CN109067364B - Doherty power amplifier with broadband and efficient output - Google Patents
Doherty power amplifier with broadband and efficient output Download PDFInfo
- Publication number
- CN109067364B CN109067364B CN201810577902.XA CN201810577902A CN109067364B CN 109067364 B CN109067364 B CN 109067364B CN 201810577902 A CN201810577902 A CN 201810577902A CN 109067364 B CN109067364 B CN 109067364B
- Authority
- CN
- China
- Prior art keywords
- power amplifier
- line
- compensation
- transmission line
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0288—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/42—Modifications of amplifiers to extend the bandwidth
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/56—Modifications of input or output impedances, not otherwise provided for
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/217—Class D power amplifiers; Switching amplifiers
- H03F3/2176—Class E amplifiers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Abstract
本发明公开了一种宽频高效输出的Doherty功率放大器,包括功率分配器、移相器、主功率放大器、辅助功率放大器、补偿网络和负载调制网络;所述功率分配器的输出端连接到移相器的输入端,所述移相器的输出端分别连接到主功率放大器和辅助功率放大器的输入端,所述主功率放大器和辅助功率放大器的输出端均通过补偿网络连接到负载调制网络的输入端。相比于传统技术,本发明结构简便,方便实施,可使Doherty功率放大器在宽频范围内仍能保持高效率输出特性。
The invention discloses a wide-band high-efficiency output Doherty power amplifier, comprising a power divider, a phase shifter, a main power amplifier, an auxiliary power amplifier, a compensation network and a load modulation network; the output end of the power divider is connected to the phase shifter The input terminal of the phase shifter is connected to the input terminal of the main power amplifier and the auxiliary power amplifier respectively, and the output terminals of the main power amplifier and the auxiliary power amplifier are connected to the input terminal of the load modulation network through the compensation network. end. Compared with the traditional technology, the present invention is simple in structure and convenient in implementation, so that the Doherty power amplifier can still maintain high-efficiency output characteristics in a wide frequency range.
Description
技术领域technical field
本发明涉及无线通信领域,更具体地,涉及一种宽频高效输出的Doherty功率放大器。The present invention relates to the field of wireless communication, and more particularly, to a Doherty power amplifier with wide-band and high-efficiency output.
背景技术Background technique
射频功率放大器是无线系统的重要组件,随着无线通信技术的不断发展,通信系统中的数据传输速率及信道容量不断提高,这对功率放大器的设计提出了新的要求。效率和带宽是功率放大器的两个核心指标,拓展带宽能使通信设备支持更多的带宽制式与传输协议,而提高效率能够减小能量的损耗。The RF power amplifier is an important component of the wireless system. With the continuous development of wireless communication technology, the data transmission rate and channel capacity of the communication system are continuously improved, which puts forward new requirements for the design of the power amplifier. Efficiency and bandwidth are the two core indicators of power amplifiers. Expanding the bandwidth can enable communication equipment to support more bandwidth formats and transmission protocols, and improving efficiency can reduce energy loss.
在对高峰均比调制信号进行传输时,为了减小信号的非线性失真,常常使用功率回退技术,使信号远离功率放大器的饱和区。传统功率放大器的效率会随着输出功率的回退急剧下降,由于Doherty功率放大器可以在回退功率范围内保持高效率,因此被广泛运用在通信系统中。在传统的Doherty功率放大器中,一般在两路功放之前使用补偿线来调节其相位特性,由于补偿线的相位随频率变化得较剧烈,导致两路功率放大器的相位差会随着频率的变化而剧烈变化,从而导致两路功放合路后的输出效率剧烈下降,无法在宽频带范围内保持高效率输出特性。When transmitting a high-to-average ratio modulated signal, in order to reduce the nonlinear distortion of the signal, a power back-off technique is often used to keep the signal away from the saturation region of the power amplifier. The efficiency of the traditional power amplifier will drop sharply with the backoff of the output power. Since the Doherty power amplifier can maintain high efficiency within the backoff power range, it is widely used in communication systems. In traditional Doherty power amplifiers, compensation lines are generally used to adjust the phase characteristics before the two power amplifiers. Since the phase of the compensation lines changes sharply with the frequency, the phase difference between the two power amplifiers will change with the frequency. drastic changes, resulting in a sharp drop in the output efficiency of the two-way power amplifiers combined, and it is impossible to maintain high-efficiency output characteristics in a wide frequency range.
发明内容SUMMARY OF THE INVENTION
为了解决上述问题,本发明的目的是提供一种宽频高效输出的Doherty功率放大器,在宽频范围内仍然能够使Doherty功率放大器保持高效率输出。In order to solve the above problems, the purpose of the present invention is to provide a Doherty power amplifier with a wide frequency and high efficiency output, which can still keep the high efficiency output of the Doherty power amplifier in a wide frequency range.
为了弥补现有技术的不足,本发明采用的技术方案是:In order to make up for the deficiencies in the prior art, the technical scheme adopted in the present invention is:
一种宽频高效输出的Doherty功率放大器,包括功率分配器、移相器、主功率放大器、辅助功率放大器、补偿网络和负载调制网络;所述功率分配器的输出端连接到移相器的输入端,所述移相器的输出端分别连接到主功率放大器和辅助功率放大器的输入端,所述主功率放大器和辅助功率放大器的输出端均通过补偿网络连接到负载调制网络的输入端。A broadband high-efficiency output Doherty power amplifier, comprising a power divider, a phase shifter, a main power amplifier, an auxiliary power amplifier, a compensation network and a load modulation network; the output end of the power divider is connected to the input end of the phase shifter , the output terminals of the phase shifter are respectively connected to the input terminals of the main power amplifier and the auxiliary power amplifier, and the output terminals of the main power amplifier and the auxiliary power amplifier are both connected to the input terminal of the load modulation network through the compensation network.
进一步,所述移相器包括移相线和参考线;所述移相线的输入端连接到功率分配器的第一输出端,且输出端连接到主功率放大器的输入端;所述参考线的输入端连接到功率分配器的第二输出端,且输出端连接到辅助功率放大器的输入端。Further, the phase shifter includes a phase shift line and a reference line; the input end of the phase shift line is connected to the first output end of the power divider, and the output end is connected to the input end of the main power amplifier; the reference line The input end is connected to the second output end of the power divider, and the output end is connected to the input end of the auxiliary power amplifier.
进一步,所述补偿网络包括补偿线TL1、补偿线TL2和阻抗变换线TL3,所述阻抗变换线TL3两端分别连接到补偿线TL1、补偿线TL2的输出端;所述主功率放大器的输出端通过补偿线TL1和阻抗变换线TL3、辅助功率放大器的输出端通过补偿线TL2连接到负载调制网络的输入端。Further, the compensation network includes a compensation line TL1, a compensation line TL2 and an impedance transformation line TL3, and both ends of the impedance transformation line TL3 are respectively connected to the output ends of the compensation line TL1 and the compensation line TL2; the output end of the main power amplifier Through the compensation line TL1 and the impedance transformation line TL3, the output end of the auxiliary power amplifier is connected to the input end of the load modulation network through the compensation line TL2.
进一步,所述移相线采用T型结构,包括传输线TL8、开路枝节TL9和传输线TL10,所述传输线TL8、开路枝节TL9和传输线TL10两两连接,所述传输线TL8的一端连接到功率分配器的第一输出端,所述开路枝节TL9的一端连接到主功率放大器的输入端。Further, the phase shifting line adopts a T-shaped structure, including a transmission line TL8, an open branch TL9 and a transmission line TL10, the transmission line TL8, the open branch TL9 and the transmission line TL10 are connected in pairs, and one end of the transmission line TL8 is connected to the power divider. The first output end, one end of the open-circuit branch TL9 is connected to the input end of the main power amplifier.
进一步,所述负载调制网络包括依次串接的传输线TL4、传输线TL5、传输线TL6、传输线TL7和负载电阻RL,所述传输线TL4分别连接到补偿线TL2和阻抗变换线TL3,所述负载电阻RL连接到参考地。Further, the load modulation network includes a transmission line TL4, a transmission line TL5, a transmission line TL6, a transmission line TL7 and a load resistor RL connected in series in sequence, the transmission line TL4 is respectively connected to the compensation line TL2 and the impedance transformation line TL3, and the load resistance RL is connected to to the reference location.
优选地,所述补偿线TL1和补偿线TL2的特性阻抗均为50欧姆。Preferably, the characteristic impedances of the compensation line TL1 and the compensation line TL2 are both 50 ohms.
优选地,所述传输线TL8和传输线TL10的特性阻抗和电长度均相同。Preferably, the characteristic impedance and electrical length of the transmission line TL8 and the transmission line TL10 are the same.
优选地,所述负载调制网络为切比雪夫阻抗变换网络。Preferably, the load modulation network is a Chebyshev impedance transformation network.
优选地,所述功率分配器为不等分Wilkinson功率分配器。Preferably, the power divider is an unequal Wilkinson power divider.
优选地,所述主功率放大器和辅助功率放大器均为逆F类功率放大器。Preferably, the main power amplifier and the auxiliary power amplifier are both inverse class F power amplifiers.
本发明的有益效果是:采用移相器结构代替传统技术中设置于主功率放大器与辅助功率放大器之前的补偿线结构,能够使此两条支路随频率变化的相位差的变化程度减小,进而使Doherty功率放大器始终保持高效率输出;补偿网络可以使两路功放输出形成合路,再通过负载调制网络输出到外部,从而实现通信。因此,本发明结构简便,方便实施,可使Doherty功率放大器在宽频范围内仍能保持高效率输出特性。The beneficial effect of the present invention is that the phase shifter structure is used to replace the compensation line structure arranged before the main power amplifier and the auxiliary power amplifier in the traditional technology, so that the change degree of the phase difference of the two branches with the frequency change can be reduced, In this way, the Doherty power amplifier can always maintain high-efficiency output; the compensation network can make the output of the two power amplifiers form a combined circuit, and then output to the outside through the load modulation network to realize communication. Therefore, the present invention has a simple structure and is convenient to implement, so that the Doherty power amplifier can still maintain high-efficiency output characteristics in a wide frequency range.
附图说明Description of drawings
下面结合附图给出本发明较佳实施例,以详细说明本发明的实施方案。The preferred embodiments of the present invention are given below in conjunction with the accompanying drawings to illustrate the embodiments of the present invention in detail.
图1是本发明的结构原理图;Fig. 1 is the structural principle diagram of the present invention;
图2是将本发明与传统Doherty功率放大器相比,两路功放相位差的对比曲线图;Fig. 2 is to compare the present invention with the traditional Doherty power amplifier, the contrast curve diagram of the phase difference of two-way power amplifiers;
图3是将本发明与传统Doherty功率放大器相比,在饱和输出功率状态下的最大漏极效率的对比曲线图。FIG. 3 is a graph comparing the maximum drain efficiency at a saturated output power state comparing the present invention with a conventional Doherty power amplifier.
具体实施方式Detailed ways
参照图1,本发明的一种宽频高效输出的Doherty功率放大器,包括功率分配器PD、移相器1、主功率放大器PA1、辅助功率放大器PA2、补偿网络2和负载调制网络3;所述功率分配器PD的输出端连接到移相器1的输入端,所述移相器1的输出端分别连接到主功率放大器PA1和辅助功率放大器PA2的输入端,所述主功率放大器PA1和辅助功率放大器PA2的输出端均通过补偿网络2连接到负载调制网络3的输入端。Referring to FIG. 1 , a broadband and high-efficiency output Doherty power amplifier of the present invention includes a power divider PD, a phase shifter 1, a main power amplifier PA1, an auxiliary power amplifier PA2, a
优选地,所述负载调制网络3为切比雪夫阻抗变换网络。Preferably, the
优选地,所述功率分配器PD为不等分Wilkinson功率分配器。Preferably, the power divider PD is an unequal Wilkinson power divider.
优选地,所述主功率放大器PA1和辅助功率放大器PA2均为逆F类功率放大器,其输出匹配网络既满足基波最优匹配条件,又对奇次谐波呈现接近无穷小的阻抗,对偶次谐波呈现接近无穷大的阻抗,从而使在晶体管内部平面的电流呈现方波,电压呈现半正弦波,且两者之间呈现出一定的角度关系,这样电压与电流的时域重叠的减小,就能使直流消耗能量减小,从而提升效率;主功率放大器PA1在任何输入功率条件下均可开启,辅助功率放大器PA2在Doherty功率放大器的输出功率回退到6dB点处开启。Preferably, the main power amplifier PA1 and the auxiliary power amplifier PA2 are both inverse class F power amplifiers, and their output matching network not only satisfies the optimal matching conditions of the fundamental wave, but also presents an infinitesimal impedance to odd harmonics, and even harmonics The wave presents an impedance close to infinity, so that the current in the internal plane of the transistor presents a square wave, the voltage presents a half-sine wave, and there is a certain angular relationship between the two, so that the time domain overlap between the voltage and the current is reduced. It can reduce the DC energy consumption and improve the efficiency; the main power amplifier PA1 can be turned on under any input power condition, and the auxiliary power amplifier PA2 is turned on when the output power of the Doherty power amplifier falls back to 6dB.
具体地,传统Doherty功率放大器的工作原理是公知的,其中主功率放大器PA1与辅助功率放大器PA2的相位关系主要由补偿线决定,而传统的补偿线,其相位特性随频率的变化呈线性关系,在中心频率处,可以通过调节补偿线的长度来获得最优相位,使主功率放大器PA1与辅助功率放大器PA2处于最佳合路状态,但当工作频率偏移中心频率时,一般体现在工作范围两端,即宽频范围内,两条支路的相位差会随频率的变化而剧烈变化,会较大程度地影响合路效率;Specifically, the working principle of the traditional Doherty power amplifier is well known, in which the phase relationship between the main power amplifier PA1 and the auxiliary power amplifier PA2 is mainly determined by the compensation line, while the phase characteristic of the traditional compensation line is linear with the change of frequency, At the center frequency, the optimal phase can be obtained by adjusting the length of the compensation line, so that the main power amplifier PA1 and the auxiliary power amplifier PA2 are in the best combined state, but when the operating frequency deviates from the center frequency, it is generally reflected in the operating range At both ends, that is, in the wide frequency range, the phase difference between the two branches will change drastically with the change of frequency, which will greatly affect the combining efficiency;
采用移相器1代替传统技术中设置于主功率放大器PA1与辅助功率放大器PA2之前的补偿线结构,能够使此两条支路随频率变化的相位差的变化程度减小,进而使Doherty功率放大器始终保持高效率输出;补偿网络2可以使两路功放输出形成合路,再通过负载调制网络3输出到外部,从而实现通信。因此,本发明结构简便,方便实施,可使Doherty功率放大器在宽频范围内仍能保持高效率输出特性;Using the phase shifter 1 to replace the compensation line structure arranged before the main power amplifier PA1 and the auxiliary power amplifier PA2 in the traditional technology can reduce the change degree of the phase difference of the two branches with the frequency change, thereby making the Doherty power amplifier Always maintain high-efficiency output; the
根据实验可得,参照图3,在饱和输出功率状态下,在2.45GHz到2.65GHz的频段范围内,即在中心频段范围内,本发明的最大漏极效率比传统Doherty功率放大器的最大漏极效率略微降低,但是在1.9GHz到2.45GHz的频段范围与2.65GHz到3.0GHz的频段范围内,即在宽频范围内,本发明的最大漏极效率相较传统Doherty功率放大器的有较大程度的提升,并且在2.2GHz到2.7GHz频率范围内的最大漏极效率保持在70%以上。According to the experiment, referring to FIG. 3 , in the saturated output power state, in the frequency range of 2.45GHz to 2.65GHz, that is, in the center frequency range, the maximum drain efficiency of the present invention is higher than that of the conventional Doherty power amplifier. The efficiency is slightly lower, but in the frequency range of 1.9GHz to 2.45GHz and the frequency range of 2.65GHz to 3.0GHz, that is, in the wide frequency range, the maximum drain efficiency of the present invention is greater than that of the conventional Doherty power amplifier. improved and the maximum drain efficiency remained above 70% in the 2.2GHz to 2.7GHz frequency range.
进一步,参照图1,所述移相器1包括移相线11和参考线Q;所述移相线11的输入端连接到功率分配器PD的第一输出端,且输出端连接到主功率放大器PA1的输入端;所述参考线Q的输入端连接到功率分配器PD的第二输出端,且输出端连接到辅助功率放大器PA2的输入端。Further, referring to FIG. 1 , the phase shifter 1 includes a
优选地,参考线Q采用普通的传输线即可;移相器1的设计中心频率为2.5GHz,按照原始补偿线所需的相位差为80度,设计出移相器1在此频点下的相位差也为80度,由图2可知,原始补偿线的相位随着频率发生线性变化,当输入信号频率偏离中心频率时,这个相位差的变化较大,而采用移相器1之后,可以看出两条支路的相位差的变化程度明显减缓,从而使Doherty功率放大器在频带内的合路效率提高。Preferably, the reference line Q can be an ordinary transmission line; the design center frequency of the phase shifter 1 is 2.5GHz, and the phase difference required by the original compensation line is 80 degrees. The phase difference is also 80 degrees. It can be seen from Figure 2 that the phase of the original compensation line changes linearly with the frequency. When the input signal frequency deviates from the center frequency, the phase difference changes greatly. After using phase shifter 1, you can It can be seen that the change degree of the phase difference of the two branches is obviously slowed down, so that the combining efficiency of the Doherty power amplifier in the frequency band is improved.
进一步,参照图1,所述补偿网络2包括补偿线TL1、补偿线TL2和阻抗变换线TL3,所述阻抗变换线TL3两端分别连接到补偿线TL1、补偿线TL2的输出端,从而形成合路;所述主功率放大器PA1的输出端通过补偿线TL1和阻抗变换线TL3、辅助功率放大器PA2的输出端通过补偿线TL2连接到负载调制网络3的输入端,即将合路端串接到负载调制网络3上,优选地,所述补偿线TL1和补偿线TL2的特性阻抗均为50欧姆,阻抗变换线TL3的特性阻抗也可为50欧姆。Further, referring to FIG. 1 , the
进一步,参照图1,所述移相线11采用T型结构,包括传输线TL8、开路枝节TL9和传输线TL10,所述传输线TL8、开路枝节TL9和传输线TL10两两连接,所述传输线TL8的一端连接到功率分配器PD的第一输出端,所述开路枝节TL9的一端连接到主功率放大器PA1的输入端;优选地,所述传输线TL8和传输线TL10的特性阻抗和电长度均相同。Further, referring to FIG. 1 , the phase-shifting
进一步,参照图1,所述负载调制网络3包括依次串接的传输线TL4、传输线TL5、传输线TL6、传输线TL7和负载电阻RL,所述传输线TL4分别连接到补偿线TL2和阻抗变换线TL3,所述负载电阻RL连接到参考地,能够将合路后的特性阻抗转换为原来的一半,并且负载调制网络3的输出端可以直接作为Doherty功率放大器的输出端,当然,也可在负载调制网络3的后端设置相关调节电路或模块,再实行输出。Further, referring to FIG. 1 , the
以上内容对本发明的较佳实施例和基本原理作了详细论述,但本发明并不局限于上述实施方式,熟悉本领域的技术人员应该了解在不违背本发明精神的前提下还会有各种等同变形和替换,这些等同变形和替换都落入要求保护的本发明范围内。The above content has discussed the preferred embodiments and basic principles of the present invention in detail, but the present invention is not limited to the above-mentioned embodiments. Those skilled in the art should understand that there will be various Equivalent modifications and substitutions fall within the scope of the claimed invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810577902.XA CN109067364B (en) | 2018-06-07 | 2018-06-07 | Doherty power amplifier with broadband and efficient output |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810577902.XA CN109067364B (en) | 2018-06-07 | 2018-06-07 | Doherty power amplifier with broadband and efficient output |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109067364A CN109067364A (en) | 2018-12-21 |
CN109067364B true CN109067364B (en) | 2022-04-19 |
Family
ID=64820502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810577902.XA Active CN109067364B (en) | 2018-06-07 | 2018-06-07 | Doherty power amplifier with broadband and efficient output |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109067364B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115577665A (en) * | 2022-10-21 | 2023-01-06 | 深圳飞骧科技股份有限公司 | Method for determining Doherty architecture main power amplifier compensation line electrical length |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103580623A (en) * | 2012-08-10 | 2014-02-12 | 中兴通讯股份有限公司 | Radiofrequency power amplifier device and radiofrequency power amplifying method |
CN107547051A (en) * | 2017-08-28 | 2018-01-05 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | Doherty power amplifier based on distributed broadband impedance mapped structure |
CN107887678A (en) * | 2017-10-11 | 2018-04-06 | 电子科技大学 | A kind of design method of phase shifter |
US9973150B1 (en) * | 2016-12-30 | 2018-05-15 | Nxp Usa, Inc. | Doherty architecture for wideband power amplifier design |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5732014B2 (en) * | 2012-09-20 | 2015-06-10 | 旭化成エレクトロニクス株式会社 | Doherty amplifier |
US9531328B2 (en) * | 2014-12-16 | 2016-12-27 | Nxp Usa, Inc. | Amplifiers with a short phase path, packaged RF devices for use therein, and methods of manufacture thereof |
EP3054589B1 (en) * | 2015-02-04 | 2018-07-04 | Ampleon Netherlands B.V. | Doherty amplifier |
US9831857B2 (en) * | 2015-03-11 | 2017-11-28 | Peregrine Semiconductor Corporation | Power splitter with programmable output phase shift |
CN106257827B (en) * | 2015-06-17 | 2020-08-18 | 南京中兴新软件有限责任公司 | Symmetrical Doherty power amplifier circuit device and power amplifier |
-
2018
- 2018-06-07 CN CN201810577902.XA patent/CN109067364B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103580623A (en) * | 2012-08-10 | 2014-02-12 | 中兴通讯股份有限公司 | Radiofrequency power amplifier device and radiofrequency power amplifying method |
US9973150B1 (en) * | 2016-12-30 | 2018-05-15 | Nxp Usa, Inc. | Doherty architecture for wideband power amplifier design |
CN107547051A (en) * | 2017-08-28 | 2018-01-05 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | Doherty power amplifier based on distributed broadband impedance mapped structure |
CN107887678A (en) * | 2017-10-11 | 2018-04-06 | 电子科技大学 | A kind of design method of phase shifter |
Also Published As
Publication number | Publication date |
---|---|
CN109067364A (en) | 2018-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104617896B (en) | Continuous inverse F power-like amplifiers and its design method of a kind of broadband high-efficiency | |
CN107425814B (en) | Broadband Doherty power amplifier based on compensation parasitic capacitance | |
CN103490733B (en) | A kind of Double-frequency-banDoherty Doherty power amplifier of frequency ratio 1.25 to 2.85 | |
CN102142812B (en) | Doherty power amplifier | |
US10033335B1 (en) | Doherty power amplifier | |
CN109889162B (en) | Self-input controlled load modulation power amplifier and implementation method thereof | |
CN107332528A (en) | A kind of tunable multiple frequency section power amplifier | |
CN113381699B (en) | A concurrent dual-frequency high-efficiency Doherty power amplifier and its design method | |
CN111641390B (en) | High Efficiency Doherty Power Amplifier Based on T-PI Combining Network and Its Design Method | |
CN104579178A (en) | Broadband input matching based improved doherty power amplifier | |
CN110266275A (en) | A Hybrid Broadband Doherty Power Amplifier of Continuous Inverse Class F and Class J | |
CN214256246U (en) | A New Post-Matching Structure Doherty Power Amplifier | |
CN111586896B (en) | Integrated double-frequency Doherty power amplifier, base station and mobile terminal | |
CN106411267A (en) | Novel broadband three-path Doherty power amplifier and implementation method thereof | |
CN107231131A (en) | A kind of Doherty power amplifier for increasing back-off scope | |
CN106411275B (en) | Improve the three tunnel Doherty power amplifiers and implementation method of bandwidth | |
CN110708029A (en) | Dual-band different-direction power amplifier based on unequal-length transmission lines and design method thereof | |
CN206211949U (en) | A kind of double frequency Doherty power amplifier | |
CN115001406A (en) | A dual-frequency large fallback Doherty power amplifier and its design method | |
JP2018074320A (en) | Doherty amplifier | |
CN210053382U (en) | Continuous inverse F-class and J-class mixed broadband Doherty power amplifier | |
Watanabe et al. | A broadband Doherty power amplifier without a quarter-wave impedance inverting network | |
CN108599727B (en) | High-efficiency broadband Doherty power amplifier | |
CN109067364B (en) | Doherty power amplifier with broadband and efficient output | |
CN217607779U (en) | Double-frequency large-back-off Doherty power amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240613 Address after: 510000 No. 135 West Xingang Road, Guangdong, Guangzhou Patentee after: SUN YAT-SEN University Country or region after: China Address before: No.9, Nanguo East Road, Yunlu community residents committee, Daliang sub district office, Shunde District, Foshan City, Guangdong Province, 528399 Patentee before: FOSHAN SHUNDE SUN YAT-SEN UNIVERSITY Research Institute Country or region before: China Patentee before: SYSU-CMU SHUNDE INTERNATIONAL JOINT Research Institute Patentee before: SUN YAT-SEN University |