CN104630311A - 一种利用甜高粱同步生产秸秆纳米纤维素和细菌纤维素的方法 - Google Patents

一种利用甜高粱同步生产秸秆纳米纤维素和细菌纤维素的方法 Download PDF

Info

Publication number
CN104630311A
CN104630311A CN201510066078.8A CN201510066078A CN104630311A CN 104630311 A CN104630311 A CN 104630311A CN 201510066078 A CN201510066078 A CN 201510066078A CN 104630311 A CN104630311 A CN 104630311A
Authority
CN
China
Prior art keywords
cellulose
stalk
nano
sweet sorghum
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510066078.8A
Other languages
English (en)
Inventor
唐波
刘文玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU LIANHAI BIOLOGICAL TECHNOLOGY Co Ltd
Original Assignee
JIANGSU LIANHAI BIOLOGICAL TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU LIANHAI BIOLOGICAL TECHNOLOGY Co Ltd filed Critical JIANGSU LIANHAI BIOLOGICAL TECHNOLOGY Co Ltd
Priority to CN201510066078.8A priority Critical patent/CN104630311A/zh
Publication of CN104630311A publication Critical patent/CN104630311A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及一种以甜高粱秸秆为原料,同步生产秸秆纳米纤维素和细菌纤维素的方法,属农作物秸秆综合利用领域。本发明包含以下步骤:(1)取甜高粱秸秆压榨处理后,将秸秆纤维通过汽爆、酶解、均质、改性处理后,制成壳聚糖-纳米纤维素混合膜;(2)将甜高粱汁液和秸秆水洗液混合后,调节糖度,添加无机盐,N源等制成木醋杆菌发酵培养基,接种木醋杆菌发酵生产细菌纳米纤维素。通过对甜高粱秸秆和汁液的综合利用,本发明生产出壳聚糖-纳米纤维素混合膜和羟甲基壳聚糖改性的细菌纤维素膜,通过实验证明,这两种材料具有较高的拉伸强度、断裂伸长率和抗冲击强度等,在医药化工等领域具有一定的应用价值。

Description

一种利用甜高粱同步生产秸秆纳米纤维素和细菌纤维素的方法
技术领域
本方法属于秸秆资源利用领域,特别涉及一种利用甜高粱同步生产秸秆纳米纤维素和细菌纤维素的方法。
背景技术
传统丁醇发酵产业普遍存在以下问题:(1)丁醇产量、产率低。(2)溶剂终浓度低。这是丁醇高成本的关键所在。(3)丁醇在总溶剂中的比例低,后期丁醇回收、分离的成本较高。(4)传统的丁醇发酵普遍采用玉米、糖蜜为粮食原料生产,随着世界粮食的匮乏和粮食价格的上涨,丁醇发酵的成本提高。早期的丁醇工业因其发酵成本高,不敌于石油化工产品而衰落,这也是当今限制其大规模发展的瓶颈所在。
纳米纤维素是一种新型的高分子功能材料,其直径介于1nm到100 nm之间,长度为100 nm-500nm。纳米纤维素具有独特的结构和优良的性能,在生物、医学、增强剂、造纸工业、净化、传导、与无机物复合、食品工业、磁性复合物等方面的有着广泛应用,誉为拯救世界的“神奇材料”。
发明内容
本发明的目的在于提供一种利用甜高粱同步生产秸秆纳米纤维素和细菌纤维素的方法,综合利用甜高粱,降低了生产纳米纤维素的成本,具有良好的社会效益和综合经济效益,具体技术方案如下:
一种利用甜高粱同步生产秸秆纳米纤维素和细菌纤维素的方法,其包括如下步骤:
a、对甜高粱秸秆进行轧制处理,得到甜高粱汁液和秸秆渣;
b、将所述秸秆渣在2~6MPa的压力下进行蒸汽闪爆处理,控制闪爆过程时间小于0.1s,得到汽爆秸秆和汽爆秸秆液;
c、将所述汽爆秸秆进行水洗,收集水洗液后经过过滤后,与所述甜高粱汁液、汽爆秸秆液合并,得到混合秸秆液;
d、在水洗后的汽爆秸秆中加水,依次由漆酶、木聚糖酶和纤维素酶酶解,将酶解物经过过滤后先进行水洗,再进行过滤,得到酶解秸秆纤维,同时将水洗液和所述混合秸秆液合并,得到木醋杆菌发酵原糖液;
e、在所述酶解秸秆纤维中加水,制成酶解秸秆纤维悬浮液,经过50~150MPa的压力下均质,制成纳米纤维素水溶液;然后边搅拌,边向所述纳米纤维素水溶液中加入醋酸进行酸化后,加入壳聚糖,搅拌溶解并与所述纳米纤维素充分混合均匀,将混合液超声震荡后,在40~50℃真空干燥成膜,将得到的膜浸泡在碱液中5~10 min后取出,水洗至中性,烘干,制得到壳聚糖-纳米纤维素混合膜;
f、将所述丁醇发酵原糖液用自来水调整糖分,使得糖的含量在6~8wt%,再添加酵母粉、蛋白胨、柠檬酸、磷酸氢二钠、硫酸镁、羟甲基壳聚糖,调至pH为5.5~6.5,在121℃下灭菌20 min,制成木醋杆菌发酵培养基,接种木醋杆菌发酵种子液后进行发酵,得到细菌纤维素膜;
g、培养结束后,取出细菌纤维素膜,用蒸馏水冲洗2~4次后,浸入到0.1~0.2 mol/L的NaOH溶液中,60~90℃保温40~100 min,除去膜中的菌体和培养基,再用蒸馏水冲洗2~4次后至中性, 60~80℃烘干至恒重,制得羟甲基壳聚糖改性的细菌纤维素。
作为优选方案,步骤c中所述水洗时加入的水量为汽爆秸秆重量的0.5~2倍。
作为优选方案,步骤d所述的漆酶酶活5万U/g ,添加量60~80 U/g底物,反应温度50~70℃,酶解4~6 h;木聚糖酶酶活5万U/g,添加量20~30 U/g底物,反应温度30~50℃,酶解2~4 h;纤维素酶酶活为20万U/g,添加量为100~300 IU/g底物,反应温度40~60℃,酶解8~12 h。
作为优选方案,步骤f中,所述酵母粉、蛋白胨、柠檬酸、磷酸氢二钠、硫酸镁的加量分别为丁醇发酵原糖液重量的0.4~0.7%、0.4~0.6%、0.1~0.2%、0.2~0.3%、0.4~0.6%。
作为优选方案,步骤f中的木醋杆菌发酵温度为28~33℃,菌株的接种量为6~10%,发酵时间5~8 天。
甜高粱,又称“二代甘蔗”,含有丰富的糖分汁液,亩产甘蔗2万公斤,由于其产量大,价格廉价是发展生物能源的最佳原料。在《可再生能源发展“十一五”规划》中,甜高粱被列为生物液体燃料的第一个来源。通过对发酵后废弃的杆渣等进行综合利用,提高了甜高粱的综合价值,相应的也降低了丁醇生产的成本,从而实现能源多元化发展,满足国内外市场对生物燃料的需求。
本发明是一种利用甜高粱同步生产生物丁醇和纳米纤维素的方法,(1)通过压榨和水洗处理,实现甜高粱秸秆和糖液的分离,由于甜高粱秸秆中含有木质素和半纤维素等物质,影响最终纳米纤维素的结晶结构,采用漆酶和半纤维素酶处理,酶解糖液并入秸秆糖液,既实现了对甜高粱的充分利用,又无废水排放。由于壳聚糖分子链上分布着许多的羟基、氨基和N-乙酰氨基等极性集团,会形成各种分子内和分子间氢键,在结构上和纳米纤维素具有相似性,在纳米纤维素中加入壳聚糖,由于两者分子间的氢键、范德华力的协同效应,使得复合膜的拉伸强度大大提高。(2)木醋杆菌是报道最广泛,也是研究最透彻的细菌纤维发酵菌株,以甜高粱汁液作为碳源,降低了细菌纤维素的生产成本。另外在培养基中添加羟甲基壳聚糖,不仅缩短了木醋酐菌的发酵周期、提高了细菌纤维素的产量,也使得膜的性能更加优异。
附图说明
图1为本发明的工艺流程图。
具体实施方式
实施例1
取200 kg甜高粱秸秆经过榨汁处理,得到甜高粱汁液和秸秆渣,将秸秆渣在压力为3.0 MPa条件下处理10 min,得到汽爆秸秆液和汽爆秸秆;汽爆秸秆用100kg的水洗,水温65 ℃,水洗时间1.5 h。汽爆秸秆液经过30目板框过滤,滤液与甜高粱汁液、洗出液合并,得到混合秸秆液,滤渣并入汽爆秸秆。向汽爆秸秆中加水,加水量为汽爆秸秆重量的0.6倍,再依次加入漆酶、半纤维素酶、纤维素酶,其中漆酶酶活5万U/g ,添加量60 U/g底物,温度55℃,酶解5 h;木聚糖酶酶活5万U/g,添加量25 U/g底物,反应温度40℃,酶解3 h;纤维素酶酶活为20万U/g,添加量为200 IU/g底物,反应温度45 ℃,酶解10 h。
酶解物经过60目板框过滤,水洗(加水量为汽爆秸秆重的0.5倍,水温65℃),再经过60目板框过滤后,得到酶解纤维素,并将水洗液与上步得到的混合秸秆液合并,得到木醋杆菌发酵原糖液。向酶解纤维素中添加1.5倍重量的水,制成纤维素悬浮液,在120 MPa压力条件下,循环4次,即得到纳米纤维素悬浮液。先向水溶液中添加2%的醋酸进行酸化,充分搅拌后再向体系中加入20%壳聚糖,搅拌,使得壳聚糖溶解并和纳米纤维素充分混合均匀,将混合液超声震荡3 h后,置于真空干燥箱内, 50℃真空干燥64 h,将得到的膜浸泡在2 mol/L碱液中5 min,取出后水洗,60℃烘干,即得到壳聚糖-纳米纤维素混合膜。膜的拉伸强度达到为38 MPa,比纯壳聚糖膜的拉伸强度提高了76%,断裂伸长率提高了157%,冲击强度提高了47%。
将木醋杆菌发酵原糖液用自来水和蔗糖调整糖分,使得糖的含量在6%,再添加0.5%的酵母粉,0.4%的蛋白胨,柠檬酸一水化合物0.1%,无水磷酸氢二钠0.25%,七水硫酸镁0.4%,羟甲基壳聚糖1.5%,用NaOH调至pH 6.0,在121℃下灭菌20 min,制成木醋杆菌发酵培养基,按7%的接种量接种木醋杆菌发酵种子液,发酵温度为30℃, 6天后停止发酵,取出细菌纤维素膜,用蒸馏水冲洗3次后,浸入到0.1 mol/L的NaOH溶液中,70℃保温80 min,除去膜中的菌体和培养基,再用蒸馏水冲洗3次后至中性,在70℃烘干至恒重,即得到羟甲基壳聚糖改性的细菌纤维素。膜的拉伸强度达到为42 MPa,比纯的羟甲基壳聚的拉伸强度提高了80%,断裂伸长率提高了201%,冲击强度提高了39%。
所述的种子培养基配制方法:葡萄糖2%,蛋白胨0.45%,酵母粉0.4%,无水磷酸氢二钠0.25%,柠檬酸一水化合物0.17%,七水硫酸镁0.6%,pH值6.0,在121℃下灭菌20 min,制成木醋杆菌发酵培养基。
木醋杆菌发酵种子液的配制方法:将木醋杆菌接入种子培养基中,30℃静置培养7天。
实施例2:
取200 kg甜高粱秸秆经过榨汁处理,得到甜高粱汁液和秸秆渣,将秸秆渣在压力为2.0 MPa条件下处理15 min,得到汽爆秸秆液和汽爆秸秆;汽爆秸秆用110 kg的水洗,水温65 ℃,水洗时间2 h。汽爆秸秆液经过30目板框过滤,滤液与甜高粱汁液、洗出液合并,得到混合秸秆液,滤渣并入汽爆秸秆。向汽爆秸秆中加水,加水量为汽爆秸秆重量的0.5倍,再依次加入漆酶、半纤维素酶、纤维素酶,其中漆酶酶活5万U/g ,添加量70 U/g底物,温度60℃,酶解4 h;木聚糖酶酶活5万U/g,添加量20 U/g底物,反应温度45℃,酶解3.5 h;纤维素酶酶活为20万U/g,添加量为220 IU/g底物,反应温度50 ℃,酶解9 h。
酶解物经过60目板框过滤,水洗(加水量为汽爆秸秆重的0.5倍,水温65℃),再经过60目板框过滤后,得到酶解纤维素,并将水洗液与上步得到的混合秸秆液合并,得到木醋杆菌发酵原糖液。向酶解纤维素中添加2倍重量的水,制成纤维素悬浮液,在110 MPa压力条件下,循环5次,即得到纳米纤维素悬浮液。先向水溶液中添加3%的醋酸进行酸化,充分搅拌后再向体系中加入20%壳聚糖,搅拌,使得壳聚糖溶解并和纳米纤维素充分混合均匀,将混合液超声震荡3 h后,置于真空干燥箱内, 45℃真空干燥68 h,将得到的膜浸泡在1 mol/L碱液中8 min,取出后水洗,60℃烘干,即得到壳聚糖-纳米纤维素混合膜。膜的拉伸强度达到为39 MPa,比纯壳聚糖膜的拉伸强度提高了80%,断裂伸长率提高了149%,冲击强度提高了66%。
将木醋杆菌发酵原糖液用自来水和蔗糖调整糖分,使得糖的含量在7%,再添加0.6%的酵母粉,0.5%的蛋白胨,柠檬酸一水化合物0.1%,无水磷酸氢二钠0.25%,七水硫酸镁0.4%,羟甲基壳聚糖2 %,用NaOH调至pH 6.5,在121℃下灭菌20 min,制成木醋杆菌发酵培养基,按8%的接种量接种木醋杆菌发酵种子液,发酵温度为30℃, 5天后停止发酵,取出细菌纤维素膜,用蒸馏水冲洗3次后,浸入到0.1 mol/L的NaOH溶液中,75℃保温65 min,除去膜中的菌体和培养基,再用蒸馏水冲洗3次后至中性,在60℃烘干至恒重,即得到羟甲基壳聚糖改性的细菌纤维素。膜的拉伸强度达到为46 MPa,比纯的羟甲基壳聚的拉伸强度提高了90%,断裂伸长率提高了211%,冲击强度提高了42%。
所述的种子培养基配制方法:葡萄糖2%,蛋白胨0.45%,酵母粉0.4%,无水磷酸氢二钠0.25%,柠檬酸一水化合物0.17%,七水硫酸镁0.6%,pH值6.0,在121℃下灭菌20 min,制成木醋杆菌发酵培养基。
木醋杆菌发酵种子液的配制方法:将木醋杆菌接入种子培养基中,30℃静置培养7天。
实施例3:
取200 kg甜高粱秸秆经过榨汁处理,得到甜高粱汁液和秸秆渣,将秸秆渣在压力为4.0 MPa条件下处理10min,得到汽爆秸秆液和汽爆秸秆;汽爆秸秆用120kg的水洗,水温60 ℃,水洗时间2 h。汽爆秸秆液经过30目板框过滤,滤液与甜高粱汁液、洗出液合并,得到混合秸秆液,滤渣并入汽爆秸秆。向汽爆秸秆中加水,加水量为汽爆秸秆重量的0.6倍,再依次加入漆酶、半纤维素酶、纤维素酶,其中漆酶酶活5万U/g ,添加量60 U/g底物,温度60℃,酶解4 h;木聚糖酶酶活5万U/g,添加量20 U/g底物,反应温度50℃,酶解3 h;纤维素酶酶活为20万U/g,添加量为200 IU/g底物,反应温度55 ℃,酶解11 h。
酶解物经过60目板框过滤,水洗(加水量为汽爆秸秆重的0.7倍,水温60℃),再经过60目板框过滤后,得到酶解纤维素,并将水洗液与上步得到的混合秸秆液合并,得到木醋杆菌发酵原糖液。向酶解纤维素中添加2倍重量的水,制成纤维素悬浮液,在100 MPa压力条件下,循环6次,即得到纳米纤维素悬浮液。先向水溶液中添加2%的醋酸进行酸化,充分搅拌后再向体系中加入22%壳聚糖,搅拌,使得壳聚糖溶解并和纳米纤维素充分混合均匀,将混合液超声震荡3 h后,置于真空干燥箱内, 40℃真空干燥72 h,将得到的膜浸泡在1 mol/L碱液中8 min,取出后水洗,60℃烘干,即得到壳聚糖-纳米纤维素混合膜。膜的拉伸强度达到为36 MPa,比纯壳聚糖膜的拉伸强度提高了70%,断裂伸长率提高了131%,冲击强度提高了58%。
将木醋杆菌发酵原糖液用自来水和蔗糖调整糖分,使得糖的含量在6%,再添加0.5%的酵母粉,0.5%的蛋白胨,柠檬酸一水化合物0.1%,无水磷酸氢二钠0.2%,七水硫酸镁0.4%,羟甲基壳聚糖2.1 %,用NaOH调至pH 6.0,在121℃下灭菌20 min,制成木醋杆菌发酵培养基,按7%的接种量接种木醋杆菌发酵种子液,发酵温度为31℃, 6天后停止发酵,取出细菌纤维素膜,用蒸馏水冲洗3次后,浸入到0.1 mol/L的NaOH溶液中,70℃保温70 min,除去膜中的菌体和培养基,再用蒸馏水冲洗3次后至中性,在60℃烘干至恒重,即得到羟甲基壳聚糖改性的细菌纤维素。膜的拉伸强度达到为51 MPa,比纯的羟甲基壳聚的拉伸强度提高了94%,断裂伸长率提高了225%,冲击强度提高了49%。
所述的种子培养基配制方法:葡萄糖2%,蛋白胨0.45%,酵母粉0.4%,无水磷酸氢二钠0.25%,柠檬酸一水化合物0.17%,七水硫酸镁0.6%,pH值6.0,在121℃下灭菌20 min,制成木醋杆菌发酵培养基。
木醋杆菌发酵种子液的配制方法:将木醋杆菌接入种子培养基中,30℃静置培养7天。
综上所述,仅为本发明的较佳实施例而已,并非用来限定本发明实施的范围,凡依本发明权利要求范围所述的形状、构造、特征及精神所为的均等变化与修饰,均应包括于本发明的权利要求范围内。

Claims (5)

1.一种利用甜高粱同步生产秸秆纳米纤维素和细菌纤维素的方法,其特征在于,包括如下步骤:
a、对甜高粱秸秆进行轧制处理,得到甜高粱汁液和秸秆渣;
b、将所述秸秆渣在2~6MPa的压力下进行蒸汽闪爆处理,控制闪爆过程时间小于0.1s,得到汽爆秸秆和汽爆秸秆液;
c、将所述汽爆秸秆进行水洗,收集水洗液后经过过滤后,与所述甜高粱汁液、汽爆秸秆液合并,得到混合秸秆液;
d、在水洗后的汽爆秸秆中加水,依次由漆酶、木聚糖酶和纤维素酶酶解,将酶解物经过过滤后先进行水洗,再进行过滤,得到酶解秸秆纤维,同时将水洗液和所述混合秸秆液合并,得到木醋杆菌发酵原糖液;
e、在所述酶解秸秆纤维中加水,制成酶解秸秆纤维悬浮液,经过50~150MPa的压力下均质,制成纳米纤维素水溶液;然后边搅拌,边向所述纳米纤维素水溶液中加入醋酸进行酸化后,加入壳聚糖,搅拌溶解并与所述纳米纤维素充分混合均匀,将混合液超声震荡后,在40~50℃真空干燥成膜,将得到的膜浸泡在碱液中5~10 min后取出,水洗至中性,烘干,制得到壳聚糖-纳米纤维素混合膜;
f、将所述丁醇发酵原糖液用自来水调整糖分,使得糖的含量在6~8wt%,再添加酵母粉、蛋白胨、柠檬酸、磷酸氢二钠、硫酸镁、羟甲基壳聚糖,调至pH为5.5~6.5,在121℃下灭菌20 min,制成木醋杆菌发酵培养基,接种木醋杆菌发酵种子液后进行发酵,得到细菌纤维素膜;
g、培养结束后,取出细菌纤维素膜,用蒸馏水冲洗2~4次后,浸入到0.1~0.2 mol/L的NaOH溶液中,60~90℃保温40~100 min,除去膜中的菌体和培养基,再用蒸馏水冲洗2~4次后至中性, 60~80℃烘干至恒重,制得羟甲基壳聚糖改性的细菌纤维素。
2.如权利要求1所述的制备方法,其特征在于,步骤c中所述水洗时加入的水量为汽爆秸秆重量的0.5~2倍。
3.如权利要求1所述的制备方法,其特征在于,步骤d所述的漆酶酶活5万U/g ,添加量60~80 U/g底物,反应温度50~70℃,酶解4~6 h;木聚糖酶酶活5万U/g,添加量20~30 U/g底物,反应温度30~50℃,酶解2~4 h;纤维素酶酶活为20万U/g,添加量为100~300 IU/g底物,反应温度40~60℃,酶解8~12 h。
4.如权利要求1所述的制备方法,其特征在于,步骤f中,所述酵母粉、蛋白胨、柠檬酸、磷酸氢二钠、硫酸镁的加量分别为丁醇发酵原糖液重量的0.4~0.7%、0.4~0.6%、0.1~0.2%、0.2~0.3%、0.4~0.6%。
5.如权利要求1所述的制备方法,其特征在于,步骤f中的木醋杆菌发酵温度为28~33℃,菌株的接种量为6~10%,发酵时间5~8 天。
CN201510066078.8A 2015-02-09 2015-02-09 一种利用甜高粱同步生产秸秆纳米纤维素和细菌纤维素的方法 Pending CN104630311A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510066078.8A CN104630311A (zh) 2015-02-09 2015-02-09 一种利用甜高粱同步生产秸秆纳米纤维素和细菌纤维素的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510066078.8A CN104630311A (zh) 2015-02-09 2015-02-09 一种利用甜高粱同步生产秸秆纳米纤维素和细菌纤维素的方法

Publications (1)

Publication Number Publication Date
CN104630311A true CN104630311A (zh) 2015-05-20

Family

ID=53209555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510066078.8A Pending CN104630311A (zh) 2015-02-09 2015-02-09 一种利用甜高粱同步生产秸秆纳米纤维素和细菌纤维素的方法

Country Status (1)

Country Link
CN (1) CN104630311A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105568728A (zh) * 2015-12-03 2016-05-11 雷春生 一种荨麻秆制备纳米纤维素的方法
CN106267306A (zh) * 2016-08-09 2017-01-04 吴迪 一种抗菌性细菌纤维素膜的制备方法
CN107312808A (zh) * 2016-04-26 2017-11-03 财团法人食品工业发展研究所 纤维寡糖的制造方法
CN107586801A (zh) * 2017-10-19 2018-01-16 南京理工大学 一种利用棉杆制备细菌纤维素的方法
CN110029136A (zh) * 2018-01-11 2019-07-19 西安宁远清洁技术有限公司 一种生物纤维素膜的制备方法
CN110193090A (zh) * 2019-05-31 2019-09-03 盐城工学院 一种具有抗菌抑菌功能的细菌纤维素敷料的制备方法
CN113004426A (zh) * 2021-03-24 2021-06-22 江南大学 一种从油茶蒲中同时制备纤维素纳米晶体和纤维素纳米纤维的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1932005A (zh) * 2006-05-31 2007-03-21 华东理工大学 人苍白杆菌及其在降解植物秸秆或重要酶的制备中的应用
CN103418018A (zh) * 2013-07-29 2013-12-04 南通大学 红茶菌合成的细菌纤维素压疮敷料及其制备方法和用途
CN103981237A (zh) * 2014-05-29 2014-08-13 江南大学 一种秸秆全利用制备低聚木糖、木质素和微晶纤维素的方法
CN104130431A (zh) * 2014-07-06 2014-11-05 东北林业大学 一种壳聚糖-糠醛渣纳米纤维素复合膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1932005A (zh) * 2006-05-31 2007-03-21 华东理工大学 人苍白杆菌及其在降解植物秸秆或重要酶的制备中的应用
CN103418018A (zh) * 2013-07-29 2013-12-04 南通大学 红茶菌合成的细菌纤维素压疮敷料及其制备方法和用途
CN103981237A (zh) * 2014-05-29 2014-08-13 江南大学 一种秸秆全利用制备低聚木糖、木质素和微晶纤维素的方法
CN104130431A (zh) * 2014-07-06 2014-11-05 东北林业大学 一种壳聚糖-糠醛渣纳米纤维素复合膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
潘颖等: "多糖改性细菌纤维素的制备", 《合成纤维》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105568728A (zh) * 2015-12-03 2016-05-11 雷春生 一种荨麻秆制备纳米纤维素的方法
CN107312808A (zh) * 2016-04-26 2017-11-03 财团法人食品工业发展研究所 纤维寡糖的制造方法
CN106267306A (zh) * 2016-08-09 2017-01-04 吴迪 一种抗菌性细菌纤维素膜的制备方法
CN107586801A (zh) * 2017-10-19 2018-01-16 南京理工大学 一种利用棉杆制备细菌纤维素的方法
CN110029136A (zh) * 2018-01-11 2019-07-19 西安宁远清洁技术有限公司 一种生物纤维素膜的制备方法
CN110193090A (zh) * 2019-05-31 2019-09-03 盐城工学院 一种具有抗菌抑菌功能的细菌纤维素敷料的制备方法
CN113004426A (zh) * 2021-03-24 2021-06-22 江南大学 一种从油茶蒲中同时制备纤维素纳米晶体和纤维素纳米纤维的方法

Similar Documents

Publication Publication Date Title
CN104630311A (zh) 一种利用甜高粱同步生产秸秆纳米纤维素和细菌纤维素的方法
Cheng et al. Green synthesis of bacterial cellulose via acetic acid pre-hydrolysis liquor of agricultural corn stalk used as carbon source
US9309577B2 (en) Process for producing bio-based product from straw hemicellulose and fully utilizing the components thereof
CN102206689B (zh) 一种在发酵过程中改性细菌纤维素的方法
CN105255953A (zh) 物理-化学-生物预处理玉米秸秆的方法
CN106834368A (zh) 一种利用木质纤维素发酵生产l‑乳酸的方法
CN104031956A (zh) 一种以苹果渣为原料的细菌纤维素发酵培养基及利用该培养基生产细菌纤维素的方法
CN101608192B (zh) 一种利用玉米芯生产丁二酸的方法
CN101195838B (zh) 一种玉米芯的新用途
Jampatesh et al. Evaluation of inhibitory effect and feasible utilization of dilute acid-pretreated rice straws on succinate production by metabolically engineered Escherichia coli AS1600a
CN104694587A (zh) 一种由甘蔗渣生产乳酸的方法
CN107083411A (zh) 一种麦草秸秆酶解的预处理方法
CN100593572C (zh) 一种玉米秸秆类农林废弃物的新用途
CN106119289A (zh) 一种复合菌群协同降解秸秆纤维素和发酵产氢的联合预处理方法
CN104651416A (zh) 一种利用甜高粱同步生产生物丁醇和纳米纤维素的方法
CN103789354A (zh) 一种采用含纤维素原料制备乙醇的方法
CN102234670B (zh) 一种惰性吸附载体固态发酵细菌纤维素的方法
CN104561184B (zh) 一种高效制备高性能细菌纤维素的方法
CN102286572A (zh) 一种以秸秆为原料制备可发酵糖液的方法
CN109971798A (zh) 一种生产高浓度乳酸的方法
CN102876757B (zh) 一种二段式联合调控发酵技术制备阿魏酰低聚糖工艺
CN105368912B (zh) 一种喷雾逆流法提取透明质酸钠的方法
CN1884563A (zh) 一种以汽爆秸秆为原料发酵生产柠檬酸的方法
CN101289677B (zh) 采用含纤维素原料制备乙醇的方法
CN107513545A (zh) 一种利用木质素降解菌强化废弃生物质水热预处理的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150520