CN104577062B - 一种纳米银碳的制备方法及在锂离子电池中的应用 - Google Patents

一种纳米银碳的制备方法及在锂离子电池中的应用 Download PDF

Info

Publication number
CN104577062B
CN104577062B CN201410775247.0A CN201410775247A CN104577062B CN 104577062 B CN104577062 B CN 104577062B CN 201410775247 A CN201410775247 A CN 201410775247A CN 104577062 B CN104577062 B CN 104577062B
Authority
CN
China
Prior art keywords
nanometer silver
liquid
preparation
nano silver
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410775247.0A
Other languages
English (en)
Other versions
CN104577062A (zh
Inventor
关成善
宗继月
张敬捧
郭章飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Goldencell Electronics Technology Co Ltd
Original Assignee
Shandong Seiko Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Seiko Electronic Technology Co ltd filed Critical Shandong Seiko Electronic Technology Co ltd
Priority to CN201410775247.0A priority Critical patent/CN104577062B/zh
Publication of CN104577062A publication Critical patent/CN104577062A/zh
Application granted granted Critical
Publication of CN104577062B publication Critical patent/CN104577062B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种纳米银碳材料的制备方法,为了可以使电池的低温性能和大倍率充放电循环性能得到明显的提高。尤其涉及一种纳米银碳材料的制备方法以及其在锂离子电池负极中的应用。本发明采用以下技术方案。包括以下步骤,①制备纳米银溶胶;②活性炭吸附;③人造石墨复合;④纳米银还原。电池性能测试表明,本专利方法所制备的锂离子电池具有低温性能优良、适合大倍率充放电的优点,应用前景非常广阔。

Description

一种纳米银碳的制备方法及在锂离子电池中的应用
技术领域
本发明涉及纳米新材料在化学电源中的应用领域,尤其涉及一种纳米银碳材料的制备方法以及其在锂离子电池负极中的应用。
背景技术
现代生活中,移动设备的迅猛发展对电源性能提出了更高的要求。新能源汽车领域,要求电池具有可高倍率充放电,高能量转化率等特点;特殊军工领域,要求电池具有低温-20℃下放电容量达到25℃时放电容量80%以上的能力;启动电源要求电池瞬间放电倍率达到30C以上,这些都对电源设计及制造提出了更高的要求。
目前来看,大多数锂离子电池生产商是通过选用小颗粒正负极材料、增加正负极配比中导电剂的比例、采用电导率较高的倍率电解液来提高电池倍率性能,通过选择低温功能电解液来提高电池的低温性能。不可否认,这些措施确实能在一定程度上提高电池某些方面的性能表现,但同时也都存在着一些不足之处:选用小颗粒正负极材料存在配料易团聚,分散困难的缺点;增加正负极中导电剂的配比则会相应降低极片的压实密度,影响电池容量;选用电导率较高的倍率电解液会相应降低添加剂的含量,不利于电池倍率或循环性能;选择低温电解液同样会牺牲电池的循环性能。
本专利发明了一种纳米银碳材料,实验表明,将其做为负极主料应用于锂离子电池之中,可以使电池的低温性能和大倍率充放电循环性能得到明显的提高。
发明内容
为了可以使电池的低温性能和大倍率充放电循环性能得到明显的提高。本发明采用以下技术方案。
一种纳米银碳材料的制备方法,包括以下步骤,
制备纳米银溶胶:称取硝酸银并将其溶解于去离子水中,形成A液;称取还原剂并溶于去离子水中,形成B液;在A液或B液中加入稳定剂,混合均匀后将两种溶液在搅拌状态下均匀混合,即得到均一、稳定的黄色纳米银溶胶;
活性炭吸附:称取分散剂,加入上述方法制备的纳米银溶胶中混合均匀,得到C液;称取活性炭,搅拌状态下将其加入C液中,继续搅拌使纳米银充分吸附于活性炭的表面,形成D液;
人造石墨复合:称取人造石墨,搅拌状态下加入到D液中,继续高速搅拌后得混合液E,将混合液E抽滤、洗涤后取滤饼放入鼓风烤箱中烘去水份;
纳米银还原:烘干后的滤饼研碎后放入管式炉中,在氢气氛围下加热后,得到体相复合型纳米银碳。
根据所述的纳米银碳材料的制备方法,所述的还原剂为柠檬酸钠或硼氢化钠。
根据所述的纳米银碳材料的制备方法,所述的稳定剂为柠檬酸钠。
根据所述的纳米银碳材料的制备方法,所述的分散剂为聚乙二醇或聚乙烯醇。
根据所述的纳米银碳材料的制备方法, A液与B液的质量比浓度均小于10%,且硝酸银、还原剂、稳定剂、分散剂、活性炭的质量比为1:0.5~2:0.2~1:0.1~0.5:0.5-10。
根据所述的纳米银碳材料的制备方法,纳米银在管式炉中的还原温度300~600℃,还原时间1~10小时。
一种制备的纳米银碳材料在锂离子电池负极中的应用方法,
纳米银碳作为负极主料在抽真空条件下配料,其他辅助添加剂包括super-P、CMC、SBR,溶剂为去离子水;
负极涂布过程采用冷风吹干或循环热氮气吹干,以防止纳米银的氧化;
制备电芯以后,电芯采用真空烘烤或氮气保护烘烤,电芯烘烤后待温度降低到40℃以下拿出烤箱进行注液。
电池性能测试表明,本专利方法所制备的锂离子电池具有低温性能优良、适合大倍率充放电的优点,应用前景非常广阔。
附图说明
图1为实施例和比较例低温性放电能测试曲线图。
图2为实施例和比较例3C倍率充放电循环性能测试曲线图。
具体实施方式
本发明主要技术方案如下。
在溶液中首先通过还原方法将硝酸银还原,制备纳米银溶胶;然后往纳米银溶胶中加入活性炭,将纳米银均匀吸附于活性炭的表面;然后再得到的混合液中加入人造石墨,混合一段时间后进行抽滤、洗涤,并将滤饼放入鼓风烤箱中烘去水份;烘干后的滤饼研碎后放入管式炉中,在氢气氛围下加热还原一段时间后,即得到体相复合纳米银碳。以纳米银碳作为负极主料,通过一定的工艺进行配料、涂布、制片、装配、烘烤、注液、封装等工序制作锂离子电池。
以纳米银碳为负极主料,以镍钴锰三元材料为正极主料,采用特殊工艺制备2.2Ah三元锂离子电池。作为实施例,以人造石墨为负极主料,以镍钴锰三元材料为正极主料,采用与实施例相同工艺制备三元锂离子电池,作为比较例。两种方法制备的锂离子电池分别做低温放电性能测试、3C充放电循环性能测试,记录数据并作图如图1、2所示。
实施例
纳米银碳的制备。
制备纳米银溶胶:称取100g硝酸银并将其溶解于5000g去离子水中,形成A液;称取100gNaBH4溶于5000g去离子水中,形成B液;在A液中加入30g柠檬酸钠,溶解均匀后将两种溶液在搅拌状态下均匀混合,即得到均一、稳定的黄色纳米银溶胶。
活性炭吸附:称取20g聚乙烯醇,加入步骤中制备的纳米银溶胶中混合均匀,得到C液;称取100g活性炭,搅拌状态下将其加入C液中,继续搅拌1h,使纳米银充分吸附于活性炭表面,形成混合液D。
人造石墨复合:称取4800g人造石墨,搅拌状态下加入到混合液D中,继续1000rpm搅拌2h时间后得混合液E,将混合液E抽滤、洗涤后取滤饼放入鼓风烤箱中烘去水份。
纳米银还原:烘干后的滤饼研碎后放入管式炉中,在氢气氛围下加热到400℃保持5h,冷却后取出,即得到体相复型合纳米银碳。
锂离子电池的制作。
锂离子电池大体过程为配料、涂布、制片、装配、烘烤、注液、封装,具体常识性细节为现有技术,不再赘述,仅对几个关键控制点加以说明。
纳米银碳作为负极主料在抽真空条件下配料,其他辅助添加剂包括super-P、CMC、SBR,溶剂为去离子水。为防止配料过程中浆料温度过高,通循环水对浆料降温。
负极涂布后干燥过程采用冷风吹干方式,以防止纳米银的氧化。
制备电芯以后,电芯进行真空烘烤,电芯烘烤后待温度降低到40℃以下才可拿出烤箱进行注液。
比较例
以与实施例相同人造石墨作为锂离子电池负极主料,与实施例相同的镍钴锰三元材料作为正极主料,采用和实施例相同的工艺制作三元锂离子电池,电池制作过程的具体常识性细节不再赘述,过程关键控制点与上述的实施例中“锂离子电池制作过程”相同。
实施例和比较例中制作的电池分别作低温性能测试,3C倍率充放电循环,其结果列于表1。图1中曲线自上而下分别为25度、0度、-20度的曲线。
从表1和图1、图2很容易看出,以纳米银碳作为负极主料制作的电池,-20℃放电容量占25℃放电容量的90.5%,而以人造石墨为负极主料制作的电池,-20℃放电容量占25℃放电容量的79.0%,本专利方法制作的电池,其低温放电性能得到很大的提高。
相同条件下3C倍率充放电循环测试表明,以纳米银碳作为负极主料制作的电池和以人造石墨为负极主料制作的电池300次循环后容量保持率分别为91.1%和80.7%,可见本专利方法制作的电池倍率充放电性能也得到了较大的提高。

Claims (4)

1.一种纳米银碳材料的制备方法,其特征在于:包括以下步骤,
制备纳米银溶胶:称取硝酸银并将其溶解于去离子水中,形成A液;称取还原剂并溶于去离子水中,形成B液;在A液或B液中加入稳定剂,混合均匀后将两种溶液在搅拌状态下均匀混合,即得到均一、稳定的黄色纳米银溶胶;
活性炭吸附:称取分散剂,加入上述方法制备的纳米银溶胶中混合均匀,得到C液;称取活性炭,搅拌状态下将其加入C液中,继续搅拌使纳米银充分吸附于活性炭的表面,形成D液;
人造石墨复合:称取人造石墨,搅拌状态下加入到D液中,继续高速搅拌后得混合液E,将混合液E抽滤、洗涤后取滤饼放入鼓风烤箱中烘去水份;
纳米银还原:烘干后的滤饼研碎后放入管式炉中,在氢气氛围下加热后,得到体相复合型纳米银碳;
其中,A液与B液的质量比浓度均小于10%,且硝酸银、还原剂、稳定剂、分散剂、活性炭的质量比为1:0.5~2:0.2~1:0.1~0.5:0.5-10;
所述的还原剂为柠檬酸钠或硼氢化钠,所述的稳定剂为柠檬酸钠。
2.根据权利要求1所述的纳米银碳材料的制备方法,其特征在于:所述的分散剂为聚乙二醇或聚乙烯醇。
3.根据权利要求1所述的纳米银碳材料的制备方法,其特征在于:纳米银在管式炉中的还原温度300~600℃,还原时间1~10小时。
4.一种权利要求1步骤制备的纳米银碳材料在锂离子电池负极中的应用方法,其特征在于:
纳米银碳作为负极主料在抽真空条件下配料,其他辅助添加剂包括super-P、CMC、SBR,溶剂为去离子水;
负极涂布过程采用冷风吹干或循环热氮气吹干,以防止纳米银的氧化;
制备电芯以后,电芯采用真空烘烤或氮气保护烘烤,电芯烘烤后待温度降低到40℃以下拿出烤箱进行注液。
CN201410775247.0A 2014-12-16 2014-12-16 一种纳米银碳的制备方法及在锂离子电池中的应用 Active CN104577062B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410775247.0A CN104577062B (zh) 2014-12-16 2014-12-16 一种纳米银碳的制备方法及在锂离子电池中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410775247.0A CN104577062B (zh) 2014-12-16 2014-12-16 一种纳米银碳的制备方法及在锂离子电池中的应用

Publications (2)

Publication Number Publication Date
CN104577062A CN104577062A (zh) 2015-04-29
CN104577062B true CN104577062B (zh) 2017-01-04

Family

ID=53092640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410775247.0A Active CN104577062B (zh) 2014-12-16 2014-12-16 一种纳米银碳的制备方法及在锂离子电池中的应用

Country Status (1)

Country Link
CN (1) CN104577062B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111910344B (zh) * 2020-08-14 2021-08-31 扬州工业职业技术学院 一种载银活性炭抗菌纤维膜的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100970522B1 (ko) * 2008-02-27 2010-07-16 한국원자력연구원 탄소 코팅된 금속 나노 입자를 포함하는 윤활제 조성물 및그 제조 방법
CN103508449B (zh) * 2012-06-29 2016-01-20 中国科学院合肥物质科学研究院 修饰有金属纳米粒子的石墨烯复合材料的制备方法
CN103151538A (zh) * 2012-12-21 2013-06-12 中国科学院大连化学物理研究所 一种锌空气电池用Ag/C催化剂及其制备方法

Also Published As

Publication number Publication date
CN104577062A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
CN109755545B (zh) 多孔碳材料及其制备方法、多孔碳/硫复合材料、电池正极材料、锂硫电池及其应用
CN106532012B (zh) 一种硫-生物质碳/过渡金属复合电极材料及其制备方法和应用
CN103208625B (zh) 一种锂离子电池氧化铁基高性能负极材料的制备方法
CN105355880B (zh) 一种LiFePO4/C改性三元正极材料的制备方法
CN104134783B (zh) 纳米硫化镍/石墨烯复合正极材料及其制备方法
CN103337631B (zh) 提高钛酸锂高倍率放电性能并抑制产气的碳氮共包覆方法
CN110085847B (zh) 锂离子电池锗/碳复合负极材料及其制备方法和应用
CN109360971B (zh) 一种微球状硒化锰/碳复合材料的制备方法
CN105680013A (zh) 一种锂离子电池硅/石墨/碳复合负极材料的制备方法
CN105655548A (zh) 一种磷酸铁锂表面均匀碳包覆的方法
CN109400905B (zh) 一种金属有机骨架Mn-BTC及制备方法和应用
CN103972466B (zh) 一种高温锂亚硫酰氯电池的正极及其制备方法
CN109786707A (zh) 一种锂离子电池负极复合材料及其制备方法
CN101214952A (zh) 锂离子电池用天然石墨材料的改性方法
CN102280617A (zh) 一种锂离子电池用碳材料改性锰酸锂复合正极材料及其制备方法
CN109411736B (zh) 一种磷化钴/石墨烯/n掺杂碳复合材料及其制备方法
CN112038614B (zh) 一种钠离子电池用负极材料及其制备方法
CN107887583A (zh) 一种掺杂磷酸铁锂正极材料及其制备方法
CN105826524A (zh) 一种石墨烯原位形核磷酸铁锂的合成方法
CN114275777A (zh) 一种用于锂电负极的高石墨化度炭基材料的制备方法
CN110600719B (zh) 一种高倍率性能的多孔硅碳锂离子电池负极材料及其制备方法
CN109560277B (zh) 一种纳米线状硒化锰/碳复合材料的制备方法
CN104577062B (zh) 一种纳米银碳的制备方法及在锂离子电池中的应用
CN114843473B (zh) 一种应用于铁锂电池的复合浆料及其制备方法
CN106920951B (zh) 一种锂电池负极用纳米硅碳复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address

Address after: 277800 No. x6699, Guangming Road, high tech Zone, Zaozhuang City, Shandong Province (north of the junction of Guangming Road and Huaxin Road)

Patentee after: Shandong Jinggong Electronic Technology Co.,Ltd.

Address before: 277000 Haite Electronics Group, Fuyuan 5th Road, Thailand Industrial Park, High tech Zone, Zaozhuang City, Shandong Province

Patentee before: Shandong Seiko Electronic Technology Co.,Ltd.

CP03 Change of name, title or address