CN104617896B - Continuous inverse F power-like amplifiers and its design method of a kind of broadband high-efficiency - Google Patents

Continuous inverse F power-like amplifiers and its design method of a kind of broadband high-efficiency Download PDF

Info

Publication number
CN104617896B
CN104617896B CN201510092406.1A CN201510092406A CN104617896B CN 104617896 B CN104617896 B CN 104617896B CN 201510092406 A CN201510092406 A CN 201510092406A CN 104617896 B CN104617896 B CN 104617896B
Authority
CN
China
Prior art keywords
transmission line
impedance
output
input
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510092406.1A
Other languages
Chinese (zh)
Other versions
CN104617896A (en
Inventor
朱晓维
孙引进
张雷
孟凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201510092406.1A priority Critical patent/CN104617896B/en
Publication of CN104617896A publication Critical patent/CN104617896A/en
Application granted granted Critical
Publication of CN104617896B publication Critical patent/CN104617896B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Amplifiers (AREA)
  • Microwave Amplifiers (AREA)

Abstract

本发明公开了一种连续逆F类高效率功率放大器及其设计方法,该功率放大器包括五段高低阻抗传输线式输入匹配电路,六段高低阻抗传输线式输出匹配电路,可调节式输入馈电网络,宽带输出馈电网络。本发明基于改进的具有谐波控制的简易实频技术匹配算法,对功率放大器的输入输出阻抗进行宽带匹配,实现宽带连续逆F类高效率工作。该设计方法在提高效率的同时避免了一般的低通滤波器原型设计方法中的基板材料介电常数受限的缺点,实现了可以应用于更高介电常数板材的连续逆F类功率放大器。本发明在高效率宽带功率放大器应用背景下,针对综合的宽带高效率设计方法需求,具有结构简单、体积紧凑、适用性更加广泛的优点。

The invention discloses a continuous inverse class F high-efficiency power amplifier and a design method thereof. The power amplifier includes five sections of high and low impedance transmission line input matching circuits, six sections of high and low impedance transmission line output matching circuits, and an adjustable input feed network , broadband output feed network. Based on the improved simple real-frequency technology matching algorithm with harmonic control, the invention performs broadband matching on the input and output impedance of the power amplifier, and realizes broadband continuous inverse class F high-efficiency work. This design method avoids the disadvantage of limited dielectric constant of the substrate material in the general low-pass filter prototype design method while improving efficiency, and realizes a continuous inverse class F power amplifier that can be applied to a higher dielectric constant plate. Under the application background of high-efficiency broadband power amplifiers, the present invention aims at the demand for a comprehensive broadband high-efficiency design method, and has the advantages of simple structure, compact volume and wider applicability.

Description

一种宽带高效率的连续逆F类功率放大器及其设计方法A broadband high-efficiency continuous inverse class F power amplifier and its design method

技术领域technical field

本发明涉及一种宽带高效率的连续逆F类功率放大器及其设计方法,属于无线通信技术领域。The invention relates to a broadband high-efficiency continuous inverse class-F power amplifier and a design method thereof, belonging to the technical field of wireless communication.

背景技术Background technique

随着新一代无线通信系统的快速发展,更高速率的数据传输和更丰富的业务内容等需求使得基带信号的带宽变得越来越宽,甚至4G中的LTE-Advanced通信中的基带信号已经高达100MHz;此外,多种通信模式的兼容和多频带工作的需求更是对无线通信系统的带宽提出了更高的要求。作为无线通信系统中的重要组成部分,高功率放大器的宽带特性成为衡量功率放大器性能的重要指标。With the rapid development of a new generation of wireless communication systems, the demand for higher data transmission rates and richer service content has made the bandwidth of baseband signals wider and wider, and even the baseband signals in LTE-Advanced communications in 4G have already Up to 100MHz; in addition, the compatibility of multiple communication modes and the requirement of multi-band work put forward higher requirements for the bandwidth of the wireless communication system. As an important part of the wireless communication system, the broadband characteristic of the high power amplifier has become an important index to measure the performance of the power amplifier.

另一方面,面对内容更丰富的业务需求,更高速率的数据传输和更高效的频谱调制技术的使用让传输信号的峰均比在带宽增加的同时也在不断提高。面对带有更高峰均比的传输信号,功率放大器为了避免信号压缩和信息损失,不得不回退到低功率状态进行工作。而作为无线通信系统中功耗最大的模块,功率放大器的能源耗费可以占到整个系统的50%甚至更高,由功率回退带来的效率低下会导致整个无线通信系统效率大大降低,造成能源的极大浪费。因此,宽带高效率功率放大器的研究成为当今功率放大器领域的热点课题。On the other hand, in the face of business needs with richer content, the use of higher-speed data transmission and more efficient spectrum modulation technology makes the peak-to-average ratio of transmission signals increase while bandwidth increases. Facing the transmission signal with a higher peak-to-average ratio, the power amplifier has to fall back to a low-power state to work in order to avoid signal compression and information loss. As the module with the largest power consumption in the wireless communication system, the energy consumption of the power amplifier can account for 50% or even higher of the entire system, and the inefficiency caused by power backoff will greatly reduce the efficiency of the entire wireless communication system, resulting a great waste. Therefore, the research of broadband high-efficiency power amplifiers has become a hot topic in the field of power amplifiers today.

目前常用的宽带高效率综合设计方法,主要是采用低通滤波器原型综合设计方法,首先根据负载牵引所得的基波阻抗实部与50Ω的比值确定阻抗转换比,依据匹配所需带宽与中心频率的百分比带宽来确定滤波器的阶数;从低通滤波器参数表中得到对应的集总参数低通滤波器电路;再对得到的集总参数电路结构进行微调,实现实数阻抗到复数阻抗的匹配电路;最后将得到的集总参数匹配电路依据集总原件和传输线之间的等效转换公式,实现集总参数电路到分布式传输线匹配电路的变换。At present, the commonly used broadband high-efficiency comprehensive design method mainly adopts the low-pass filter prototype comprehensive design method. Firstly, the impedance conversion ratio is determined according to the ratio of the real part of the fundamental impedance obtained by load pulling to 50Ω, and the matching bandwidth and center frequency are used to determine the impedance conversion ratio. The percentage bandwidth of the filter is used to determine the order of the filter; the corresponding lumped parameter low-pass filter circuit is obtained from the low-pass filter parameter table; Matching circuit: Finally, the obtained lumped parameter matching circuit is converted from the lumped parameter circuit to the distributed transmission line matching circuit according to the equivalent conversion formula between the lumped element and the transmission line.

然而,发明人在研究中发现,这种从集总原件到传输线之间的等效变换需要在一定的前提下,那就是转换之后的传输线电长度≤π/4。根据等效转换关系:However, the inventors found in research that this equivalent conversion from lumped elements to transmission lines requires a certain premise, that is, the electrical length of the transmission line after conversion is ≤ π/4. According to the equivalent conversion relationship:

其中L和C表示集总参数电路中的电感和电容值,Zh和Zl分别表示为转换后的传输线的最高和最低特性阻抗。βl表示转换之后的传输线电长度。一般情况下,为了确保转换之后的传输线电长度≤π/4,要求传输线最高和最低特性阻抗的比值要越大越好。Among them, L and C represent the inductance and capacitance values in the lumped parameter circuit, and Z h and Z l represent the highest and lowest characteristic impedance of the transformed transmission line, respectively. βl represents the electrical length of the transmission line after conversion. In general, in order to ensure that the electrical length of the transmission line after conversion is ≤ π/4, it is required that the ratio of the highest and lowest characteristic impedance of the transmission line be as large as possible.

但是,如果转换之前的集总原件值过大,转换后的传输线电长度大于π/4,转换关系就会不等效,从而使得整个匹配电路发生失配。一般采取的保证等效转换的方法都是设计时尽量选取介电常数较低的板材(≤2.2),来提高传输线最高特性阻抗(最窄宽度)的数值。这样,在保证有足够宽度的传输线支撑输出电流的情况下,可以提供足够窄小的传输线来产生高的特性阻抗。但是,这样虽然可以保证一定程度上等效变换的正确性,但是却限定了低通滤波器原型设计方法只能应用在较低的介电常数板材中。However, if the lumped original value before conversion is too large and the electrical length of the converted transmission line is greater than π/4, the conversion relationship will not be equivalent, which will cause mismatching in the entire matching circuit. The general method to ensure the equivalent conversion is to select a plate with a lower dielectric constant (≤2.2) as much as possible during design to increase the value of the highest characteristic impedance (narrowest width) of the transmission line. In this way, a sufficiently narrow transmission line can be provided to generate a high characteristic impedance under the condition of ensuring a sufficient width of the transmission line to support the output current. However, although this can ensure the correctness of the equivalent transformation to a certain extent, it limits the low-pass filter prototype design method to be applied only to lower dielectric constant plates.

发明内容Contents of the invention

发明目的:为了克服现有技术中存在的不足,本发明提供一种宽带高效率的连续逆F类功率放大器及其设计方法,Purpose of the invention: In order to overcome the deficiencies in the prior art, the present invention provides a continuous inverse class F power amplifier with wideband and high efficiency and its design method,

技术方案:为实现上述目的,本发明采用的技术方案为:Technical scheme: in order to achieve the above object, the technical scheme adopted in the present invention is:

一种宽带高效率的连续逆F类功率放大器,包括功率放大器5、高低阻抗传输线式输入匹配网络1、高低阻抗传输线式输出匹配网络2,可调式输入馈电网络3以及宽带输出馈电网络4;高低阻抗传输线式输入匹配网络1中包括第一传输线;高低阻抗传输线式输出匹配网络2包括第二传输线;A broadband high-efficiency continuous inverse class F power amplifier, comprising a power amplifier 5, a high and low impedance transmission line input matching network 1, a high and low impedance transmission line output matching network 2, an adjustable input feed network 3 and a broadband output feed network 4 ; The high and low impedance transmission line input matching network 1 includes a first transmission line; the high and low impedance transmission line output matching network 2 includes a second transmission line;

所述高低阻抗传输线式输入匹配网络1包括第一传输线中顺序连接的第二高阻抗传输线14、第二低阻抗传输线13、第一高阻抗传输线12、第一低阻抗传输线11;第一开路枝节线15与第一传输线的输入端并联;其中,第二高阻抗传输线14作为第一传输线的输入端,第一低阻抗传输线11作为第一传输线的输出端;第一传输线的输出端与功率放大器5的输入端连接;The high and low impedance transmission line input matching network 1 includes a second high impedance transmission line 14, a second low impedance transmission line 13, a first high impedance transmission line 12, and a first low impedance transmission line 11 sequentially connected in the first transmission line; Line 15 is connected in parallel with the input end of the first transmission line; Wherein, the second high-impedance transmission line 14 is used as the input end of the first transmission line, and the first low-impedance transmission line 11 is used as the output end of the first transmission line; The output end of the first transmission line is connected with the power amplifier 5 input connection;

所述高低阻抗传输线式输出匹配网络2包括第二传输线中顺序连接的第三高阻抗传输线21、第三低阻抗传输线22、第四高阻抗传输线23、第四低阻抗传输线24和第五高阻抗传输线25;第二开路枝节线26与第二传输线的输出端并联;其中,第三高阻抗传输线21作为第二传输线的输入端,第五高阻抗传输线25作为第二传输线的输出端;第二传输线的输入端与功率放大器5的输出端连接;The high and low impedance transmission line output matching network 2 includes the third high impedance transmission line 21, the third low impedance transmission line 22, the fourth high impedance transmission line 23, the fourth low impedance transmission line 24 and the fifth high impedance transmission line sequentially connected in the second transmission line Transmission line 25; The second open-circuit stub line 26 is connected in parallel with the output end of the second transmission line; Wherein, the third high-impedance transmission line 21 is used as the input end of the second transmission line, and the fifth high-impedance transmission line 25 is used as the output end of the second transmission line; The input end of the transmission line is connected with the output end of the power amplifier 5;

所述可调式输入馈电网络包括电阻31、第一扼流电感32、可调节长度传输线33以及N个旁路电容;电阻31的一端与第一传输线的输出端连接;电阻31的另一端通过第一扼流电感32与可调节长度传输线33的一端连接;可调节长度传输线33的另一端分别与N个旁路电容的一端连接,其N个旁路电容的另一端均接地,N≥4,且N为正整数;所述可调节长度传输线33包括相互平行的输出线331和输入线333,在输出线331和输入线333之间设置有a条相互平行的传输线332,并且传输线332与输出线331垂直;其中a为≥2,并且a为正整数;The adjustable input feed network includes a resistor 31, a first choke inductor 32, an adjustable length transmission line 33 and N bypass capacitors; one end of the resistor 31 is connected to the output end of the first transmission line; the other end of the resistor 31 passes through The first choke inductor 32 is connected to one end of the adjustable-length transmission line 33; the other end of the adjustable-length transmission line 33 is respectively connected to one end of N bypass capacitors, and the other ends of the N bypass capacitors are all grounded, N≥4 , and N is a positive integer; the adjustable-length transmission line 33 includes an output line 331 and an input line 333 parallel to each other, and a transmission line 332 parallel to each other is arranged between the output line 331 and the input line 333, and the transmission line 332 and the input line 333 are provided with The output line 331 is vertical; wherein a is ≥ 2, and a is a positive integer;

所述宽带输出馈电网络包括第二扼流电感41、以及M个旁路电容;所述第二扼流电感41的一端连接在第三高阻抗传输线21与第三低阻抗传输线22间;所述第二扼流电感41的另一端分别与M个旁路电容的一端连接,其M个旁路电容的另一端均接地,所述M≥3,且M为正整数;The broadband output feed network includes a second choke inductor 41 and M bypass capacitors; one end of the second choke inductor 41 is connected between the third high-impedance transmission line 21 and the third low-impedance transmission line 22; The other end of the second choke inductance 41 is respectively connected to one end of the M bypass capacitors, and the other ends of the M bypass capacitors are all grounded, the M≥3, and M is a positive integer;

所述第一传输线的输入端即为连续逆F类功率放大器的输入端,所述第二传输线的输出端即为连续逆F类功率放大器的输出端。The input end of the first transmission line is the input end of the continuous inverse class F power amplifier, and the output end of the second transmission line is the output end of the continuous inverse class F power amplifier.

进一步的,所述第一传输线的输入端和第二传输线的输出端均串联一个耦合电容6。Further, a coupling capacitor 6 is connected in series with the input end of the first transmission line and the output end of the second transmission line.

一种宽带高效率的连续逆F类功率放大器设计方法,包括以下步骤:A continuous inverse Class F power amplifier design method with high bandwidth and high efficiency, comprising the following steps:

1)利用仿真软件中的谐波负载牵引电路,得到功率放大器5的工作频带以及在三次谐波频率以内的谐波频率处的谐波输入、输出阻抗和基波频率处的输入、输出阻抗;所述工作频带包括谐波频率和基波频率;1) Utilize the harmonic load pull circuit in the simulation software to obtain the operating frequency band of the power amplifier 5 and the harmonic input and output impedance at the harmonic frequency within the third harmonic frequency and the input and output impedance at the fundamental frequency; The operating frequency band includes harmonic frequencies and fundamental frequencies;

2)将传统简易实频技术中的截止频率参数fe由单值改为一组由低到高的频率取值范围,从而得到改进的简易实频技术匹配算法,所述从低到高的频率取值范围中的最低值不小于功率放大器的工作频率,最高值不大于步骤1)中的三次谐波频率;2) Change the cut-off frequency parameter f e in the traditional simple real frequency technology from a single value to a set of frequency value ranges from low to high, thereby obtaining an improved simple real frequency technology matching algorithm, the low to high The lowest value in the frequency range is not less than the operating frequency of the power amplifier, and the highest value is not greater than the third harmonic frequency in step 1);

首先设置输出阻抗匹配网络在简易实频技术匹配算法中的输出优化目标值,将谐波负载牵引电路得到的工作频带的基波频率以及基波频率处的输出阻抗载入到所述的改进简易实频技术匹配算法中的目标函数,优化目标函数的参数得到满足优化目标值的基波输出阻抗目标函数Fun_T;再对基波输出阻抗目标函数Fun_T进行求解,得到若干个在基波频率处满足所述输出优化目标值的输出阻抗匹配网络;First, set the output optimization target value of the output impedance matching network in the simple real frequency technology matching algorithm, and load the fundamental frequency of the working frequency band obtained by the harmonic load pull circuit and the output impedance at the fundamental frequency into the improved simple The objective function in the real frequency technology matching algorithm, optimize the parameters of the objective function to obtain the fundamental wave output impedance objective function Fun_T that satisfies the optimized objective value; then solve the fundamental wave output impedance objective function Fun_T, and obtain several The output impedance matching network of the output optimization target value;

将工作频带的谐波频率以及负载牵引得到的谐波频率处的输出阻抗带入目标函数,得到谐波输出阻抗目标函数Har_T;根据所述若干个在基波频率处满足所述输出优化目标值的输出阻抗匹配网络,计算所述若干个输出阻抗匹配网络分别在谐波频率处的谐波输出阻抗目标函数Har_T的值;根据谐波输出阻抗目标函数值Har_T计算谐波输出阻抗目标误差函数Har_Terr的值:Bring the harmonic frequency of the working frequency band and the output impedance at the harmonic frequency obtained by load pulling into the objective function to obtain the harmonic output impedance objective function Har_T; satisfy the output optimization objective value at the fundamental frequency according to the several output impedance matching network, calculate the value of the harmonic output impedance target function Har_T of said several output impedance matching networks respectively at the harmonic frequency; calculate the harmonic output impedance target error function Har_Terr according to the harmonic output impedance target function value Har_T value of:

Har_Terr=1-Har_THar_Terr=1-Har_T

对比若干个在基波频率处满足所述输出优化目标值的输出阻抗匹配网络所对应各自的谐波阻抗目标误差函数值的大小,挑选出谐波输出阻抗匹配误差值最小的匹配网络,该匹配网络即为高低阻抗传输线式输出匹配网络2;Comparing the size of the respective harmonic impedance target error function values corresponding to several output impedance matching networks that meet the output optimization target value at the fundamental frequency, and selecting the matching network with the smallest harmonic output impedance matching error value, the matching The network is the high and low impedance transmission line output matching network 2;

3)首先设置输入阻抗匹配网络在简易实频技术匹配算法中的输入优化目标值,将步骤1)中由负载牵引得到的工作频带以及基波、谐波频率处的输入阻抗载入到所述改进简易实频技术匹配算法中的目标函数,优化目标函数的参数得到满足优化目标值的基波输入阻抗目标函数Fun_T1;再对基波输入阻抗目标函数Fun_T1进行求解,得到若干个在基波频率处满足所述输入优化目标值的输入阻抗匹配网络;3) First set the input optimization target value of the input impedance matching network in the simple real-frequency technology matching algorithm, and load the working frequency band obtained by load pulling in step 1) and the input impedance at fundamental and harmonic frequencies into the Improve the objective function in the simple real-frequency technology matching algorithm, optimize the parameters of the objective function to obtain the fundamental wave input impedance objective function Fun_T1 that satisfies the optimized objective value; then solve the fundamental wave input impedance objective function Fun_T1 to obtain several an input impedance matching network that satisfies the input optimization target value;

将工作频带中的谐波频率及负载牵引得到的谐波频率处的输入阻抗带入目标函数,得到谐波输入阻抗目标函数Har_T1;根据所述若干个在基波频率处满足所述输入优化目标值的输入阻抗匹配网络,计算所述若干个输入阻抗匹配网络分别在谐波频率处的谐波输入阻抗目标函数Har_T1的值;根据谐波输入阻抗目标函数值Har_T1计算谐波输入阻抗目标误差函数Har_Terr1的值:Bring the harmonic frequency in the working frequency band and the input impedance at the harmonic frequency obtained by load pulling into the objective function to obtain the harmonic input impedance objective function Har_T1; satisfy the input optimization objective at the fundamental frequency according to the several value of the input impedance matching network, calculate the value of the harmonic input impedance target function Har_T1 of the several input impedance matching networks respectively at the harmonic frequency; calculate the harmonic input impedance target error function according to the harmonic input impedance target function value Har_T1 Value of Har_Terr1:

Har_Terr1=1-Har_T1Har_Terr1=1-Har_T1

对比若干个在基波频率处满足所述输入优化目标值的输入阻抗匹配网络所对应各自的谐波阻抗目标误差函数值的大小,挑选出谐波输入阻抗匹配误差值最小的匹配网络,该匹配网络即为高低阻抗传输线式输入匹配网络1;Comparing the size of the respective harmonic impedance target error function values corresponding to several input impedance matching networks that meet the input optimization target value at the fundamental frequency, and selecting the matching network with the smallest harmonic input impedance matching error value, the matching The network is the high and low impedance transmission line input matching network 1;

4)将步骤2)得到的高低阻抗传输线式输出匹配网络2与宽带输出馈电网络4连接,使得输出匹配网络能够产生开路状态;步骤3)中得到的高低阻抗传输线式输入匹配网络1与可调式输入馈电网络3连接;并且将高低阻抗传输线式输出匹配网络2、高低阻抗传输线式输入匹配网络1与功率放大器5连接,得到最终的逆F类功率放大器。4) Connect the high and low impedance transmission line type output matching network 2 obtained in step 2) with the broadband output feed network 4, so that the output matching network can generate an open circuit state; the high and low impedance transmission line type input matching network 1 obtained in step 3) can be connected to The tuned input feed network 3 is connected; and the high and low impedance transmission line output matching network 2, the high and low impedance transmission line input matching network 1 are connected to the power amplifier 5 to obtain the final reverse class F power amplifier.

进一步的,所述功率放大器5采用氮化镓高电子迁移率管。Further, the power amplifier 5 adopts gallium nitride high electron mobility tube.

有益效果:本发明提供的一种宽带高效率的连续逆F类功率放大器及其设计方法:Beneficial effects: a broadband high-efficiency continuous inverse class F power amplifier and its design method provided by the present invention:

1)应用更加广泛:因为所使用的简易实频技术匹配方法是以微带传输线为基本单元的匹配网络,不需要经历一般的低通滤波器原型设计方法从集总参数原件到传输线之间的等效转换过程,所以也就不再受限于转换后的传输线电长度≤π/4的限制条件。这样在设计功率放大器的时候就不需要再考虑板材介电常数的因素,可以应用到更高的介电常数板材中。同样最高效率达到80%以上,本发明所使用的板材介电常数为3.5,高于一般低通滤波器原型设计方法使用的介电常数为2.2的板材。1) The application is more extensive: because the simple real-frequency technology matching method used is a matching network with a microstrip transmission line as the basic unit, it does not need to go through the general low-pass filter prototype design method from the original lumped parameter to the transmission line. Equivalent conversion process, so it is no longer limited by the restriction that the electrical length of the converted transmission line ≤ π/4. In this way, it is no longer necessary to consider the dielectric constant of the board when designing the power amplifier, and it can be applied to boards with higher dielectric constants. Similarly, the highest efficiency reaches more than 80%. The dielectric constant of the plate used in the present invention is 3.5, which is higher than that of the plate with a dielectric constant of 2.2 used in the general low-pass filter prototype design method.

2)高效率:相比原来的简易实频技术匹配方法,改进的简易实频技术在基波匹配之外加入了谐波控制,通过对输入输出谐波阻抗的控制和选择,使得功率放大器产生高效率的谐波阻抗类型,本发明通过在二次谐波产生高阻抗,三次谐波产生低阻抗使得所设计的功率放大器呈现连续逆F类型。这是一种宽带高效率的功放输出类型。使得本发明的功率放大器在1.7~2.8GHz带宽内最低饱和效率达到60%,峰值饱和效率达到80.4%。2) High efficiency: Compared with the original simple real frequency technology matching method, the improved simple real frequency technology adds harmonic control in addition to the fundamental wave matching, and through the control and selection of input and output harmonic impedance, the power amplifier generates High-efficiency harmonic impedance type, the present invention generates high impedance at the second harmonic and low impedance at the third harmonic so that the designed power amplifier presents a continuous inverse F type. This is a broadband high efficiency amplifier output type. The minimum saturation efficiency of the power amplifier of the invention reaches 60% and the peak saturation efficiency reaches 80.4% within the bandwidth of 1.7-2.8GHz.

3)宽带宽:相比较于一般的连续逆F类功率放大器,本发明所设计的功率放大器带宽更宽,频率也更高,主要是因为一般的高效率设计方法,不能控制谐波阻抗类型,不能具体设计出某一种高效率功率放大器电路,而使用Smith圆图设计的逆F类和连续逆F类,带宽无法达到更宽的带宽。3) Wide bandwidth: Compared with the general continuous inverse class F power amplifier, the power amplifier designed by the present invention has wider bandwidth and higher frequency, mainly because the general high-efficiency design method cannot control the harmonic impedance type, A certain high-efficiency power amplifier circuit cannot be specifically designed, and the bandwidth of the inverse F class and continuous inverse F class designed using the Smith chart cannot reach a wider bandwidth.

4)小型化:相比于低介电常数的板材,更高介电常数的板材,根据介质中波长计算公式,λ表示介质波长,f表示工作频率,με表示介质的磁导率和介电常数,其中的波长会越短,这也就意味着同样的电长度它的物理尺寸要更小。这样的设计方法更利于功放小型化设计。4) Miniaturization: Compared with the low dielectric constant plate, the higher dielectric constant plate, according to the calculation formula of the wavelength in the medium, λ represents the wavelength of the medium, f represents the operating frequency, and με represents the permeability and permittivity of the medium. The shorter the wavelength, the smaller the physical size of the same electrical length. Such a design method is more conducive to the miniaturization design of the power amplifier.

5)设计简单:简易实频技术匹配方法不同于低通滤波器原型50Ω到实数阻抗值之间的变换,它是一种从50Ω到复数阻抗之间的匹配方法。而功率放大器的最优输出阻抗一般都是复数阻抗,所以简易实频技术匹配方法更加简单。5) Simple design: The simple real frequency technology matching method is different from the conversion between the low-pass filter prototype 50Ω and the real impedance value, it is a matching method from 50Ω to the complex impedance. The optimal output impedance of the power amplifier is generally a complex impedance, so the simple real-frequency technology matching method is simpler.

附图说明Description of drawings

图1为本发明的宽带连续逆F类功率放大器电路示意图;Fig. 1 is a schematic diagram of a broadband continuous inverse class F power amplifier circuit of the present invention;

图2为本发明的可调节式输入馈电网络中的可调式传输线示意图;Fig. 2 is a schematic diagram of an adjustable transmission line in an adjustable input feed network of the present invention;

图3为本发明的改进的简易实频技术匹配方法流程示意图;Fig. 3 is a schematic flow chart of the improved simple real-frequency technology matching method of the present invention;

图4为本发明的改进简易实频技术匹配电路示意图;Fig. 4 is the schematic diagram of the improved simple real frequency technology matching circuit of the present invention;

图5为本发明的实现连续逆F类工作模式的1.7GHz处内部参考平面电流电压波形示意图;5 is a schematic diagram of the current and voltage waveforms of the internal reference plane at 1.7 GHz for realizing the continuous inverse Class F operating mode of the present invention;

图6为实施实例在1.7~2.8GHz的大信号测试图;Fig. 6 is the large-signal test chart of implementation example at 1.7~2.8GHz;

图7为实施实例在2.55GHz,100MHz调制信号下的数字预失真前后测量结果;Fig. 7 is the measurement result before and after digital pre-distortion under 2.55GHz, 100MHz modulated signal of the implementation example;

图8为实施实例在2.55GHz,100MHz调制信号下的效率以及邻近信道泄露功率比等调制信号特性测量结果;Figure 8 shows the measurement results of modulation signal characteristics such as the efficiency of the implementation example under 2.55GHz and 100MHz modulation signals and the leakage power ratio of adjacent channels;

其中:1-高低阻抗传输线式输入匹配网络、2-高低阻抗传输线式输出匹配网络、3-可调式输入馈电网络、4-宽带输出馈电网络、5-功率放大器、6-耦合电容。Among them: 1-high and low impedance transmission line input matching network, 2-high and low impedance transmission line output matching network, 3-adjustable input feed network, 4-broadband output feed network, 5-power amplifier, 6-coupling capacitor.

具体实施方式detailed description

下面结合附图对本发明作更进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings.

如图1所示一种宽带高效率的连续逆F类功率放大器,包括:高低阻抗传输线式输入匹配网络1、高低阻抗传输线式输出匹配网络2,可调式输入馈电网络3以及宽带输出馈电网络4;高低阻抗传输线式输出匹配2由三段高阻抗传输线以及两段低阻抗传输线,外加一段开路枝节线构成高低阻抗传输线式结构;高低阻抗传输线式输入匹配由两段低阻抗传输线,两段高阻抗传输线,外加一段开路枝节线构成高低阻抗传输线式结构。输入输出匹配网络使用改进的简易实频技术综合设计。As shown in Figure 1, a broadband high-efficiency continuous inverse class F power amplifier includes: high and low impedance transmission line input matching network 1, high and low impedance transmission line output matching network 2, adjustable input feed network 3 and broadband output feed Network 4; high and low impedance transmission line output matching 2 consists of three sections of high impedance transmission lines and two sections of low impedance transmission lines, plus an open stub line to form a high and low impedance transmission line structure; high and low impedance transmission line input matching consists of two sections of low impedance transmission lines, two sections A high-impedance transmission line, plus an open-circuit stub line constitutes a high-low-impedance transmission line structure. The input and output matching network is designed comprehensively using the improved simple real frequency technology.

高低阻抗传输线式输入匹配网络1包括第一传输线中顺序连接的第二高阻抗传输线14、第二低阻抗传输线13、第一高阻抗传输线12、第一低阻抗传输线11;第一开路枝节线15与第一传输线的输入端并联;第一传输线的输出端与功率放大器的输入端连接;The high and low impedance transmission line input matching network 1 includes a second high impedance transmission line 14, a second low impedance transmission line 13, a first high impedance transmission line 12, and a first low impedance transmission line 11 sequentially connected in the first transmission line; a first open stub line 15 connected in parallel with the input end of the first transmission line; the output end of the first transmission line is connected with the input end of the power amplifier;

高低阻抗传输线式输出匹配网络2包括第二传输线中顺序连接的第三高阻抗传输线21、第三低阻抗传输线22、第四高阻抗传输线23、第四低阻抗传输线24和第五高阻抗传输线25;第二开路枝节线26与第二传输线的输出端并联;第二传输线的输入端与功率放大器的输出端连接;The high and low impedance transmission line output matching network 2 includes the third high impedance transmission line 21, the third low impedance transmission line 22, the fourth high impedance transmission line 23, the fourth low impedance transmission line 24 and the fifth high impedance transmission line 25 sequentially connected in the second transmission line ; The second open stub line 26 is connected in parallel with the output end of the second transmission line; the input end of the second transmission line is connected with the output end of the power amplifier;

可调式输入馈电网络包括电阻31、第一扼流电感32、可调节长度传输线33;电阻31的一端与第一传输线的输出端连接,即第一低阻抗传输线11的一端,可调式输入馈电网络用于馈电;电阻31的另一端通过第一扼流电感32与可调节长度传输线33的一端连接;可调节长度传输线33的另一端并联四个旁路电容;如图2所示,可调节长度传输线33具有两个端口,分别为端口1和端口2,并且端口1所对应的就是输入线333,端口2所对应的即是输出线331,并且输出线331和输入线333相互平行。在输出线331和输入线333之间设置有a条相互平行的传输线332,传输线332与输出线331垂直;其中a为≥2,并且a为整数;可调节长度传输线33的作用是调节输入馈电网络的输出阻抗,在后期对整个连续逆F类功率放大器调试的时候,对输入驻波和增益平坦度进行调整。a条相互平行的传输线332是用来搭接输入线331和输出线333用的,焊接不同位置处的传输线,就会产生不同长度的传输线路径,起到阻抗调节作用。电阻31起到稳压的作用。即可调节式传输线33的端口1与第一扼流电感32相接,可调节式传输线33的端口2用于焊接并联旁路电容(34,35,36、37)。旁路电容(34、35、36、37)的一点分别连接端口2,旁路电容(34、35、36、37)另一端均接地。The adjustable input feed network includes a resistor 31, a first choke inductance 32, and an adjustable length transmission line 33; one end of the resistor 31 is connected to the output end of the first transmission line, that is, one end of the first low-impedance transmission line 11, and the adjustable input feeder The electrical network is used for feeding power; the other end of the resistor 31 is connected to one end of the adjustable-length transmission line 33 through the first choke inductance 32; the other end of the adjustable-length transmission line 33 is connected in parallel with four bypass capacitors; as shown in Figure 2, The adjustable-length transmission line 33 has two ports, which are respectively port 1 and port 2, and port 1 corresponds to the input line 333, and port 2 corresponds to the output line 331, and the output line 331 and the input line 333 are parallel to each other . Between the output line 331 and the input line 333, a transmission line 332 parallel to each other is arranged, and the transmission line 332 is perpendicular to the output line 331; wherein a is ≥ 2, and a is an integer; the effect of the adjustable length transmission line 33 is to adjust the input feed The output impedance of the electrical network, when debugging the entire continuous inverse class F power amplifier in the later stage, adjust the input standing wave and gain flatness. A parallel transmission lines 332 are used to overlap the input line 331 and the output line 333. Welding the transmission lines at different positions will generate transmission line paths with different lengths, which will play the role of impedance adjustment. Resistor 31 plays the role of voltage stabilization. That is, port 1 of the adjustable transmission line 33 is connected to the first choke inductor 32, and port 2 of the adjustable transmission line 33 is used for welding parallel bypass capacitors (34, 35, 36, 37). One point of the bypass capacitors (34, 35, 36, 37) is respectively connected to port 2, and the other ends of the bypass capacitors (34, 35, 36, 37) are all grounded.

宽带输出馈电网络包括第二扼流电感41、以及三个旁路电容(42、43、44);第二扼流电感41的一端连接在第三高阻抗传输线21与第三低阻抗传输线22间;所述第二扼流电感41的另一端并联三个旁路电容(42、43、44)。旁路电容(42、43、44)的一端分别连接第二扼流电感41,旁路电容(42、43、44)的另一端均接地。使用第二扼流电感41,并联旁路电容(42、43、44)结构在整个工作频带内都产生高的输入阻抗,对高低阻抗传输线式输出匹配电路产生开路状态。The broadband output feed network includes a second choke inductor 41 and three bypass capacitors (42, 43, 44); one end of the second choke inductor 41 is connected to the third high-impedance transmission line 21 and the third low-impedance transmission line 22 Between; the other end of the second choke inductor 41 is connected in parallel with three bypass capacitors (42, 43, 44). One ends of the bypass capacitors (42, 43, 44) are respectively connected to the second choke inductor 41, and the other ends of the bypass capacitors (42, 43, 44) are all grounded. Using the second choke inductance 41, the structure of parallel bypass capacitors (42, 43, 44) produces high input impedance in the entire operating frequency band, and produces an open circuit state for high and low impedance transmission line output matching circuits.

本发明的宽带高效率的连续逆F类功率放大器的输入输出端均串联了一个耦合电容,耦合电容6是用来起隔离直流的作用,这样可以避免测试时对仪器和功率放大器本身的损伤。The input and output terminals of the broadband high-efficiency continuous inverse class F power amplifier of the present invention are all connected in series with a coupling capacitor, and the coupling capacitor 6 is used to isolate DC, which can avoid damage to the instrument and the power amplifier itself during testing.

一种基于改进的具有谐波控制的简易实频技术的宽带匹配设计方法,该设计方法包括以下步骤:A broadband matching design method based on the improved simple real frequency technology with harmonic control, the design method includes the following steps:

1)使用功率放大器器件模型,利用ADS仿真软件中的谐波负载牵引电路,得到功率放大器5的工作频带以及在三次谐波频率以内的谐波频率处的谐波输入、输出阻抗和基波频率处的输入、输出阻抗;1) Using the power amplifier device model, utilizing the harmonic load pull circuit in the ADS simulation software, the operating frequency band of the power amplifier 5 and the harmonic input, output impedance and fundamental frequency at the harmonic frequency within the third harmonic frequency are obtained The input and output impedance at

2)将传统简易实频技术中的截止频率参数fe由单值改为一组由低到高的频率取值范围,从而得到改进的简易实频技术匹配算法,所述从低到高的频率取值范围中的最低值不小于功率放大器的工作频率,最高值不大于步骤1)中的三次谐波频率;所述工作频带包括谐波频率和基波频率;2) Change the cut-off frequency parameter f e in the traditional simple real frequency technology from a single value to a set of frequency value ranges from low to high, thereby obtaining an improved simple real frequency technology matching algorithm, the low to high The lowest value in the frequency range is not less than the operating frequency of the power amplifier, and the highest value is not greater than the third harmonic frequency in step 1); the operating frequency band includes harmonic frequencies and fundamental frequencies;

首先设置输出阻抗匹配网络在简易实频技术匹配算法中的输出优化目标值,将谐波负载牵引电路得到的工作频带的基波频率以及基波频率处的输出阻抗载入到所述的改进简易实频技术匹配算法中的目标函数,优化目标函数的参数得到满足优化目标值的基波输出阻抗目标函数Fun_T;再对基波输出阻抗目标函数Fun_T进行求解,得到若干个在基波频率处满足所述输出优化目标值的输出阻抗匹配网络;First, set the output optimization target value of the output impedance matching network in the simple real frequency technology matching algorithm, and load the fundamental frequency of the working frequency band obtained by the harmonic load pull circuit and the output impedance at the fundamental frequency into the improved simple The objective function in the real frequency technology matching algorithm, optimize the parameters of the objective function to obtain the fundamental wave output impedance objective function Fun_T that satisfies the optimized objective value; then solve the fundamental wave output impedance objective function Fun_T, and obtain several The output impedance matching network of the output optimization target value;

将工作频带的谐波频率以及负载牵引得到的谐波频率处的输出阻抗带入目标函数,得到谐波输出阻抗目标函数Har_T;根据所述若干个在基波频率处满足所述输出优化目标值的输出阻抗匹配网络,计算所述若干个输出阻抗匹配网络分别在谐波频率处的谐波输出阻抗目标函数Har_T的值;根据谐波输出阻抗目标函数值Har_T计算谐波输出阻抗目标误差函数Har_Terr的值:Bring the harmonic frequency of the working frequency band and the output impedance at the harmonic frequency obtained by load pulling into the objective function to obtain the harmonic output impedance objective function Har_T; satisfy the output optimization objective value at the fundamental frequency according to the several output impedance matching network, calculate the value of the harmonic output impedance target function Har_T of said several output impedance matching networks respectively at the harmonic frequency; calculate the harmonic output impedance target error function Har_Terr according to the harmonic output impedance target function value Har_T value of:

Har_Terr=1-Har_T (2)Har_Terr=1-Har_T (2)

对比若干个在基波频率处满足所述输出优化目标值的输出阻抗匹配网络所对应各自的谐波阻抗目标误差函数值的大小,挑选出谐波输出阻抗匹配误差值最小的匹配网络,该匹配网络即为高低阻抗传输线式输出匹配网络2;Comparing the size of the respective harmonic impedance target error function values corresponding to several output impedance matching networks that meet the output optimization target value at the fundamental frequency, and selecting the matching network with the smallest harmonic output impedance matching error value, the matching The network is the high and low impedance transmission line output matching network 2;

3)首先设置输入阻抗匹配网络在简易实频技术匹配算法中的输入优化目标值,将步骤1)中由负载牵引得到的工作频带以及基波、谐波频率处的输入阻抗载入到所述改进简易实频技术匹配算法中的目标函数,优化目标函数的参数得到满足优化目标值的基波输入阻抗目标函数Fun_T1;再对基波输入阻抗目标函数Fun_T1进行求解,得到若干个在基波频率处满足所述输入优化目标值的输入阻抗匹配网络;3) First set the input optimization target value of the input impedance matching network in the simple real-frequency technology matching algorithm, and load the working frequency band obtained by load pulling in step 1) and the input impedance at fundamental and harmonic frequencies into the Improve the objective function in the simple real-frequency technology matching algorithm, optimize the parameters of the objective function to obtain the fundamental wave input impedance objective function Fun_T1 that satisfies the optimized objective value; then solve the fundamental wave input impedance objective function Fun_T1 to obtain several an input impedance matching network that satisfies the input optimization target value;

将工作频带中的谐波频率及负载牵引得到的谐波频率处的输入阻抗带入目标函数,得到谐波输入阻抗目标函数Har_T1;根据所述若干个在基波频率处满足所述输入优化目标值的输入阻抗匹配网络,计算所述若干个输入阻抗匹配网络分别在谐波频率处的谐波输入阻抗目标函数Har_T1的值;根据谐波输入阻抗目标函数值Har_T1计算谐波输入阻抗目标误差函数Har_Terr1的值:Bring the harmonic frequency in the working frequency band and the input impedance at the harmonic frequency obtained by load pulling into the objective function to obtain the harmonic input impedance objective function Har_T1; satisfy the input optimization objective at the fundamental frequency according to the several value of the input impedance matching network, calculate the value of the harmonic input impedance target function Har_T1 of the several input impedance matching networks respectively at the harmonic frequency; calculate the harmonic input impedance target error function according to the harmonic input impedance target function value Har_T1 Value of Har_Terr1:

Har_Terr1=1-Har_T1 (3)Har_Terr1=1-Har_T1 (3)

对比若干个在基波频率处满足所述输入优化目标值的输入阻抗匹配网络所对应各自的谐波阻抗目标误差函数值的大小,挑选出谐波输入阻抗匹配误差值最小的匹配网络,该匹配网络即为高低阻抗传输线式输入匹配网络1;对于步骤3)中的输入匹配网络进行设计时,根据源谐波阻抗对整体效率的影响,可以只针对基波阻抗进行匹配。Comparing the size of the respective harmonic impedance target error function values corresponding to several input impedance matching networks that meet the input optimization target value at the fundamental frequency, and selecting the matching network with the smallest harmonic input impedance matching error value, the matching The network is the high and low impedance transmission line input matching network 1; when designing the input matching network in step 3), according to the influence of the source harmonic impedance on the overall efficiency, matching can be performed only for the fundamental impedance.

4)将步骤2)得到的高低阻抗传输线式输出匹配网络2与宽带输出馈电网络4连接,使得输出匹配网络能够产生开路状态;步骤3)中得到的高低阻抗传输线式输入匹配网络1与可调式输入馈电网络3连接;并且将高低阻抗传输线式输出匹配网络2、高低阻抗传输线式输入匹配网络1与功率放大器5连接,得到最终的逆F类功率放大器。4) Connect the high and low impedance transmission line type output matching network 2 obtained in step 2) with the broadband output feed network 4, so that the output matching network can generate an open circuit state; the high and low impedance transmission line type input matching network 1 obtained in step 3) can be connected to The tuned input feed network 3 is connected; and the high and low impedance transmission line output matching network 2, the high and low impedance transmission line input matching network 1 are connected to the power amplifier 5 to obtain the final reverse class F power amplifier.

将步骤2)和步骤3)中得到的输入输出匹配网络与馈电网络组合构成完整的输入输出匹配网络,并将带有馈电网络的输入输出馈电网络连接到已有的器件模型前后进行整体仿真,对得到的输入输出网络进行进一步优化,使得所设计的功率放大器在整个工作频带内具有最好的特性。对于输出馈电网络,使用串联第二扼流电感电感41,并联旁路电容(42、43、44)结构在功率放大器整个工作频带内都产生高的输入阻抗,对输出匹配网络产生开路状态,对于输入馈电网络,使用串联稳压电阻31和第一扼流电感32,可调节长度传输线33,以及并联旁路电容(34、35、36、37)结构实现宽带输入馈电网络。宽带输出馈电网络中的旁路电容(42、43、44)与可调式输入馈电网络中的旁路电容(34、35、36、37)均在电路中起到良好的旁路和滤波的作用。Combine the input-output matching network obtained in step 2) and step 3) with the feed network to form a complete input-output matching network, and connect the input-output feed network with the feed network to the existing device model before and after The whole simulation is used to further optimize the obtained input and output network, so that the designed power amplifier has the best characteristics in the whole working frequency band. For the output feed network, use the second choke inductance inductance 41 in series, and the parallel bypass capacitor (42, 43, 44) structure produces high input impedance in the entire operating frequency band of the power amplifier, and produces an open circuit state for the output matching network. For the input feed network, the broadband input feed network is realized by using the series voltage stabilizing resistor 31 and the first choke inductance 32, the adjustable length transmission line 33, and the parallel bypass capacitor (34, 35, 36, 37) structure. The bypass capacitors (42, 43, 44) in the broadband output feed network and the bypass capacitors (34, 35, 36, 37) in the adjustable input feed network all play a good role in bypassing and filtering in the circuit role.

下面列举一实施例:Enumerate an embodiment below:

本实施例中的功率放大器设计工作频段为1.7~2.8GHz,所用功率放大器5为氮化镓高电子迁移率管(GaN HEMT)CGH40010F。这里使用介电常数为3.5,厚度为30mil的板材来进行。设计利用ADS仿真软件得到功率放大器管在1.7~2.8GHz的基波输出阻抗在9.6+j*10.6Ω附近变动。为了得到高效率的逆F类工作状态,经仿真设定输出二次谐波为-j*199Ω,呈现高阻抗状态,三次谐波设定为-j*36Ω,呈现小阻抗短路状态。将这些阻抗带入改进的简易实频技术匹配算法中,设定截止频率参数fe的变化范围为0.6~6.6GHz,输出阻抗匹配网络在简易实频技术匹配算法中的输出优化目标值理论最大值为1,这里取0.8,算法中的阶数k设为6,TL1、TL2、TL3、TL4、TL5、TL6代表6段阻抗传输线,每段微带线长度均为6.15mm。得到输出匹配电路参数如表1,电路结构如图4所示:The power amplifier in this embodiment is designed to operate in a frequency band of 1.7-2.8 GHz, and the power amplifier 5 used is a Gallium Nitride High Electron Mobility Transistor (GaN HEMT) CGH40010F. Here, a plate with a dielectric constant of 3.5 and a thickness of 30mil is used. The design uses ADS simulation software to get the fundamental wave output impedance of the power amplifier tube at 1.7-2.8GHz to change around 9.6+j*10.6Ω. In order to obtain a high-efficiency inverse Class F working state, the second harmonic output is set to -j*199Ω by simulation, showing a high impedance state, and the third harmonic is set to -j*36Ω, showing a small impedance short circuit state. Bring these impedances into the improved simple real-frequency technology matching algorithm, set the variation range of the cut-off frequency parameter f e as 0.6-6.6GHz, and the output optimization target value of the output impedance matching network in the simple real-frequency technology matching algorithm is theoretically the largest The value is 1, here is 0.8, the order k in the algorithm is set to 6, TL1, TL2, TL3, TL4, TL5, TL6 represent 6 impedance transmission lines, and the length of each microstrip line is 6.15mm. The parameters of the output matching circuit are shown in Table 1, and the circuit structure is shown in Figure 4:

表1改进简易实频技术匹配算法fe Table 1 Improved Simple Real Frequency Technology Matching Algorithm f e

输入匹配网络与输出匹配网络设计方法相同,也采用6段阻抗传输线来进行匹配。使用改进的简易实频技术匹配方法得到的输入输出匹配网络还要和输入输出馈电网络连接。本实施例中,可调节式输入馈电网络中的电阻31和第一扼流电感32取值分别为100Ω和22nH,旁路电容取值(34、35、36、37)依次分别为18pF,39pF,100pF,和33000pF,宽带输出馈电网络中第二扼流电感41取为12nH,旁路电容值(42、43、44)依次分别为7.5pF,82pF和100pF。The design method of the input matching network is the same as that of the output matching network, and 6 sections of impedance transmission lines are also used for matching. The input and output matching network obtained by using the improved simple real frequency technology matching method is also connected with the input and output feed network. In this embodiment, the values of the resistor 31 and the first choke inductance 32 in the adjustable input feed network are 100Ω and 22nH respectively, and the values of the bypass capacitors (34, 35, 36, 37) are respectively 18pF in turn, 39pF, 100pF, and 33000pF, the second choke inductance 41 in the broadband output feed network is 12nH, and the bypass capacitors (42, 43, 44) are 7.5pF, 82pF, and 100pF respectively.

将改进的简易实频技术匹配方法得到的输入输出匹配网络(改进的简易实频技术匹配方法得到的输入网络即为高低阻抗传输线式输入匹配网络1,改进的简易实频技术匹配方法得到的输出网络即为高低阻抗传输线式输出匹配网络2)与功率放大器连接进行优化,调整使得功率放大器在1.7~2.8GHz频段内具有最好的工作特性。经优化过程后,输出匹配网络中的第六段传输线,因为与50欧姆较接近,又因为简易实频技术与一般的滤波器设计方法均使用低通滤波器概念,最后一段传输线可以看成LC低通滤波器中的电容效果,所以将这段微带线用具有容性作用的开路枝节线来代替。而在输入匹配网络调整中,为了实现宽带匹配,并保证整个带内的增益平坦度,原始的第一段高阻抗微带线被去掉,只留下5段微带传输线来实现匹配。最终优化得到的宽带逆F类高效率功率放大器电路结构如图1所示,最终在输入匹配网络中的第一传输线中的微带线尺寸为表1:The input and output matching network obtained by the improved simple real frequency technology matching method (the input network obtained by the improved simple real frequency technology matching method is the high and low impedance transmission line input matching network 1, and the output obtained by the improved simple real frequency technology matching method The network is a high and low impedance transmission line output matching network 2) The connection with the power amplifier is optimized, and the adjustment makes the power amplifier have the best working characteristics in the 1.7-2.8GHz frequency band. After the optimization process, the sixth transmission line in the output matching network is closer to 50 ohms, and because the simple real frequency technology and general filter design methods use the concept of low-pass filter, the last transmission line can be regarded as LC The capacitive effect in the low-pass filter, so this section of the microstrip line is replaced by an open-circuit stub line with a capacitive effect. In the adjustment of the input matching network, in order to achieve broadband matching and ensure the flatness of the gain in the entire band, the original first section of high-impedance microstrip line is removed, leaving only 5 sections of microstrip transmission line to achieve matching. The final optimized broadband inverse class F high efficiency power amplifier circuit structure is shown in Figure 1, and the final microstrip line size in the first transmission line in the input matching network is shown in Table 1:

表1:第一传输线中的微带线尺寸Table 1: Microstrip line dimensions in the first transmission line

最终在输出匹配网络中的第二传输线中的微带线尺寸为表2:The final microstrip line size in the second transmission line in the output matching network is Table 2:

表2:第二传输线中的微带线尺寸Table 2: Microstrip line dimensions in the second transmission line

图5是从功率放大器内部参考平面仿真得到的电流电压波形曲线,可以看到,电压波形虚线呈近似半正弦波形,而电流波形实线呈现渐变的方波波形。内部参考平面得到的电流电压波形图都表明了所设计功率放大器的连续逆F类工作类型,从侧面说明了设计方法的有效性,其中图中的虚线表示电压,实线表示电流。Figure 5 is the current and voltage waveform curve obtained from the simulation of the internal reference plane of the power amplifier. It can be seen that the dashed line of the voltage waveform is an approximate half-sine waveform, while the solid line of the current waveform is a gradually changing square wave waveform. The current and voltage waveform diagrams obtained from the internal reference plane all indicate the continuous inverse Class F operation type of the designed power amplifier, which illustrates the effectiveness of the design method from the side. The dotted line in the figure represents the voltage, and the solid line represents the current.

图6是本发明例连续逆F类高效率功率放大器在大信号(大信号为单音信号在输出功率大于30dbm以上)下的测试结果,其中包括它的增益,输出功率和漏极效率测试结果。测得的大信号增益为14.4~15.3dB,饱和功率在40.2~42.9dBm,超过额定10W功率,最高功率接近20W,远大于功率管额定输出功率,证明了匹配方法的有效性。在1.7~2.8GHz的漏极效率为60.3%~80.4%,其中峰值效率在2GHz,是目前所知的频率最高的连续逆F类高效率功率放大器。其次,最高效率达到80%以上,与文献二给出的最高83%效率接近,但是使用的板材是比其要高的介电常数为3.5的板材,而且工作频率比文献给出的2.35GHz高出450MHz。Fig. 6 is the test result of the continuous reverse class F high-efficiency power amplifier of the present invention under large signal (large signal is a single tone signal with output power greater than 30dbm), including its gain, output power and drain efficiency test results . The measured large-signal gain is 14.4-15.3dB, the saturation power is 40.2-42.9dBm, which exceeds the rated power of 10W, and the highest power is close to 20W, which is far greater than the rated output power of the power tube, which proves the effectiveness of the matching method. The drain efficiency at 1.7-2.8GHz is 60.3%-80.4%, and the peak efficiency is at 2GHz. It is the highest frequency continuous inverse class F high-efficiency power amplifier known so far. Secondly, the highest efficiency reaches more than 80%, which is close to the highest efficiency of 83% given in Document 2, but the plate used is a plate with a higher dielectric constant of 3.5, and the operating frequency is higher than the 2.35GHz given in the document out 450MHz.

文献二:《Design of broadband highly efficient harmonic-tuned poweramplifier using in-band continuous Class-F/F mode-transferring》Kenle Chen,Dimitrios Peroulis著,IEEE Transaction Microwave Theory Technique杂志第60卷,第12,4107–4116页,2012年12月。Literature 2: "Design of broadband highly efficient harmonic-tuned poweramplifier using in-band continuous Class-F/F mode-transferring" by Kenle Chen, Dimitrios Peroulis, IEEE Transaction Microwave Theory Technique, Vol. 60, No. 12, 4107–4116 Page, December 2012.

为验证本发明例的连续逆F类功率放大器在通信系统中的实际应用情况,我们使用100MHz的LTE-Advanced(long term evolution advanced)宽带调制信号对连续逆F类功率放大器进行激励,并对它进行数字预失真校正。图7给出它在协议频段2.55GHz,输出功率在32.1dBm,效率30.5%,数字预失真前后的功率谱密度测试结果。经过数字预失真,连续逆F类功率放大器的临近信道泄露功率比(ACLR)从-35.9/-34.0dBc改善到-46.4/-46.0dBc。根据LTE-Advanced协议标准,要求数字预失真之后的线性化结果要≤-45dBc。可以看出,设计的连续逆F类功率放大器完全符合且优于通信标准。同时,对于本发明例的连续逆F类高效率功率放大器在调制信号下的特性也进行了测量,得到结果如图8所示,所使用的仍然是100MHz宽带调制信号,测量了功率放大器输出功率从小到大,调制信号下的效率和左右边带的邻近信道泄露功率比。In order to verify the actual application of the continuous inverse class F power amplifier of the example of the present invention in the communication system, we use the LTE-Advanced (long term evolution advanced) broadband modulation signal of 100MHz to excite the continuous inverse class F power amplifier, and it Perform digital predistortion correction. Figure 7 shows its power spectral density test results before and after digital pre-distortion in the protocol frequency band of 2.55GHz, with an output power of 32.1dBm and an efficiency of 30.5%. After digital predistortion, the adjacent channel leakage power ratio (ACLR) of the continuous inverse class F power amplifier is improved from -35.9/-34.0dBc to -46.4/-46.0dBc. According to the LTE-Advanced protocol standard, the linearization result after digital predistortion is required to be ≤ -45dBc. It can be seen that the designed continuous inverse class F power amplifier fully meets and exceeds the communication standard. Simultaneously, the characteristics of the continuous inverse class F high-efficiency power amplifier of the example of the present invention are also measured under the modulation signal, and the result is as shown in Figure 8. What is used is still a 100MHz broadband modulation signal, and the output power of the power amplifier has been measured. From small to large, the efficiency under the modulated signal and the adjacent channel leakage power ratio of the left and right sidebands.

以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications are also possible. It should be regarded as the protection scope of the present invention.

Claims (4)

1.一种宽带高效率的连续逆F类功率放大器,其特征在于:包括功率放大器(5)、高低阻抗传输线式输入匹配网络(1)、高低阻抗传输线式输出匹配网络(2),可调式输入馈电网络(3)以及宽带输出馈电网络(4);高低阻抗传输线式输入匹配网络(1)中包括第一传输线;高低阻抗传输线式输出匹配网络(2)包括第二传输线;1. A continuous inverse class F power amplifier with high broadband efficiency is characterized in that: it comprises power amplifier (5), high and low impedance transmission line type input matching network (1), high and low impedance transmission line type output matching network (2), adjustable The input feed network (3) and the broadband output feed network (4); the high and low impedance transmission line type input matching network (1) includes a first transmission line; the high and low impedance transmission line type output matching network (2) includes a second transmission line; 所述高低阻抗传输线式输入匹配网络(1)包括第一传输线中顺序连接的第二高阻抗传输线(14)、第二低阻抗传输线(13)、第一高阻抗传输线(12)、第一低阻抗传输线(11);第一开路枝节线(15)与第一传输线的输入端并联;其中,第二高阻抗传输线(14)作为第一传输线的输入端,第一低阻抗传输线(11)作为第一传输线的输出端;第一传输线的输出端与功率放大器(5)的输入端连接;The high and low impedance transmission line type input matching network (1) comprises a second high impedance transmission line (14), a second low impedance transmission line (13), a first high impedance transmission line (12), a first low impedance transmission line connected sequentially in the first transmission line Impedance transmission line (11); the first open-circuit stub line (15) is connected in parallel with the input end of the first transmission line; wherein, the second high-impedance transmission line (14) is used as the input end of the first transmission line, and the first low-impedance transmission line (11) is used as The output end of the first transmission line; the output end of the first transmission line is connected with the input end of the power amplifier (5); 所述高低阻抗传输线式输出匹配网络(2)包括第二传输线中顺序连接的第三高阻抗传输线(21)、第三低阻抗传输线(22)、第四高阻抗传输线(23)、第四低阻抗传输线(24)和第五高阻抗传输线(25);第二开路枝节线(26)与第二传输线的输出端并联;其中,第三高阻抗传输线(21)作为第二传输线的输入端,第五高阻抗传输线(25)作为第二传输线的输出端;第二传输线的输入端与功率放大器(5)的输出端连接;The high and low impedance transmission line output matching network (2) includes a third high impedance transmission line (21), a third low impedance transmission line (22), a fourth high impedance transmission line (23), and a fourth low impedance transmission line sequentially connected in the second transmission line. Impedance transmission line (24) and the fifth high-impedance transmission line (25); The second open-circuit stub line (26) is connected in parallel with the output end of the second transmission line; Wherein, the third high-impedance transmission line (21) is used as the input end of the second transmission line, The fifth high-impedance transmission line (25) is used as the output end of the second transmission line; the input end of the second transmission line is connected with the output end of the power amplifier (5); 所述可调式输入馈电网络包括电阻(31)、第一扼流电感(32)、可调节长度传输线(33)以及N个旁路电容;电阻(31)的一端与第一传输线的输出端连接;电阻(31)的另一端通过第一扼流电感(32)与可调节长度传输线(33)的一端连接;可调节长度传输线(33)的另一端分别与N个旁路电容的一端连接,其N个旁路电容的另一端均接地,N≥4,且N为正整数;所述可调节长度传输线(33)包括相互平行的输出线(331)和输入线(333),在输出线(331)和输入线(333)之间设置有a条相互平行的传输线(332),并且传输线(332)与输出线(331)垂直;其中a为≥2,并且a为正整数;The adjustable input feed network includes a resistor (31), a first choke inductance (32), an adjustable length transmission line (33) and N bypass capacitors; one end of the resistor (31) is connected to the output end of the first transmission line connection; the other end of the resistor (31) is connected to one end of the adjustable-length transmission line (33) through the first choke inductance (32); the other end of the adjustable-length transmission line (33) is respectively connected to one end of N bypass capacitors , the other ends of the N bypass capacitors are all grounded, N≥4, and N is a positive integer; the adjustable-length transmission line (33) includes output lines (331) and input lines (333) parallel to each other, at the output A parallel transmission line (332) is arranged between the line (331) and the input line (333), and the transmission line (332) is perpendicular to the output line (331); wherein a is ≥ 2, and a is a positive integer; 所述宽带输出馈电网络包括第二扼流电感(41)、以及M个旁路电容;所述第二扼流电感(41)的一端连接在第三高阻抗传输线(21)与第三低阻抗传输线(22)间;所述第二扼流电感(41)的另一端分别与M个旁路电容的一端连接,其M个旁路电容的另一端均接地,所述M≥3,且M为正整数;The broadband output feed network includes a second choke inductance (41) and M bypass capacitors; one end of the second choke inductance (41) is connected between the third high-impedance transmission line (21) and the third low-impedance transmission line (21). Between the impedance transmission lines (22); the other end of the second choke inductance (41) is respectively connected to one end of M bypass capacitors, and the other ends of the M bypass capacitors are all grounded, and the M≥3, and M is a positive integer; 所述第一传输线的输入端即为连续逆F类功率放大器的输入端,所述第二传输线的输出端即为连续逆F类功率放大器的输出端。The input end of the first transmission line is the input end of the continuous inverse class F power amplifier, and the output end of the second transmission line is the output end of the continuous inverse class F power amplifier. 2.根据权利要求1所述一种宽带高效率的连续逆F类功率放大器,其特征在于:所述第一传输线的输入端和第二传输线的输出端均串联一个耦合电容(6)。2. a kind of broadband high-efficiency continuous inverse class F power amplifier according to claim 1, is characterized in that: the input end of described first transmission line and the output end of the second transmission line all connect a coupling capacitance (6). 3.根据权利要求1所述的一种宽带高效率的连续逆F类功率放大器,其特征在于:所述功率放大器(5)采用氮化镓高电子迁移率管。3. A continuous inverse class F power amplifier with high broadband and high efficiency according to claim 1, characterized in that: said power amplifier (5) adopts gallium nitride high electron mobility tube. 4.一种宽带高效率的连续逆F类功率放大器设计方法,其特征在于,包括以下步骤:4. a continuous inverse class F power amplifier design method of broadband high efficiency, is characterized in that, comprises the following steps: 1)利用仿真软件中的谐波负载牵引电路,得到功率放大器(5)的工作频带以及在三次谐波频率以内的谐波频率处的谐波输入、输出阻抗和基波频率处的输入、输出阻抗;所述工作频带包括谐波频率和基波频率;1) Utilize the harmonic load-pull circuit in the simulation software to obtain the operating frequency band of the power amplifier (5) and the harmonic input at the harmonic frequency within the third harmonic frequency, the output impedance and the input and output at the fundamental frequency Impedance; the operating frequency band includes harmonic frequencies and fundamental frequencies; 2)将传统简易实频技术中的截止频率参数fe由单值改为一组由低到高的频率取值范围,从而得到改进的简易实频技术匹配算法,所述从低到高的频率取值范围中的最低值不小于功率放大器的工作频带中的最低频率值,最高值不大于步骤1)中的三次谐波频率;2) Change the cut-off frequency parameter f e in the traditional simple real frequency technology from a single value to a set of frequency value ranges from low to high, thereby obtaining an improved simple real frequency technology matching algorithm, the low to high The lowest value in the frequency range is not less than the lowest frequency value in the working frequency band of the power amplifier, and the highest value is not greater than the third harmonic frequency in step 1); 首先设置输出阻抗匹配网络在简易实频技术匹配算法中的输出优化目标值,将谐波负载牵引电路得到的工作频带的基波频率以及基波频率处的输出阻抗载入到所述的改进简易实频技术匹配算法中的目标函数,优化目标函数的参数得到满足优化目标值的基波输出阻抗目标函数Fun_T;再对基波输出阻抗目标函数Fun_T进行求解,得到若干个在基波频率处满足所述输出优化目标值的输出阻抗匹配网络;First, set the output optimization target value of the output impedance matching network in the simple real frequency technology matching algorithm, and load the fundamental frequency of the working frequency band obtained by the harmonic load pull circuit and the output impedance at the fundamental frequency into the improved simple The objective function in the real frequency technology matching algorithm, optimize the parameters of the objective function to obtain the fundamental wave output impedance objective function Fun_T that satisfies the optimized objective value; then solve the fundamental wave output impedance objective function Fun_T, and obtain several The output impedance matching network of the output optimization target value; 将工作频带的谐波频率以及负载牵引得到的谐波频率处的输出阻抗带入目标函数,得到谐波输出阻抗目标函数Har_T;根据所述若干个在基波频率处满足所述输出优化目标值的输出阻抗匹配网络,计算所述若干个输出阻抗匹配网络分别在谐波频率处的谐波输出阻抗目标函数Har_T的值;根据谐波输出阻抗目标函数值Har_T计算谐波输出阻抗目标误差函数Har_Terr的值:Bring the harmonic frequency of the working frequency band and the output impedance at the harmonic frequency obtained by load pulling into the objective function to obtain the harmonic output impedance objective function Har_T; satisfy the output optimization objective value at the fundamental frequency according to the several output impedance matching network, calculate the value of the harmonic output impedance target function Har_T of said several output impedance matching networks respectively at the harmonic frequency; calculate the harmonic output impedance target error function Har_Terr according to the harmonic output impedance target function value Har_T value of: Har_Terr=1-Har_THar_Terr=1-Har_T 对比若干个在基波频率处满足所述输出优化目标值的输出阻抗匹配网络所对应各自的谐波阻抗目标误差函数值的大小,挑选出谐波输出阻抗匹配误差值最小的匹配网络,该匹配网络即为高低阻抗传输线式输出匹配网络(2);Comparing the size of the respective harmonic impedance target error function values corresponding to several output impedance matching networks that meet the output optimization target value at the fundamental frequency, and selecting the matching network with the smallest harmonic output impedance matching error value, the matching The network is a high and low impedance transmission line output matching network (2); 3)首先设置输入阻抗匹配网络在简易实频技术匹配算法中的输入优化目标值,将步骤1)中由负载牵引得到的工作频带以及基波、谐波频率处的输入阻抗载入到所述改进简易实频技术匹配算法中的目标函数,优化目标函数的参数得到满足优化目标值的基波输入阻抗目标函数Fun_T1;再对基波输入阻抗目标函数Fun_T1进行求解,得到若干个在基波频率处满足所述输入优化目标值的输入阻抗匹配网络;3) First set the input optimization target value of the input impedance matching network in the simple real-frequency technology matching algorithm, and load the working frequency band obtained by load pulling in step 1) and the input impedance at fundamental and harmonic frequencies into the Improve the objective function in the simple real-frequency technology matching algorithm, optimize the parameters of the objective function to obtain the fundamental wave input impedance objective function Fun_T1 that satisfies the optimized objective value; then solve the fundamental wave input impedance objective function Fun_T1 to obtain several an input impedance matching network that satisfies the input optimization target value; 将工作频带中的谐波频率及负载牵引得到的谐波频率处的输入阻抗带入目标函数,得到谐波输入阻抗目标函数Har_T1;根据所述若干个在基波频率处满足所述输入优化目标值的输入阻抗匹配网络,计算所述若干个输入阻抗匹配网络分别在谐波频率处的谐波输入阻抗目标函数Har_T1的值;根据谐波输入阻抗目标函数值Har_T1计算谐波输入阻抗目标误差函数Har_Terr1的值:Bring the harmonic frequency in the working frequency band and the input impedance at the harmonic frequency obtained by load pulling into the objective function to obtain the harmonic input impedance objective function Har_T1; satisfy the input optimization objective at the fundamental frequency according to the several value of the input impedance matching network, calculate the value of the harmonic input impedance target function Har_T1 of the several input impedance matching networks respectively at the harmonic frequency; calculate the harmonic input impedance target error function according to the harmonic input impedance target function value Har_T1 Value of Har_Terr1: Har_Terr1=1-Har_T1Har_Terr1=1-Har_T1 对比若干个在基波频率处满足所述输入优化目标值的输入阻抗匹配网络所对应各自的谐波阻抗目标误差函数值的大小,挑选出谐波输入阻抗匹配误差值最小的匹配网络,该匹配网络即为高低阻抗传输线式输入匹配网络(1);Comparing the size of the respective harmonic impedance target error function values corresponding to several input impedance matching networks that meet the input optimization target value at the fundamental frequency, and selecting the matching network with the smallest harmonic input impedance matching error value, the matching The network is a high and low impedance transmission line input matching network (1); 4)将步骤2)得到的高低阻抗传输线式输出匹配网络(2)与宽带输出馈电网络(4)连接,使得输出匹配网络能够产生开路状态;步骤3)中得到的高低阻抗传输线式输入匹配网络(1)与可调式输入馈电网络(3)连接;并且将高低阻抗传输线式输出匹配网络(2)、高低阻抗传输线式输入匹配网络(1)与功率放大器(5)连接,得到最终的逆F类功率放大器。4) Connect the high and low impedance transmission line type output matching network (2) obtained in step 2) with the broadband output feed network (4), so that the output matching network can generate an open circuit state; the high and low impedance transmission line type input matching network obtained in step 3) The network (1) is connected with the adjustable input feed network (3); and the high and low impedance transmission line output matching network (2), the high and low impedance transmission line input matching network (1) are connected with the power amplifier (5) to obtain the final Inverse class F power amplifier.
CN201510092406.1A 2015-02-28 2015-02-28 Continuous inverse F power-like amplifiers and its design method of a kind of broadband high-efficiency Active CN104617896B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510092406.1A CN104617896B (en) 2015-02-28 2015-02-28 Continuous inverse F power-like amplifiers and its design method of a kind of broadband high-efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510092406.1A CN104617896B (en) 2015-02-28 2015-02-28 Continuous inverse F power-like amplifiers and its design method of a kind of broadband high-efficiency

Publications (2)

Publication Number Publication Date
CN104617896A CN104617896A (en) 2015-05-13
CN104617896B true CN104617896B (en) 2017-07-28

Family

ID=53152220

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510092406.1A Active CN104617896B (en) 2015-02-28 2015-02-28 Continuous inverse F power-like amplifiers and its design method of a kind of broadband high-efficiency

Country Status (1)

Country Link
CN (1) CN104617896B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2788717T3 (en) * 2015-11-09 2020-10-22 Ericsson Telefon Ab L M An amplifier circuit to compensate an output signal from a circuit
CN106208972B (en) * 2016-08-22 2018-07-17 深圳市华讯方舟微电子科技有限公司 A kind of the harmonic power amplifying circuit and radio-frequency power amplifier in the high broadband of high efficiency
CN108736832B (en) * 2017-04-14 2024-04-26 天津大学(青岛)海洋工程研究院有限公司 Novel high-efficiency inverse F-class power amplifier multiple harmonic matching circuit
CN107547057A (en) * 2017-07-21 2018-01-05 深圳市景程信息科技有限公司 Inverse F power-like amplifiers based on double structure
CN207124611U (en) * 2017-07-21 2018-03-20 深圳市景程信息科技有限公司 Two-wire is against F power-like amplifiers
CN108052733A (en) * 2017-12-11 2018-05-18 湖南时变通讯科技有限公司 A kind of circuit design method and device
CN108683411B (en) * 2018-06-15 2023-10-27 成都嘉纳海威科技有限责任公司 High-efficiency continuous F-type power amplifier based on transistor stacking technology
CN109660210B (en) * 2018-11-16 2023-01-13 天津大学 Harmonic injection theory suitable for inverse class-F high-efficiency power amplifier
US10666207B1 (en) * 2018-11-16 2020-05-26 Cree, Inc. Broadband harmonic matching network using low-pass type broadband matching
CN110048682A (en) * 2019-04-17 2019-07-23 杭州电子科技大学富阳电子信息研究院有限公司 A kind of broadband continuous type power amplifier and design method based on multiple stage secondary harmonic controling
CN110222414B (en) * 2019-06-03 2023-03-24 杭州电子科技大学温州研究院有限公司 Method for improving power of CPT transmission circuit
CN110545078B (en) * 2019-07-18 2023-03-24 电子科技大学 Microstrip power amplifier
CN112787605A (en) * 2020-12-31 2021-05-11 四川天巡半导体科技有限责任公司 Power device based on integrated internal matching circuit and processing method thereof
CN113114132B (en) * 2021-03-12 2023-02-14 华南理工大学 Power amplifier and communication equipment suitable for 5G basic station
CN113078882A (en) * 2021-03-31 2021-07-06 绵阳天赫微波科技有限公司 18-40GHz power amplifier module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201854245U (en) * 2010-11-30 2011-06-01 东南大学 Inverse Class F Power Amplifier Based on 3/4 Spiral Virtual Ground Structure
CN203457111U (en) * 2013-08-30 2014-02-26 电子科技大学 Class-AB/inverse class-F multi-mode power amplifier based on high-electron-mobility gallium nitride transistor
CN104300925A (en) * 2014-10-24 2015-01-21 天津大学 A High Efficiency Class F/Inverse Class F Power Amplifier

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101399053B1 (en) * 2007-06-05 2014-05-28 포항공과대학교 산학협력단 Apparatus and method for power amplification in envelope elimination and restoration power transmitter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201854245U (en) * 2010-11-30 2011-06-01 东南大学 Inverse Class F Power Amplifier Based on 3/4 Spiral Virtual Ground Structure
CN203457111U (en) * 2013-08-30 2014-02-26 电子科技大学 Class-AB/inverse class-F multi-mode power amplifier based on high-electron-mobility gallium nitride transistor
CN104300925A (en) * 2014-10-24 2015-01-21 天津大学 A High Efficiency Class F/Inverse Class F Power Amplifier

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GaN逆F类高效率功率放大器及线性化研究;徐樱杰等;《电子与信息学报》;20120430;第34卷(第4期);第981-985页 *
输入端谐波抑制S波段高效率F类功率放大器的研究;张量等;《中国科学技术大学学报》;20130430;第43卷(第4期);第340-344页 *

Also Published As

Publication number Publication date
CN104617896A (en) 2015-05-13

Similar Documents

Publication Publication Date Title
CN104617896B (en) Continuous inverse F power-like amplifiers and its design method of a kind of broadband high-efficiency
CN109672411B (en) Asymmetric broadband Doherty power amplifier suitable for 5G low-frequency band full frequency band
CN107425814B (en) Broadband Doherty power amplifier based on compensation parasitic capacitance
CN111384901B (en) A Broadband High Efficiency Three-way Doherty Power Amplifier Based on Post-Matching Network
CN110708701B (en) A broadband radio frequency power amplifier design method and 5G low frequency radio frequency power amplifier
CN103490733B (en) A kind of Double-frequency-banDoherty Doherty power amplifier of frequency ratio 1.25 to 2.85
CN110365301A (en) An Inverse Class-E RF Power Amplifier for 5G
CN107332527A (en) A kind of efficient broadband J power-like amplifier implementation methods based on compact output matching network
CN104579178A (en) Broadband input matching based improved doherty power amplifier
CN112838833B (en) F-class power amplifier based on hairpin-type micro-band-pass filter and design method
CN107508565B (en) A Wideband Power Amplifier Operating in Discontinuous Bands
CN113162554A (en) Harmonic control-based hybrid high-efficiency power amplifier and design method thereof
CN110708029A (en) Dual-band different-direction power amplifier based on unequal-length transmission lines and design method thereof
Gowrish et al. Broad-band matching network using band-pass filter with device parasitic absorption
CN115001420A (en) Broadband out-phase radio frequency power amplifier based on unified design theory
CN115001406A (en) A dual-frequency large fallback Doherty power amplifier and its design method
CN116707461A (en) Doherty power amplifier based on coupled line structure
Piazzon et al. A method for designing broadband Doherty power amplifiers
Meng et al. A broadband high-efficiency Doherty power amplifier with continuous inverse class-F design
CN217607779U (en) Double-frequency large-back-off Doherty power amplifier
Wu et al. A wideband 0.7–2.2 GHz tunable power amplifier with over 64% efficiency based on high-Q second harmonic loading
CN214756255U (en) Mixed efficient power amplifier based on harmonic control
Shao et al. Dual-band microwave power amplifier design using GaN transistors
CN109067364B (en) Doherty power amplifier with broadband and efficient output
CN110380691A (en) A kind of power amplification circuit and device based on Doherty power amplifier

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant