CN104583145A - 具无色二氧化钒涂层的热变色玻璃 - Google Patents

具无色二氧化钒涂层的热变色玻璃 Download PDF

Info

Publication number
CN104583145A
CN104583145A CN201380031997.0A CN201380031997A CN104583145A CN 104583145 A CN104583145 A CN 104583145A CN 201380031997 A CN201380031997 A CN 201380031997A CN 104583145 A CN104583145 A CN 104583145A
Authority
CN
China
Prior art keywords
coating
thermo
vanadium dioxide
color
color coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380031997.0A
Other languages
English (en)
Other versions
CN104583145B (zh
Inventor
布鲁诺·迈耶
安格·帕勒迪
马克康斯坦丁·迪特里希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Justus Liebig Universitaet Giessen
Original Assignee
Justus Liebig Universitaet Giessen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Justus Liebig Universitaet Giessen filed Critical Justus Liebig Universitaet Giessen
Publication of CN104583145A publication Critical patent/CN104583145A/zh
Application granted granted Critical
Publication of CN104583145B publication Critical patent/CN104583145B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3447Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide
    • C03C17/3452Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide comprising a fluoride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3464Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a chalcogenide
    • C03C17/347Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a chalcogenide comprising a sulfide or oxysulfide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/24Doped oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/262Light metals other than Al
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)
  • Physical Vapour Deposition (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Photovoltaic Devices (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明公开一种具热变色二氧化钒的玻璃涂层。二氧化钒的着色通过添加碱土元素,例如钙、锶、钡,而由青铜色转变为中性色(无色)。同时热变色效果保持不变。

Description

具无色二氧化钒涂层的热变色玻璃
技术领域
本发明是涉及一种热变色玻璃涂层以及生产所述涂层的方法。这一类的热变色涂层具有对于电磁辐射(例如IR,VIS,UV)随温度变化的透明度,在建筑物建造过程中为作玻璃窗涂层,或者玻璃立面涂层,用以影响建筑物内部的室内气候并节省能源。
背景技术
在德国专利第DE 69910322T2号中说明了一种具有碱金属添加剂的二氧化钒玻璃涂层。二氧化钒在大约68摄氏度下产生状态改变。高于所述温度时为金属状态,主要反射红外光谱范围(500至2000纳米)的电磁辐射。低于所述温度时为半导体状态,可以让红外线射入。所述效果为热变色效果。
所述状态变化温度可以通过添加钨进行降低。当然,对可见光的透射度也会降低,所述透射度可以利用添加氟得以提高。在添加氟时其转换性能会变差。
二氧化钒具有青铜着色。这使其具有显着缺点,因为所述着色会对可见光进行过滤。因此会明显限制可见光范围的电磁辐射的透射。上述专利说明未对此给出解决方案,因为所述着色既无法通过涂层厚度,也无法通过其他涂层加以避免。
在德国专利第DE 3347918C2号中建议将二氧化钒还原为灰色的三氧化二钒。三氧化二钒在168K时具有状态变化,因此不适合用作热变色窗户玻璃涂层。适合的状态变化发生在300K至373K的范围内。
在上述两份专利说明书中,二氧化钒通过化学气相沉积法(CVD)进行涂覆。但在添加气态氟时存在缺点,因为在超过600摄氏度的离析温度下,无法有效地将氟渗入二氧化钒晶体格栅中。另一方面,在温度过低(小于400摄氏度)时,仅二氧化钒非晶型层被离析,其具有较差的转换性能。因此重要的是形成一种二氧化钒晶体层。
发明内容
上述发明的任务在于克服或者回避当前技术水平的缺点。
根据本发明,所述任务通过一种包含二氧化钒涂层的玻璃涂层加以解决。二氧化钒涂层优先添加钨及/或氟。通过单独或组合添加碱土元素,例如钙(Ca)、锶(Sr)、钡(Ba)对二氧化钒进行褪色。可以直接在二氧化钒或者在添加钨、氟或其他元素(例如碱土金属-1.HG:Li,Na,K,Rb,Cs,3.,4.,5.HG元素-例如B,Al,Ga,In,Si,Ge,Sn,Pb,P,As,Sb,Bi,以及除了Mg,Ca,Sr,Ba外的过渡金属)时在二氧化钒涂层中添加碱土元素。
在同时添加钨和氟时可以同时实现上述两种效果。这使得,一方面由于添加钨,转换温度Tc下降至室温范围。另一方面,在生产出的涂层中添加钙可以提高光线的透射度,尤其是可见光谱范围的光线透射度,光吸收边缘呈蓝色偏移。这一类涂层的光学外观随着钙含量的增加从青铜色向无色变化。
对于根据上述发明的热变色涂层而言,钨含量介于0.01至3.0原子百分比之间,优先为0.4至2.6原子百分比之间。
含钡、锶和钙(主要为钙)的碱土金属组含量介于0.01至15原子百分比之间,优先为1.0至10.0原子百分比之间。
氟含量介于0.01至2.0原子百分比之间,优先为0.5至1.5原子百分比之间。
二氧化钒涂层厚度为10至300纳米,优先为40至100纳米。
在玻璃和二氧化钒涂层之间优先嵌入一晶核层,所述晶核层即使在较低的温度(小于400摄氏度)下也可以促进二氧化钒涂层的结晶。对此可使用二氧化钛或者二氧化硅,优先为二氧化钛。
晶核层(也被称作中间层)厚度为5至200纳米,优先为10至70纳米。
添加钨或者氟或者碱土金属组(含钡、锶和钙)的二氧化钒涂层或者组合添加钨或者氟或者碱土金属组(含钡、锶和钙)的二氧化钒涂层可以通过覆盖层避免其二次氧化。由此涂覆由氧氮化铝、氧硫化锌、氧化锌和硫化锌单独或者组合形成的化合物覆盖层。此外,所述覆盖层也用作抗反射涂层,由此可以进一步改善光线透射度。
比较有利的方法是覆盖层厚度为10至300纳米,优先为40至100纳米。
生产所述涂层的方法
二氧化钒涂层使用喷雾法(喷镀)进行离析,优先使用高频或者射频阴极喷雾法或者DC-阴极喷雾法。也可以选择通过CVD,其他物理气相沉积法(PVD)、溶胶-凝胶法,以及等离子支持法进行涂覆。单独或者组合使用钒、钨、钙、锶、钡氧化元素或者氟化元素作为元素对阴极的来源。由此通过在氩气-氧气-环境下喷镀将元素转移到玻璃载体上。对此氩气和氧气的气体质量流量比优先为5.7:1.4。
在附加添加气体氟时,在氩气中添加四氟化碳(CF4)或者三氟甲烷(CHF3)。对此氩气、氧气和四氟化碳的气体质量流量比优先为5.7:1.4:0.3。类似比例在添加其他氟化剂,如CHF3时也适用。
也可以使用其他的氟化元素,例如氟化钙、氟化锶和/或氟化钡作为基质。使用氟化元素和含氟气体也是一种实施形式。
在室温至400摄氏度的离析温度下,气体首先以二氧化钛涂层作为晶核层进行附着,接着通过添加过程涂覆二氧化钒涂层。
添加添加剂后的二氧化钒涂层优先通过一覆盖层,尤其是抗反射涂层进行覆盖。
热变色涂层可用于玻璃(例如窗玻璃、玻璃管、玻璃杯)、塑料、纺织物、太阳能电池(光伏电池)、太阳能收集器(热水器)。
附图说明
图1是根据上述发明的窗玻璃热变色涂层的原理结构图。
图2是添加a)钙、b)钨和c)同时添加钨和钙的热变色二氧化钒涂层与波长相关的透射光谱。
图3是添加不同含量钙的变色二氧化钒涂层与波长相关的透射光谱。
图4是以二氧化钒为基础的不同热变色涂层的转换温度表和吸收边缘(波段间隙)表。
图5是添加钡和锶以及未添加添加剂的热变色二氧化钒涂层与波长相关的透射光谱。
具体实施方式
本发明的实施形式在下文中进行说明,其中,本发明包含所有下述单独和组合的优先使用的实施形式。
图1显示根据本发明的热变色涂层(10)如何涂覆到窗玻璃(12)上的原理结构图。对此,在所述玻璃基材(12)上通过反应高频或者射频阴极喷雾法离析出一个二氧化钛涂层(14)。由此形成的二氧化钛涂层在所述玻璃基材(12)上构成一晶核层。
高频发生器在喷雾时的功率在离析二氧化钛涂层时优先介于100至600W之间(等于1.2至7.4W/cm2),优选为300W(等于3.7W/cm2)。离析温度优先为室温至600摄氏度,优选为大约300摄氏度。
接着将包含钨或者钙的钒-对阴极或者二氧化钒-对阴极通过反应高频或者射频阴极喷雾法在二氧化钛涂层上涂覆二氧化钒涂层。二氧化钒涂层(16)为热变色层。所述涂层包含大约3.3%的钙和0.2%的钨以及0.3%的氟,其他为二氧化钒。所述涂层也可以包含8.9%的钙和0.4%的钨,其他为二氧化钒。此外,所述涂层也可以包含8.9%的钙,其他为二氧化钒。同时涂层也可以包含约9%的锶,其他为二氧化钒。或者涂层包含9%的钡,其他为二氧化钒。
在离析已添加添加剂的二氧化钒涂层时,高频发生器的喷雾功率介于100至600W之间(等于1.2至7.4W/cm2),优选为300W(等于3.7W/cm2),离析温度优先介于100至600摄氏度之间,优选为大约400摄氏度。
同时添加氟和含钡、锶以及钙的碱土金属组的二氧化钒涂层或者同时添加钨和含钡、锶以及钙的碱土金属组的二氧化钒涂层包含系列优先使用的热变色涂层公式,其中M表示相应的碱土金属:
a)V1-X-YWXMYO2
b)V1-YMYO2-ZFZ
也可以选择通过添加氟、钨和含钡、锶以及钙的碱土金属组构成三组份添加的二氧化钒涂层。其组成通过以下公式进行说明,其中M表示相应的碱土金属:
c)V1-X-YWXMYO2-ZFZ
添加其他的元素会形成其他的公式和重量比。
接着在已热变色添加过程的所述二氧化钒涂层(16)上涂覆同样适用高频-阴极喷雾法离析的覆盖层或者覆盖涂层(18),所述涂层优先由硫化锌组成。此外,也可以使用氧氮化铝、氮化铝、氧化铝、氧硫化锌或者氧化锌以及上述化合物的混合物(含硫化锌)代替硫化锌。所述覆盖涂层(18)用于防止所述热变色涂层(16)出现二次氧化,并用作抗反射涂层,对此主要提高可见光谱范围的光线透射度。
在离析硫化锌覆盖涂层时,高频发生器的喷雾功率介于100至600W之间(等于1.2至7.4W/cm2),优选为200W(等于2.5W/cm2),离析温度优先介于室温至400摄氏度之间,优选为室温。
图2显示的是添加钙或者同时添加钨和钙的、利用高频阴极喷雾设备在玻璃上离析的所述二氧化钒涂层(16)与波长相关的透射度,无二氧化钛涂层(14)和抗反射覆盖层。此外,为进行比较,还说明了一种仅添加钨的二氧化钒涂层。所述涂层在大约600摄氏度的离析温度(未添加气态氟)进行生产。可以看出,在20摄氏度的低温状态下对三个涂层进行测量,在100摄氏度的高温状态下对三个涂层进行测量。仅添加钙的涂层与仅添加钨的涂层相比在300至2500nm的范围内具有明显更高的透射度。因此,同时添加钙和钨的涂层在300至2500nm的范围内与仅添加钙的涂层具有更低的透射度,但与仅添加钨的涂层具有更高的透射度。尤其是低温和高温状态之间的透射度差异与其他涂层相比明显更大。
图3显示在高频阴极喷雾设备上添加不同含量钙的、具有20nm厚度的二氧化钛中间层(14),但无抗反射覆盖层的离析二氧化钒涂层(16)与波长相关的透射性能。所述涂层在大约400摄氏度的离析温度下进行生产。通过曲线比较可以看出,两种状态下的透射度主要在1000至2500nm的范围内随着钙含量的升高而增大。因此,随着钙含量的升高可以看到吸收边缘的蓝色偏移,由此涂层颜色由青铜色变为无色。
图4的表格包含转换温度、吸收边缘(波段间隙)和确定的元素含量以及不同热变色涂层高频(在100摄氏度下测量)和低温状态(在20摄氏度下测量)的光谱透射度,对此涂层生产使用和测量图2所示涂层相同的条件。
如表格所示,在同时添加钨和钙时出现协同效应,也就是说同时添加的涂层具有因添加钨导致的转换温度向更低温度偏移以及因添加钙而出现的吸收边缘向更高能量或者更低波长偏移的性能。
图5说明的是添加锶和钡以及未添加添加剂的、通过高频阴极喷雾设备在玻璃上离析出的无二氧化钛中间层(14)和无抗反射涂层的二氧化钒涂层(16)与波长相关的透射性能。所述涂层在大约650摄氏度的离析温度下进行生产。确定的钡或者锶含量约为9%原子百分比。
与图2中添加钙的涂层相比,图5中添加锶和钡的涂层具有类似的转换性能。与图5中无添加剂的二氧化钒涂层相比,300至2500nm的透射度明显更高,吸收边缘在更高能量或者更低波长时才出现。
透射度,尤其是蓝色光谱范围的透射度的提高使得,热变色涂层的光学外观相对于当前技术水平下已经公开的仅添加氟或者钨的二氧化钒涂层存在本质上的改善,同时添加钨或者氟可以讲转换温度偏移至室温范围。如图3所示,相比仅添加钨的二氧化钒涂层,即使在高温状态下,根据本发明的热变色涂层的透射度也有所提高,但高温和低温状态下的透射度差异大致相同,对于试样Ca48(见图4)甚至有所升高。
纺织物或者塑料在大约100摄氏度至200摄氏度的温度下使用已经添加添加剂的二氧化钒进行涂覆。为了获得足够优良的二氧化钒结晶度以及足够良好的热变色效果,将已经添加添加剂的二氧化钒涂层涂覆在晶核层上,除了喷雾法,也可以使用PVD或者溶胶-凝胶法。在使用溶胶-凝胶法时应注意涂层厚度应尽可能均匀。

Claims (10)

1.一种热变色涂层,特别是用于玻璃(12)的热变色涂层,且包含二氧化钒(16),其特征在于:所述二氧化钒包含:添加碱土金属。
2.根据权利要求1的热变色涂层,其特征在于,所述碱土金属包含钙、钡及锶。
3.根据权利要求1至2任一项所述的热变色涂层,其特征在于:所述二氧化钒涂层(16)另外添加钨及/或氟。
4.根据权利要求1至3任一项所述的热变色涂层,其特征在于,所述二氧化钒涂层(16)另外包含一晶核层(14)及/或一覆盖层(18)。
5.根据权利要求1至4任一项所述的热变色涂层,其特征在于,所述晶核层(14)包含如二氧化钛、二氧化硅等化合物。
6.根据权利要求1至5任一项所述的热变色涂层,其特征在于,所述覆盖层(18)包含如氧氮化铝、氧硫化锌、氧化锌和氧化硫等化合物。
7.一种由根据权利要求1所述的热变色涂层制成的热变色玻璃涂层(10),其特征在于:所述二氧化钒涂层(16)添加碱土金属。
8.一种将根据权利要求1所述的热变色涂层用于生产含二氧化钒涂层(16)的热变色涂层的方法,其特征在于:所述二氧化钒涂层(16)添加碱土金属。
9.根据权利要求8所述的用于生产热变色涂层的方法,其特征在于:载体通过单独的涂层,优选为已添加二氧化钒涂层(16)的晶核层(14)、覆盖层(18),利用高频或射频阴极喷雾法或DC-阴极喷雾法进行涂覆。
10.一种将根据权利要求1所述的热变色涂层用于玻璃(例如窗玻璃、玻璃管、玻璃杯)、塑料、纺织物、太阳能电池(光伏电池)、太阳能收集器(热水器)的用途。
CN201380031997.0A 2012-06-21 2013-06-19 具无色二氧化钒涂层的热变色玻璃 Active CN104583145B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012012219.5 2012-06-21
DE102012012219.5A DE102012012219B4 (de) 2012-06-21 2012-06-21 Thermochrome Schicht für Glas, Verfahren zur Herstellung einer thermochromen Schicht und Verwendung einer thermochromen Schicht
PCT/EP2013/062770 WO2013189996A1 (de) 2012-06-21 2013-06-19 Thermochromes glas mit beschichtung von farbneutralem vanadiumdioxid

Publications (2)

Publication Number Publication Date
CN104583145A true CN104583145A (zh) 2015-04-29
CN104583145B CN104583145B (zh) 2018-10-19

Family

ID=48741073

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380031997.0A Active CN104583145B (zh) 2012-06-21 2013-06-19 具无色二氧化钒涂层的热变色玻璃

Country Status (7)

Country Link
US (1) US9309147B2 (zh)
EP (1) EP2864267B1 (zh)
JP (1) JP6385923B2 (zh)
KR (1) KR102079411B1 (zh)
CN (1) CN104583145B (zh)
DE (1) DE102012012219B4 (zh)
WO (1) WO2013189996A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108351445A (zh) * 2015-11-06 2018-07-31 柯尼卡美能达株式会社 热变色膜及热变色复合体

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101761864B1 (ko) * 2015-10-23 2017-08-07 (주)세온 직물 처리 장치
US20190040520A1 (en) * 2016-02-04 2019-02-07 Ecole Polytechnique Federale De Lausanne (Epfl) Coating for optical and electronic applications
FR3054676B1 (fr) 2016-07-28 2018-08-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif thermochrome tout-solide, et procede de preparation de ce dispositif
JP7044072B2 (ja) * 2016-12-06 2022-03-30 コニカミノルタ株式会社 二酸化バナジウム含有粒子、サーモクロミックフィルム及び二酸化バナジウム含有粒子の製造方法
US10737948B2 (en) * 2018-09-05 2020-08-11 University Of South Carolina Polar oxysulfide for nonlinear optical applications
KR102559753B1 (ko) * 2018-11-01 2023-07-27 삼성전자주식회사 조리장치
CN116426265B (zh) * 2023-04-10 2024-05-14 贵州民族大学 一种钨镁掺杂二氧化钒热致变色薄膜的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817644A (zh) * 2010-04-20 2010-09-01 中国科学院上海硅酸盐研究所 一种辐射率可调的二氧化钒基复合薄膜及其制备方法
US20110260123A1 (en) * 2008-09-30 2011-10-27 Granqvist Claes Goeran Thermochromic material and fabrication method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2114965C3 (de) 1971-03-27 1974-05-30 Heinz 4390 Gladbeck Hoelter Vorrichtung für die Trennmittelschwaden-Absaugung einer Druckgießmaschine
AU546405B2 (en) 1982-02-01 1985-08-29 Ppg Industries, Inc. Vanadium oxide coating
JPS62277485A (ja) * 1986-05-26 1987-12-02 Sharp Corp 可逆性示温材
JP2002516813A (ja) * 1998-06-03 2002-06-11 ブルーノ カー. マイヤー サーモクロミックコーティング
DE19860026A1 (de) * 1998-06-03 1999-12-09 Bruno K Meyer Thermochrome Beschichtung
US6110656A (en) * 1998-09-28 2000-08-29 Eastman Kodak Company Colloidal vanadium oxide having improved stability
GB9822338D0 (en) 1998-10-13 1998-12-09 Glaverbel Solar control coated glass
FR2809388B1 (fr) 2000-05-23 2002-12-20 Saint Gobain Vitrage Vitrage comprenant au moins une couche a proprietes thermochromes
JP3849008B2 (ja) * 2001-09-20 2006-11-22 独立行政法人産業技術総合研究所 高性能自動調光窓コーティング材料
US8270060B2 (en) * 2009-09-25 2012-09-18 Samsung Sdi Co., Ltd. Infrared ray transmittance controlling panel including color modifying layer
KR101244734B1 (ko) * 2010-11-03 2013-03-18 삼성에스디아이 주식회사 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
US11292962B2 (en) * 2011-09-29 2022-04-05 The Research Foundation For The State University Of New York Doped nanoparticles and methods of making and using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110260123A1 (en) * 2008-09-30 2011-10-27 Granqvist Claes Goeran Thermochromic material and fabrication method
CN101817644A (zh) * 2010-04-20 2010-09-01 中国科学院上海硅酸盐研究所 一种辐射率可调的二氧化钒基复合薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
N.R.MLYUKA等: "Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature", 《APPLIED PHYSICS LETTERS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108351445A (zh) * 2015-11-06 2018-07-31 柯尼卡美能达株式会社 热变色膜及热变色复合体

Also Published As

Publication number Publication date
KR20150036136A (ko) 2015-04-07
US9309147B2 (en) 2016-04-12
EP2864267B1 (de) 2017-12-27
KR102079411B1 (ko) 2020-02-19
DE102012012219B4 (de) 2014-12-24
EP2864267A1 (de) 2015-04-29
US20150203398A1 (en) 2015-07-23
CN104583145B (zh) 2018-10-19
WO2013189996A1 (de) 2013-12-27
DE102012012219A1 (de) 2013-12-24
JP6385923B2 (ja) 2018-09-05
JP2015527958A (ja) 2015-09-24

Similar Documents

Publication Publication Date Title
CN104583145A (zh) 具无色二氧化钒涂层的热变色玻璃
Li et al. A far-red-emitting NaMgLaTeO6: Mn4+ phosphor with perovskite structure for indoor plant growth
Wu et al. A high-performance non-rare-earth deep-red-emitting Ca14-xSrxZn6Al10O35: Mn4+ phosphor for high-power plant growth LEDs
Wang et al. Aqueous acid-based synthesis of lead-free tin halide perovskites with near-unity photoluminescence quantum efficiency
Liu et al. Luminescence color tuning and energy transfer properties in (Sr, Ba) 2 LaGaO 5: Bi 3+, Eu 3+ solid solution phosphors: realization of single-phased white emission for WLEDs
Fang et al. Cuboid-size-controlled color-tunable Eu-doped alkali–lithosilicate phosphors
Jiang et al. High quantum efficiency far red emission from double perovskite structured CaLaMgMO6: Mn4+ (M= Nb, Ta) phosphor for UV-based light emitting diodes application
Jin et al. Unraveling the triplet excited-state dynamics of Bi3+ in vacancy-ordered double perovskite Cs2SnCl6 nanocrystals
Mikami et al. New green phosphor Ba3Si6O12N2: Eu for white LED: crystal structure and optical properties
Thongkanluang et al. Preparation of NIR reflective brown pigment
Huang et al. Environment-friendly pigments based on praseodymium and terbium doped La2Ce2O7 with high near-infrared reflectance: synthesis and characterization
Zhang et al. Li4SrCa (SiO4) 2: Ce3+, a highly efficient near-UV and blue emitting orthosilicate phosphor
US9103529B2 (en) Photoluminescent daylight panel
Yao et al. Photoluminescence characteristics of a novel red phosphor Ba2Si4O10: Eu3+: structural effect and concentration quenching mechanism
Ramos-Guerra et al. Multicolored photoluminescence and structural properties of zirconium oxide films co-doped with Tb3+ and Eu3+ ions
Fang et al. Photoluminescence properties and local electronic structures of rare earth-activated Sr3AlO4F
Chen et al. Dual-phase phosphor-in-glass based on a Sn–P–F–O ultralow-melting glass for warm white light-emitting diodes
JP7030151B2 (ja) 無機蛍光材料を含む複合塗料
Zhang et al. Site-occupancy on the luminescence properties of a single-phase Li4SrCa (SiO4) 2: Eu2+ phosphor
Chen et al. Color-tunable blue-emitting Na2MgSiO4: Ce3+ phosphors for white light-emitting diodes
Xiao et al. Synthesis and characterization of multi-colored pigments of LiRE (MoO4+ δ) 2 (RE= Ce, Pr, Nd, Er) with high near-infrared reflectance
Divya et al. New red pigments based on Li3AlMnO5 for NIR reflective cool coatings
Shisina et al. Structure and optoelectronic properties of palmierite structured Ba2Y0. 67δ0. 33V2O8: Eu3+ red phosphors for n-UV and blue diode based warm white light systems
Wu et al. Sol-gel synthesized double perovskite Na (1-x) Gd (0.95+ x/3) MgWO6: 5% Eu3+ (0≤ x≤ 0.5) phosphors with incommensurately modulated structure: microstructures and luminescence properties
Thongkanluang et al. Preparation and using of high near-infrared reflective green pigments on ceramic glaze

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant