 PMOS drive circuit and drive device
CN111884648A (en) * 2020-06-18 2020-11-03 华南理工大学 Output feedback logic circuit and chip based on unipolar transistor
CN112688682A (en) * 2020-12-25 2021-04-20 上海华力微电子有限公司 Level conversion circuit
CN113659813A (en) * 2021-08-12 2021-11-16 广东省大湾区集成电路与系统应用研究院 Driving circuit
CN113659813B (en) * 2021-08-12 2023-11-17 广东省大湾区集成电路与系统应用研究院 Driving circuit
CN113852182A (en) * 2021-09-06 2021-12-28 成都锐成芯微科技股份有限公司 Power supply selection circuit with floatable input
CN113852182B (en) * 2021-09-06 2023-05-30 成都锐成芯微科技股份有限公司 Power supply selection circuit with floatable input
CN115664408A (en) * 2022-11-10 2023-01-31 江苏谷泰微电子有限公司 Level shifter with unknown voltage domain
CN115664408B (en) * 2022-11-10 2023-11-21 江苏谷泰微电子有限公司 Level shifter of unknown voltage domain
CN115765704A (en) * 2022-11-11 2023-03-07 杭州瑞盟科技股份有限公司 Power MOS tube gate driver and power MOS tube gate drive system
CN115694140A (en) * 2022-12-28 2023-02-03 西安水木芯邦半导体设计有限公司 Driving circuit applied to step-down DC-DC converter
CN116979946A (en) * 2023-07-28 2023-10-31 北京中科格励微科技有限公司 Control circuit of adjustable pull-up resistor
CN116979946B (en) * 2023-07-28 2024-03-05 北京中科格励微科技有限公司 Control circuit of adjustable pull-up resistor
CN116827333B (en) * 2023-08-28 2023-11-03 苏州锴威特半导体股份有限公司 Level shift circuit
CN116827333A (en) * 2023-08-28 2023-09-29 苏州锴威特半导体股份有限公司 Level shift circuit
CN117318697A (en) * 2023-09-15 2023-12-29 辰芯半导体(深圳)有限公司 Level shift circuit and power supply device
CN119401827A (en) * 2024-12-30 2025-02-07 苏州旗芯微半导体有限公司 Voltage conversion circuit
CN119401827B (en) * 2024-12-30 2025-04-11 苏州旗芯微半导体有限公司 Voltage conversion circuit

Also Published As

Publication number Publication date
CN104638887B (en) 2017-02-22

Similar Documents

Publication Publication Date Title
CN104638887B (en) Output driving circuit capable of realizing output high level conversion
CN106230416B (en) It is a kind of with active clamp without bootstrapping gate driving circuit
CN104135268B (en) Signal transmission circuit suitable for DDR
KR20180040958A (en) High voltage output driver with low voltage device
CN103259409A (en) voltage conversion circuit
CN108155903A (en) High speed and high pressure level shifting circuit applied to GaN gate drivings
US11979155B2 (en) Semiconductor integrated circuit device and level shifter circuit
CN116208142B (en) Differential signal driving circuit and method for selecting differential signal driving circuit
WO2020147306A1 (en) Withstand voltage level conversion circuit
CN101753129A (en) High-voltage tolerance output buffer
US6580291B1 (en) High voltage output buffer using low voltage transistors
CN111181546B (en) High-Speed Voltage-Level Shifter Including Automatic Bootstrapping Cascode Driver
CN102983847A (en) Wide power supply voltage low power consumption timer circuit
KR20040002722A (en) Level shifter, semiconductor integrated circuit and information processing system
CN101951246A (en) Quiescent voltage level restorer
CN104506183B (en) Univoltage sub-threshold level converter
CN103117740A (en) Low-power-consumption level shift circuit
JP2003324343A (en) Integrated circuit
CN106788493B (en) Low-speed transmitter circuit
CN113726330B (en) A level conversion circuit and chip
US20100085078A1 (en) Digital Logic Voltage Level Shifter
CN107528580B (en) Level conversion circuit
US7746146B2 (en) Junction field effect transistor input buffer level shifting circuit
KR100713907B1 (en) Line driving circuit of semiconductor device
CN108847841A (en) Level shifting circuit

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant