拮抗抑制程序性死亡受体PD-1与其配体结合的单克隆抗体及其编码序列与用途
技术领域
本发明属于生物技术-单克隆抗体领域。本发明涉及一种拮抗抑制程序性死亡受体PD-1(programmed death-1)与其配体结合的单克隆抗体及其编码序列与用途。
背景技术
长期以来,生物医学界一直认为肿瘤的发生发展与机体内的免疫功能状态息息相关。体内免疫功能在正常状态下发挥着监控变异的肿瘤细胞与抑制肿瘤发生发展的作用。但当体内免疫功能状态出现低下或功能受到抑制时,肿瘤细胞的变异与增长则会加快,严重时更危急生命。因此以提高免疫功能为目的的免疫疗法(Immunotherapy)已成为当今国际肿瘤临床治疗中的一大目标与手段(见综述:Topalian SL等:Cancer immunotherapy comes of age.JCO2011,29:4828-4836;Pardoll D和Drake C:Immunotherapy earns its spot in the ranksof cancer therapy,J Exp Med 2012,209:201-209)。免疫疗法的近期突破与其广泛应用则得益于免疫学基础研究进展及以杂交瘤/单克隆抗体等为代表的现代生物技术的发展。
现代免疫学研究表明由胸腺发育而来的T淋巴细胞在识别与杀灭肿瘤细胞中起着非常关键的作用。T淋巴细胞在功能上大致可分为两大类:即以调控免疫功能为主的辅助T细胞(T helper cells)和直接参与识别靶抗原与杀伤靶细胞的细胞毒性T细胞(cytotoxic Tcells,CTL)。体内这两类T细胞的活化与增生一般都需要两个信号通路的协同作用:其中第1信号通路是通过T细胞上的可特异识别抗原的受体蛋白(T-cell receptor,TcR)与表达在肿瘤等靶细胞或抗原提呈细胞(antigen-presenting cells,APC)上相应的抗原多肽-MHC(major histocompatibility complex)复合物的结合而传导,该信号通路为抗原特异性的;第2信号通路是通过T细胞上的协同刺激(co-stimulation)或协同抑制(co-inhibition)因子与表达在肿瘤等靶细胞或抗原提呈细胞上的配体结合而传导,该信号通路为抗原非特异性的。T淋巴细胞只有在第1与第2信号通路都存在的状态下才发生活化与增生。
在第2信号通路中发挥协同刺激作用(即正向或上调免疫功能)的代表性因子是CD28与其配体B7-1、B7-2;而发挥协同抑制作用(即负向或下调免疫功能)的代表性因子则是CTLA-4与其配体B7-1、B7-2,及程序性死亡受体(programmed death-1)PD-1与其配体PD-L1和PD-L2;这些协同刺激/协同抑制因子在结构上都很相似,均属于免疫球蛋白超家族成员(见综述:Chen LP:Co-inhibitory molecules of the B7-CD28family in the control of T cellimmunity,Nature Immunol 2004,336-347)。
理论上,至少可以通过两大不同途径达到提高体内免疫功能的目的:
途径1是通过提高CD28等协同刺激因子的表达而直接达到上调免疫功能的效果;
途径2则是通过降低或阻断CTLA-4或PD-1/PD-L1等协同抑制因子表达,从而去除或降低肿瘤靶细胞带来的免疫抑制,进而间接达到上调免疫功能的效果。
直接提高CD28等协同刺激因子的表达尽管可以达到上调免疫功能的效果,但由于2006年在英国进行的一涉及代号为TGN1412的抗CD28单克隆抗体药物的临床I期研究中,6位健康受试者在接受注射该抗体药物的当天即发生了极其严重的不良反应(Suntharalingam G等:Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412。NEJM2006,355:1018-1028),因此目前科学界普遍认为激动型抗CD28抗体类药物在临床应用上具有很高的安全风险与不确定性,对其未来开发上市的前景也存在很多担忧。相反的,以降低或阻断CTLA-4或PD-1/PD-L1等协同抑制因子表达与活性的拮抗型单克隆抗体药物,近年来由于其在美国已开展的多个早期临床研究中都表现出明显的抗肿瘤疗效及可接受的安全性,现反而已成为国际肿瘤药物领域的研究与开发热点(见综述:Quezada SA and Peggs KS:Exploiting CTLA-4,PD-1 and PD-L1 to reactivate the host immune response againstcancer。British Journal of Cancer 2013,108:1560–1565;Flemming A.Cancer:PD-1makes waves in anticancer immunotherapy.Nat Rev Drug Discov.2012;11:601)。
PD-1基因最早是由日本科学家Tasuku Honjo及其同事在1992年发现与克隆的,其胞外区有1个IgV样区,与CTLA-4有23%的同源性(Ishida,Y.,Agata,Y.,Shibahara,K.andHonjo,T.Induced expression of PD-1,a novel member of the immunoglobulin genesuperfamily,upon programmed cell death.EMBO J.1992,11:3887;综述见:Okazaki T和Honjo T:PD-1 and PD-1 ligands:from discovery to clinical application.International Immunology 2007,19:813-824)。PD-1主要表达于活化的T淋巴细胞、B淋巴细胞及单核细胞上(Yasutoshi Agata等Internationl Immunology1996,8:675)。PD-1的受体或配体已知有两个:分别为PD-L1(Freeman GJ等,JEM 2000,192:1027-1034),或又称B7-H1(Dong H等,Nature Medicine 1999,5:1365-1369)和PD-L2(LatchmanY等,Nat.Immunol.2001,2:261-268),或又称B7-DC(Tseng SY等,JEM 2001,193:839-845)。PD-L1及PD-L2主要表达在肿瘤等靶细胞或抗原提呈细胞上(Thompson RH等,Cancer Res 2006;66:3881-3885)。PD-1参与负向调控体内免疫功能的这一重要事实最早是由Tasuku Honjo及其同事在研究PD-1基因敲除小鼠中观察到的。他们发现PD-1基因敲除的小鼠在C57BL/6基因背景下,发生狼疮样肾小球肾炎和关节炎(Nishimura H等,Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encodingan ITIM motif-carrying immunoreceptor.Immunity 1999,11:141);而在Balb/c基因背景下,则产生高滴度的抗心肌组织抗体并由此引发严重的自身免疫性心肌病(Nishimura,H.等,Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice.Science 2001,291:319)。
正常组织细胞中PD-L1基因的表达而介导的免疫抑制或免疫耐受,是体内保护其正常组织免于受周围自身淋巴细胞攻击与杀伤的重要机制(Keir M.E.等,Tissue expression ofPD-L1 mediates peripheral T cell tolerance.J Exp Med 2006,203:883-895)。而肿瘤细胞则能够借通过调高PD-L1或PD-L2蛋白的表达及与其表达在淋巴细胞上的PD-1受体的相互作用而传导出抑制信号,使体内免疫出现抑制或耐受而逃避淋巴细胞的识别与攻击(Dong H等,Nature Medicine 2002,8:793-800;Azuma T等,Blood 2008,111:3635-3643);而如给予PD-1或PD-L1抗体以阻断PD-1/PD-L1之间相互作用,则可打破或消除因肿瘤导致的免疫抑制或免疫耐受,恢复体内T淋巴细胞识别与攻击肿瘤靶细胞的能力,进而达到抗肿瘤生长与转移的良好效果(Iwai Y等,PNAS 2002,99:1229;Hirano F等,Cancer Res2005,65:1089-1096)。基于这些前期基础研究与临床前动物实验结果,近年来国际上已有多家制药企业如美国Bristol-Myers Squibb(BMS)/Medarex,Merck公司及Roche/Genentech等公司正在加紧研制各种以阻断PD-1与其配体结合为目的的拮抗类抗体新药,并为此申请了相关专利。
例如,美国Medarex公司及日本Ono Pharmaceutical公司在专利号为No8008449美国发明专利(发明人Korma AJ等,发明名称:Human monoclonal antibodies to programmeddeath 1(PD-1)and methods for treating cancer using anti-PD-1 antibodies alone orin combination with other immunotherapeutics)中公开了由转染CHO细胞及其表达的含全长或含胞膜外区人PD-1蛋白作为混合抗原,交叉免疫具人免疫球蛋白(Ig)转基因的工程小鼠(HuMAb Moues)中筛选获得的多个抗人PD-1抗体的杂交瘤及其分泌的抗体蛋白、编码抗体蛋白的核苷酸序列,及该抗体用于PD-1蛋白检测及治疗肿瘤等疾病的应用。
Merck Sharp&Dohme公司在专利号为No 8168757美国发明专利(发明人Finnefrock AC等,发明名称PD-1 binding proteins)中,也公开了其由含PD-1基因的DNA分子免疫小鼠后筛选获得的多个抗人PD-1抗体的杂交瘤及其抗体蛋白、其编码核苷酸序列,及该抗体用于通过增强机体内免疫功能而达到治疗肿瘤及感染性疾病的目的。
Genentech公司在专利号为No 8217149的美国发明专利(发明人Irving B等,发明名称Anti-PD-L1 antibodies,compositions and articles of manufacture)中,公开了从噬菌体抗体展示基因库(phage-display)中筛选扩增获得的多个抗人PD-L1抗体的抗体蛋白片段、其编码核苷酸序列及其用途。
美国Weythe(惠氏)公司及Medimmune(免疫医疗有限公司)在其中国专利申请号为201010170022.4、发明名称为“抗PD-1抗体及其用途”的专利文件中披露了从噬菌粒scFv基因展示库筛选获得的抗人PD-1抗体的片段、其编码DNA序列及该类抗体作为药物成分,用于治疗包括自身免疫病、变态反应、癌症等免疫系统相关疾病的应用。
美国Medarex(米德列斯)公司则在其一国际PCT/US2006/026046进入中国的申请号为200680028238.9、发明名称为“抗程序性死亡配体1(PD-L1)的人单克隆抗体”的专利文件中披露了其从免疫小鼠中筛选获得的高亲和力特异结合人PD-L1的单克隆抗体、其编码DNA序列及其用该类抗体用于治疗包括癌症和传染病在内的各种疾病的方法。
在PD-1/PD-L1抗体药物研发领域,目前进展最为靠前的当属美国Bristol-Myers Squibb/Medarex公司的抗-PD1抗体Nivolumab(代号BMS-936558,曾用代号MDX-1106)及美国Merck公司的抗-PD1抗体lambrolizumab(代号MK-3475),目前这两种抗体药物在美国都已进入临床II/III期研究阶段。进展其次的是Roche/Genentech公司的抗PD-L1抗体(代号MPDL3280A),该药物目前在美国已进入临床I/II期研究阶段。这些抗体药物主要用于治疗肺癌、黑色素瘤、肾癌等多种晚期肿瘤,其中早期临床试验(I期)结果表明抗PD-1或抗PD-L1抗体药物不但具有抑制肿瘤增长及延长患者生存期的客观疗效,而且其长期使用后安全性也在可接受范围(Brahmer JR等,JCO 2010,28:3167-3175;Topalian S等,NEJM 2012,366:2443-2454;Brahmer JR等,NEJM 2012,366:2455-2465;Hamid O等,NEJM2013,369:134-144)。如Topalian等在2012年6月报道:在一项有296例晚期癌症患者参与的I期临床研究中,每2周给予患者静脉注射美国BMS公司的名为Nivolumab(代号为BMS-93655)的抗PD-1抗体后,结果有高达28%的黑色素瘤患者、27%的肾细胞癌患者及出乎意料之高的18%非小细胞肺癌(NSCLC)患者,其肿瘤出现抑制或缩小;此外,该抗体药物在临床疗效上还表现出长期可持续的特点:如在已随访1年以上的31位患者中,有20位(64.5%)临床上表现依然有效(Topalian S等,NEJM 2012,366:2443-2454)。
类似的,Hamid等于2013年7月报道:在另一项有135例晚期黑色素瘤患者参与的I期临床研究中,每2至3周给予患者静脉注射Merck公司的名为Lambrolizumab(代号为MK-3475)的抗PD-1抗体后,结果有高达38%的患者肿瘤出现抑制或缩小;该抗体药物在临床疗效上也表现出长期可持续的特点:如在随访中位数时间为11个月的52位肿瘤患者中,有42位(81%)临床上依然有效,并还在继续接受该药物治疗(Hamid O等,N EJM 2013,369:134-144)。
鉴于PD-1与其受体PD-L1或PD-L2之间的结合具有位点多样复杂、涉及的氨基酸数目多达几十个以上等特点,因此理论上推测应可以制备针对不同结合位点或氨基酸序列的各种新的抗PD-1单克隆抗体。这些结合不同位点的单克隆抗体应具有新的用途与价值:如该类抗体一方面可与目前上述的已处于临床研究阶段的抗PD-1或抗PD-L1抗体药物合并使用,达到增强免疫功能及更好的抗肿瘤疗效;另一方面,该类抗体也有望开发成为独立使用的新型免疫功能增强剂或抗肿瘤药物。
因此,研发更多及更新的抗PD-1单克隆抗体及分泌它的杂交瘤细胞系就显得很有意义与必要。
发明内容
本发明要解决的技术问题之一提供一种拮抗抑制程序性死亡受体PD-1(programmeddeath-1)与其配体(PD-L1及PD-L2)结合的鼠源单克隆抗体或其衍生体。该鼠源单克隆抗体的衍生体包括人-鼠嵌合抗体、人源化抗体、抗体Fab片段、单链抗体等。
本发明要解决的技术问题之二是提供编码上述抗体的DNA分子或基因。
本发明要解决的技术问题之三是提供制备上述抗体的方法。
本发明要解决的技术问题之四是提供该抗体的用途,包括将上述抗体作为检测试剂,用于定量及定性分析生物样品中PD-1蛋白。
为了获得更多及更新的抗PD-1单克隆抗体,在本发明中选取哺乳动物表达的重组人PD-1胞膜外蛋白为免疫抗原,采用传统小鼠杂交瘤技术与重组基因工程方法获得了多个新的抗PD-1的单克隆抗体。其中一代号为AB7的杂交瘤,其分泌的单克隆抗体不但可与人PD-1蛋白特异结合,而且可以拮抗抑制PD-1与其受体(PD-L1及PD-L2)的结合。本发明一方面提供了该杂交瘤株及其分泌的抗体;本发明另一发面公开了该抗体的重链可变区与轻链可变区氨基酸序列及其编码DNA核苷酸序列;本发明还提供了该抗体的人-鼠嵌合抗体及其衍生体;本发明还提供了表达与制备该人-鼠嵌合抗体及其衍生体的表达载体、工程细胞及其方法。
为解决上述技术问题,本发明一方面提供了一种拮抗抑制PD-1(programmed death-1)与其配体结合的鼠源单克隆抗体,该抗体的特征是其轻链可变区具有SEQ ID NO.:1所示的氨基酸序列,重链可变区具有SEQ ID NO.:2所示的氨基酸序列。该鼠源单克隆抗体来源于代号为AB7的小鼠杂交瘤细胞株,该杂交瘤细胞株已于2013年10月17日保藏在中国微生物菌种保藏管理委员会普通微生物中心(保藏编号为CGMCC No.8351.保藏地点:中国,北京)。此外,本发明还提供编码上述鼠源单克隆抗体的DNA分子,其轻链可变区具有SEQ ID NO.:3所示的核苷酸序列,重链可变区具有SEQ ID NO.:4的核苷酸序列。
本发明另一方面提供了来源于上述鼠源单克隆抗体的衍生体如人-鼠嵌合抗体、人源化抗体、抗体Fab片段、单链抗体等。与鼠源单克隆抗体相比,人-鼠嵌合抗体或人源化抗体作为治疗药物具有在人体中半衰期长(可长达20天)及免疫原性低等优点,便于长期或反复多次体内使用。本发明中将上述鼠源单克隆抗体的重链可变区和轻链可变区基因分别与人抗体重链恒定区和轻链恒定区基因相连,获得人-鼠嵌合抗体cAB7。该人-鼠嵌合抗体或其衍生体的特征是其轻链抗原互补决定区具有SEQ ID NO:5,SEQ ID NO:6及SEQ ID NO:7的氨基酸序列;其重链抗原互补决定区具有SEQ ID NO:8,SEQ ID NO:9及SEQ ID NO:10的氨基酸序列。此外,本发明还提供编码上述人-鼠嵌合抗体或其衍生体的DNA分子或基因,其轻链可变区具有SEQ ID NO:3所示的核苷酸序列,重链可变区具有SEQ ID NO:4的核苷酸序列。
本发明第三方面是提供了一种表达载体,它含有编码上述人-鼠嵌合抗体或其衍生体的DNA分子序列以及与该序列操作性相连的表达调控序列。
本发明第四方面提供了一种重组宿主细胞,它由上述表达载体转化而成。该重组宿主细胞或其子代细胞表达上述人-鼠嵌合抗体或其衍生体。
本发明的第五方面提供了一种制备所述的人-鼠嵌合抗体或其衍生体的方法,该方法包括如下步骤:
a)提供一表达载体,该表达载体含有权利要求4所述的DNA分子序列以及与该序列操作性相连的表达调控序列;
b)用步骤a)所述的表达载体转化宿主细胞;
c)在适合所述人源化单克隆抗体表达的条件下培养步骤b)所得的宿主细胞:和
d)采用亲合层析从宿主细胞培养液中分离纯化获得所述抗体。
本发明的第六方面提供了一种用于定量或定性检测分析样品中的PD-1蛋白的检测试剂或试剂盒,它包括上述AB7鼠源单克隆抗体或人-鼠嵌合抗体,优选地,它以未标记的AB7抗体作为第一抗体,以化学标记(如荧光素、酶、生物素等)的第二抗体如羊抗小鼠IgG合并使用作为试剂盒,用于定量及定性检测分析各类生物样品中的PD-1蛋白。采用的定量及定性检测法是本领域众所周知的,包括如,ELISA、免疫印迹、蛋白印迹、免疫荧光、免疫沉淀、流式细胞仪等。所述的试剂盒可含有其它组分、包装、说明书或其它材料,以辅助检测所述PD-1蛋白。
本文所采用的术语“单克隆抗体(单抗)”指从一纯系细胞得到的免疫球蛋白,具有相同的结构和化学特性,对单一抗原决定簇有特异性。单克隆抗体与常规多克隆抗体制剂(通常是具有针对不同决定簇的不同抗体)不同,各单克隆抗体是针对抗原上的单个决定簇。除了它们的特异性外,单克隆抗体的好处还在于它们是通过杂交瘤或重组工程细胞培养获得,不会混杂有其它免疫球蛋白。修饰语“单克隆”表示了抗体的特性,是从均一的抗体群中获得的,这不应被解释成需要用任何特殊方法来生产抗体。
本文所采用的术语“人源化单克隆抗体”系将鼠源单克隆抗体的氨基酸序列除保留互补决定区(complementarity-determining regions,CDR)外,其它序列(包括可变区中的框架区序列)全部或大部分替换成人免疫球蛋白的氨基酸序列,以达到通过基因工程手段最大限度地降低鼠源性单克隆抗体的免疫原性。
本文所用的术语“抗体”和“免疫球蛋白”是有相同结构特征的约150000道尔顿的异四聚糖蛋白,其由两个相同的轻链(L)和两个相同的重链(H)组成。每条轻链通过一个共价二硫键与重链相连,而不同免疫球蛋白同种型的重链间的二硫键数目不同。每条重链和轻链也有规则间隔的链内二硫键。每条重链的一端有可变区(VH)。其后是多个恒定区。每条轻链的一端有可变区(VL),另一端有恒定区;轻链的恒定区与重链的第一个恒定区相对,轻链的可变区与重链的可变区相对。特殊的氨基酸残基在轻链和重链的可变区之间形成界面。
本文所用的术语“可变”表示抗体中可变区的某些部分在序列上有所不同,它形成了各种特定抗体对其特定抗原的结合和特异性。然而,可变性并不均匀地分布在整个抗体可变区中。它集中于轻链和重链可变区中成为互补决定区(CDR)或超变区中的三个片段中。可变区中较保守的部分称为构架区(Framework regions,FR)。抗体重链和轻链的可变区中各自包含四个FR区,它们大致上呈β-折叠构型,由形成连接环的三个CDR相连,在某些情况下可形成部分β折叠结构。每条链中的CDR通过FR区紧密地靠在一起并与另一链的CDR一起形成了抗体的抗原结合部位(参见Kabat等,NIH Publ.No.91-3242,卷1,647-669页(1991))。抗体恒定区不直接参与抗体与抗原的结合,但是它们表现出不同的效应功能,例如参与抗体的依赖于抗体的细胞毒性(antibody-dependent cellular cytotoxicity,ADCC)或补体介导毒性(complemnt-dependent cytotoxicity,CDC)。
本发明的抗体通常可以通过以下方法来制备。
首先,将含有编码本发明的抗体的基因插入到含有合适的表达调控序列的表达载体中。
本文所用的术语“表达调控序列”通常指参与控制基因表达的序列。表达调控序列包括与目标基因操作性相连的启动子和终止信号。编码本发明抗体的基因(DNA)序列可用本领域技术人员熟知的常规手段,如根据本发明公开的蛋白质序列人工合成或用PCR法扩增得到。其后可用本领域熟知的各种方法将合成或PCR扩增得到的DNA片段插入到合适的表达载体中。本发明中所用的表达载体可以是本领域技术人员已知的市售表达载体,如Invitrogen公司的pCDNA3.1表达载体。
用于接纳表达载体转化的合适宿主细胞一般包括原核细胞和真核细胞。常用的原核宿主细胞的例子包括大肠杆菌、枯草杆菌等。常用的真核宿主细胞包括酵母细胞、昆虫细胞、哺乳动物细胞等。在本发明中,较佳的宿主细胞是哺乳动物细胞,尤其是中华仓鼠卵巢(CHO)细胞。
表达载体转化的宿主细胞在合适的条件下(如以无血清培养基在细胞培养瓶或生物反应器中贴壁或悬浮培养)培养后,收获培养上清液,然后用包括protein-A亲和层析、离子交换层析、过滤等本领域技术人员熟知的常规分离步骤或手段纯化得到本发明的抗体。
纯化得到的本发明抗体可以溶于适当的溶剂如生理盐水液体中,溶度可以制备成0.01至100mg/ml之间,理想的最终溶度可以制备成0.1至20mg/ml之间。
为获得一种拮抗抑制PD-1(programmed death-1)与其配体结合的鼠源单克隆抗体及分泌它的杂交瘤细胞系,本发明选取哺乳动物表达的重组人PD-1胞膜外蛋白为免疫抗原,通过反复多次小剂量的小鼠皮下免疫,获得分泌抗PD-1蛋白的多克隆抗体;再从中挑取含高效价抗体的小鼠,取其脾脏细胞,通过体外与小鼠骨髓瘤细胞融合、再经药物筛选及亚克隆等步骤而建立了多株稳定分泌抗人PD-1蛋白的抗体的杂交瘤单克隆细胞。其中一代号为AB7的小鼠杂交瘤细胞株,经ELISA、免疫印迹、免疫组化等多种方法鉴定,证实其所分泌的单克隆抗体不但能够特异结合人PD-1蛋白,而且可阻断抑制PD-1蛋白与其配体(PD-L1,PD-L2)的结合。
本发明通过基因工程等手段获得了编码该鼠源抗体重链可变区及轻链可变区的基因片断,并在此基础上构建了该抗体的人-鼠嵌合抗体基因及其表达载体(pCDNA3.1-cAB7)。该表达载体经转染进入中华仓鼠卵巢(CHO)细胞,获得分泌表达人-鼠嵌合抗体的重组工程细胞,并从重组工程细胞培养液中分离纯化获得到具有生物活性的人-鼠嵌合抗体蛋白。
附图说明
图1为本发明实施例1中以ELISA法检测小鼠杂交瘤细胞(AB7)培养上清液与包被在96-孔板上的重组人PD-1胞膜外蛋白结合的结果示意图。其中未融合的SP2/0骨髓瘤细胞培养上清液为阴性对照样品。
图2为实施例2中以流式细胞仪检测AB7杂交瘤细胞培养上清液中抗体与PD-1基因转染及未转染的CHO细胞的结合结果示意图。其中未融合的SP2/0骨髓瘤细胞培养上清液为阴性对照;其中,图2A代表在SP2/0阴性对照上清样品中PD-1基因未转染的CHO细胞,图2B代表在AB7杂交瘤细胞培养上清样品中PD-1基因未转染的CHO细胞,图2A代表在SP2/0阴性对照上清样品中PD-1基因转染的CHO细胞,图2D代表在AB7杂交瘤细胞培养上清样品中PD-1基因转染的CHO细胞。
图3为本发明实施例3中以SDS-PAGE分析鉴定从AB7杂交瘤细胞培养上清液中亲合层析纯化获得的抗体蛋白的结果示意图。其中泳道1为未还原的AB7抗体蛋白样品,泳道2为DTT还原后的AB7抗体蛋白样品;M为蛋白质分子量标志。
图4为实施例4中流式细胞仪检测分析鼠源AB7单克隆抗体与PHA激活的人Jurkat T淋巴细胞上PD-1蛋白结合的结果示意图。其中以非相关小鼠抗体IgG样品为阴性对照。其中,图4A代表非相关小鼠抗体IgG阴性对照样品,图4B代表AB7抗体的样品。
图5为本发明实施例5中以体外竞争ELISA法检测证明AB7抗体可拮抗阻断生物素标记的人PDL1-Fc蛋白(Biotin-PDL1-Fc)与包被在96-孔板上人PD-1蛋白的结合的结果示意图。其中的AB7&Biotin-PDL1-Fc组为AB7抗体与Biotin-PDL1-Fc竞争样品,MouseIg&Biotin-PDL1Fc组为非相关的小鼠抗体与Biotin-PDL1-Fc竞争样品,作为阴性对照。
图6为本发明实施例5中以体外竞争ELISA法检测证明AB7抗体可拮抗阻断生物素标记的人PDL2-Fc蛋白(Biotin-PDL2-Fc)与包被在96-孔板上人PD-1蛋白的结合的结果示意图。其中的AB7&Biotin-PDL2-Fc组为AB7抗体与Biotin-PDL2-Fc竞争样品,MouseIg&Biotin-PDL2Fc组为非相关的小鼠抗体与Biotin-PDL2-Fc竞争样品,作为阴性对照。
图7为本发明实施例7中以直接ELISA法检测证明由含人-鼠嵌合抗体(cAB7)基因的表达载体转染的CHO细胞表达上清保持与人PD-1蛋白结合的结果活性示意图。
代号为AB7的小鼠杂交瘤细胞株(来源于小鼠Mus musculus)已于2013年10月17日保藏在中国微生物菌种保藏管理委员会普通微生物中心(保藏编号为CGMCC No.8351;保藏地点:中国北京市朝阳区北辰西路1号院3号,中国科学院微生物研究所)。
具体实施方式
下面将结合实施实例来进一步描述本发明,这些实施例只是为了起说明作用,而不是用来限制本发明。
实施例1:分泌抗PD-1抗体的小鼠杂交瘤细胞系的建立与筛选鉴定
步骤1.重组人PD-1蛋白(免疫抗原)的获得与动物免疫
在本发明实施例中,用于免疫的人PD-1蛋白为由哺乳动物表达的重组人PD-1胞膜外蛋白(北京义翘神州公司产品)。该重组人PD-1蛋白与弗氏完全佐剂(美国Sigma公司产品)混合后,于皮下多点注射Balb/c小鼠(100μl/只,共5-10μg PD-1蛋白)。首次免疫2-3周后,小鼠再给予皮下多点注射含PD-1蛋白与弗氏不完全佐剂(美国Sigma公司产品)的混合物,加强免疫2-3次后,取少量小鼠血清,用包被人PD-1蛋白的96-板以ELISA法检测小鼠血清中抗PD-1抗体的效价,取效价高者小鼠的脾细胞用于下一步的细胞融合。
步骤2、细胞融合
在末次免疫后3天,无菌制备小鼠脾细胞悬液,与小鼠SP2/0骨髓瘤细胞(购自中国科学院上海生命科学院细胞保藏中心),以5:1的比例在50%PEG-1000(美国Sigma公司产品)作用下融合。融合按常规法(Kohler G.and Milstein C:Nature 1975;256:495-497),PEG用量1ml,1分钟内缓慢加完。反应90秒后,以无血清的RPMI-1640培养基终止反应,1000rpm离心10min,去除上清液,再将离心沉淀下的细胞以含10% HAT(H为次黄嘌呤、A氨基碟呤、T胸腺嘧啶核苷,为美国Sigma公司产品)的RPMI1640-10% FCS培养基将细胞浓度调节至1Х106/ml,加入96孔平底细胞培养板(每孔200μl),于37℃,5% CO2培养箱中培养2-3周。
步骤3、酶联免疫吸附试验(ELISA)筛选抗体分泌阳性的小鼠杂交瘤细胞
以重组人PD-1蛋白(2μg/ml,pH9.6,0.1M NaHCO3液)包被酶标板,37℃包被2小时或4℃过夜;2%牛血清白蛋白(BSA)4℃封闭过夜。经PBS-0.1% Tween20液洗涤后加入待检杂交瘤细胞培养上清(以未融合的SP2/0骨髓瘤细培养上清为阴性对照)37℃孵育2小时;经PBS-0.1% Tween20液洗涤后,加入辣根过氧化物酶HRP-标记的羊抗小鼠IgG(美国Sigma公司产品),37℃孵育1小时;再经PBS-0.1% Tween20液充分洗涤后,加入邻苯二胺(OPD)-0.1% H2O2底物液显色10-15min,以0.1M HCl终止反应。在MK3-Multiskan酶标仪(美国Thermo Scientific公司产品)中读取492nm处OD值。测得的OD 492值比阴性对照高5-10倍的杂交瘤细胞再克隆化,并进行扩增冻存。
步骤4、阳性杂交瘤细胞的亚克隆-有限稀释法
将上述初筛得到的阳性细胞以RPMI-1640-10% FCS培养基稀释至每孔1-10个细胞,铺于96-孔细胞培养板,于37℃,5% CO2培养箱中培养2-3周。待克隆长成,取上清液以ELISA再次检测鉴定抗PD-1抗体的分泌。经检测鉴定,获得多个抗体分泌阳性细胞株。经亚克隆鉴定,其中一株代号为AB7杂交瘤细胞株可稳定分泌表达抗PD-1单克隆抗体。图1为以ELISA法检测测AB7杂交瘤细胞上清液与重组人PD-1蛋白结合的结果示意图,结果证明该杂交瘤细胞上清液含高效价抗人PD-1蛋白的抗体。该抗体经鉴定为IgG类。该杂交瘤细胞株再经大量扩增,长期传代培养并于2013年10月17日保藏在中国微生物菌种保藏管理委员会普通微生物中心(保藏编号为CGMCC No.8351.保藏地点:中国,北京)。
实施例2 流式细胞仪检测分析鼠源AB7单克隆抗体与人PD-1基因转染的CHO细胞的结合
在本实施例中,以AB7抗体为一抗,以FITC荧光标记的羊抗小鼠IgG为二抗,采用流式细胞仪检测分析AB7抗体与人PD-1基因转染的CHO细胞结合。为此,先从人外周血淋巴细胞(PBL)中提取出总mRNA,再以Reverse transcription-polymerase chain reaction(RT-PCR)方法体外扩增获得含编码PD-1全长蛋白(包括胞外及胞内区)的cDNA片段。用于RT-PCR的引物为PD-1正向引物:ATTAAGCTTGAGCAGTGGAGAAGGCGGCA,Seq ID No:11,PD-1反向引物:AATTGGATCCCTCCTGAGGAAATGGGCTGA,Seq ID No:12)。以该对引物扩增获得cDNA片段包涵PD-1蛋白全部编码区,长度为989bp。该DNA经限制性内切酶处理后,再插入至表达质粒pCDNA3.1(美国Invitrogen公司)中,从而获得含PD-1 cDNA的重组质粒pCDNA3.1-PD-1。随后将该表达质粒与Fugen-6脂质体(Roche公司产品)混合后共转染入CHO细胞(购自美国Invitrogen公司),转染2天后,细胞经离心分离后,重溶于分别含鼠源AB7单克隆上清(为测试样品)或SP2/0上清(为阴性对照)的溶液中,4℃孵育1小时;经PBS-0.1% Tween20液洗涤后,加入FITC-标记的羊抗小鼠IgG(Sigma公司产品),4℃孵育1小时;再经PBS-0.1%Tween20液洗涤后,将样品上样至Cytomics FC500 MCL)流式细胞仪检测(美国BeckmanCoulter公司)。
图2为该流式细胞仪检测结果示意图。如图2所示:在转染人PD-1基因的样品中,有近30%的细胞可与AB7单克隆抗体特异结合(图2D);而在SP2/0阴性对照上清样品中,无论是转染的(图2C)还是未转染的CHO细胞(图2A)均无明显结合;未转染的CHO细胞与AB7抗体也无明显结合(图2B),表明该流式细胞仪检测结果具有较高的特异性。
实施例3.鼠源抗人PD-1单克隆抗体(AB7)的体外制备及纯化
本实施例中,采用亲合层析法分离纯化获得鼠抗人PD-1单克隆抗体(AB7)蛋白。
其纯化步骤如下:
将AB7杂交瘤细胞扩增后,接种于200-500ml无血清的1640培养基中,37℃培养5天,随后收集培养上清,经过0.45μm滤膜过滤后上样至含Protein G-Sepharose Fast Flow(购自通用电气GE公司)亲合层析柱;层析柱先以PBS液漂洗去除杂蛋白后,再以低pH(2.7-3.0)甘氨酸(0.1M)液洗脱被吸附的AB7抗体蛋白。洗脱液以1mol/L Tris(pH8.5-9.0)调节pH至7.0,再对10倍体积的PBS液透析12~16后(期间换液2-3次),透析后的样品再经0.45μm滤膜过滤后即获得纯化的AB7抗体。
将纯化的AB7抗体按常规方法在DTT还原及未还原条件下进行经聚丙烯酰胺凝胶电泳分析(SDS-PAGE)(分离胶为10%,浓缩胶5%)。图3为该电泳分析结果图谱:其中泳道1为未还原的完整AB7抗体样品,分子量在150kD左右;泳道2为DTT还原后的AB7抗体样品,分离为2条主带,其中处于分子量在50kD左右的上面条带为AB7抗体重链,处于分子量在25kD左右的下面条带为AB7抗体轻链。
实施例4 鼠源AB7单克隆抗体用于检测分析表达在人T淋巴细胞上的PD-1蛋白
在本实施例中,AB7单克隆抗体作为一抗,FITC荧光标记的羊抗小鼠IgG作为二抗,用于检测分析表达在人T淋巴细胞上的PD-1蛋白。其中的人T淋巴细胞为Jurkat细胞(购自于中国科学院上海生命科学院细胞保藏中心)。为此,先将Jurkat细胞置于含T淋巴细胞活化因子PHA(美国Sigma公司产品,PHA终浓度:3μg/mL)的RPMI-10%FCS培养液中培养以激活与诱导PD-1蛋白的表达。激活与诱导24-48小时后,细胞经离心分离后分别重溶于含纯化的测试样品AB7抗体(终溶度:5μg/ml)或非相关小鼠IgG(MouseIgG,阴性对照样品,终溶度:5μg/ml)的溶液中,4℃孵育1小时;经PBS-0.1% Tween20液洗涤后,加入FITC-标记的羊抗小鼠IgG(Sigma公司产品,1:200),4℃孵育1小时;再经PBS-0.1% Tween20液洗涤后,将样品至Cytomics FC500 MCL流式细胞仪检测(美国Beckman Coulter公司)。流式细胞仪分析。
图4为该流式细胞仪检测分析的结果图谱。如图4B所示:AB7单克隆抗体样品可与PHA活化的Jurkat细胞结合,与未活化的Jurkat细胞无明显结合反应。在非相关小鼠IgG阴性对照样品中(图4A),无论是活化的还是未活化的Jurkat细胞,均无明显结合反应。
实施例5 AB7单克隆抗体生物活性测定:竞争性ELISA法检测鉴定鼠源AB7单克隆抗体体外阻断其受体PD-L1及PD-L2与PD-1蛋白的结合
体外鉴定AB7单克隆抗体的生物活性的方法之一是采用竞争性ELISA法检测该抗体是否可以阻断PD-1与其PD-1配体(PD-L1及PD-L2)的结合。该竞争性ELISA法的基本原理与过程是:先将生物素标记的人PD-1配体蛋白(如PDL1-Fc或PDL2-Fc融合蛋白)与不同溶度的单克隆抗体混合,之后再将混合物转入预先包被有PD-1蛋白的96-孔板,经孵育及洗脱后,加入酶标记的Avidin(如辣根过氧化物酶标记的Avidin);再经孵育及洗脱后,加入底物显示并测定OD值。
该竞争性ELISA法检测的具体步骤如下:
1)用重组人PD-1胞膜外蛋白(北京义翘神州公司产品)包被96-孔板(包被溶度:2μg/ml,50μl/孔),4℃过夜;
2)经PBS液漂洗及2% BSA(稀释在PBS-0.1% tween20液中)室温封闭后,分别加入含固定溶度的生物素标记的PDL1-Fc蛋白或PDL2-Fc蛋白(PDL1-Fc蛋白及PDL2-Fc蛋白均为北京义翘神州公司产品)与不同溶度的AB7抗体,或非相关的小鼠抗体(mouse IgG),37℃孵育2h;
3)经PBS-T洗脱后,加入辣根过氧化物酶标记的Avidin(1:5000),37℃孵育1h;
4)经PBS-T洗脱后,加入显色液(邻苯二胺)-3%双氧水,室温10min至显色;
5)加入HCL终止反应,以酶联免疫仪测定492nm波长处各孔的吸光值。
图5为AB7抗体体外与生物素标记的PDL1-Fc蛋白(Biotin-PDL1Fc)竞争结合PD-1蛋白的代表性结果。如图5所示:在加入AB7抗体与生物素标记的PDL1-Fc蛋白(AB7&Biotin-PDL1Fc)竞争的样品中,各孔显色反应OD值与加入的AB7抗体蛋白量成反比关系:即加入的AB7抗体的量越高,其OD值越低。而在加入非相关小鼠抗体与生物素标记的PDL1-Fc蛋白(MouseIgG&Biotin-PDL1Fc)竞争的样品中,各孔显色反应OD值不受加入的抗体蛋白量影响。此结果清楚表明AB7抗体可竞争阻断PD-L1(PDL1-Fc)与PD-1的结合。
图6则为AB7抗体体外与生物素标记的PDL2-Fc蛋白(Biotin-PDL2Fc)竞争结合PD-1蛋白的代表性结果。如图6所示:在加入AB7抗体与生物素标记的PDL2-Fc蛋白(AB7&Biotin-PDL2Fc)竞争的样品中,各孔显色反应OD值与加入的AB7抗体蛋白量成反比关系:即加入的AB7抗体的量越高,其OD值越低。而在加入非相关小鼠抗体与生物素标记的PDL2-Fc蛋白(MouseIgG&Biotin-PDL2Fc)竞争的样品中,各孔显色反应OD值不受加入的抗体蛋白量影响。此结果表明AB7抗体也可竞争阻断PD-L2(PDL2-Fc)与PD-1的结合。
实施例6.编码鼠源AB7抗体可变区基因的克隆
由于AB7抗体的重链及轻链均存在N-端封闭现象,常规Edman氨基酸降解法N-端测序未获结果。在此,先从小鼠AB7杂交瘤细胞中提取出总RNA中,再以该RNA为模板,采用兼并引物(degenerate primers),以Reverse transcription-polymerase chain reaction(RT-PCR)法(Wang Y等:Degenerated primer design to amplify the heavy chain variable regionfrom immunoglobulin cDNA。BMC Bioinformatics.2006;7Suppl(4):S9)分别克隆扩增获得AB7抗体重链可变区及轻链可变区的cDNA基因片段。
其中克隆步骤如下:
步骤1、采用试剂盒(江苏海门碧云天公司产品)从小鼠AB7杂交瘤细胞中提取出mRNA;
步骤2、采用逆转录PCR(RT-PCR)方法在eppendorf管获得cDNA模板。
其中用于AB7抗体轻链可变区逆转录PCR引物(AB7-L)序列为:GTG CTG GAG GGG ACA GTCACT(SEQ ID NO.:13);
用于AB7抗体重链可变区逆转录PCR引物(AB7-H)序列为:CTG AGG CAC CTC CAG ATG TTTGTCGTTCACTGCCATCAAT(SEQ ID NO.:14);
RT-PCR反应体系如下:
于42℃温度下反应1小时,随后温度升至75℃,15分钟灭活后将获得的cDNA置于-20℃,保存备用。
步骤3、AB7抗体轻链可变区及重链可变区基因的PCR克隆扩增
用于PCR法克隆扩增该AB7抗体轻链可变区基因的一对引物为:
正向引物:CCG AGA TCT GAC GTG CAG ATT TTC AGC T (SEQ ID NO.:15)
反向引物:AAT TGG ATC CAG TTG GTG CAG CAT CAG C (SEQ ID NO.:16)
而用于兼并引物(degenerate primers)PCR法克隆扩增AB7抗体重链可变区基因的一对引物为:
正向引物:GCG AAG CTT CAR CTG CAR CAR YCT G (SEQ ID NO.:17)
其中Y=C或T,R=A or G。
反向引物:AAT TGG ATC CTG GGG GTG TCG TTT TGG C (SEQ ID NO.:18)
PCR扩增得到的DNA产物在1% agarose胶中电泳分析。电泳结束后,将分离的DNA条带切下并分别进行测序获得抗体重链可变区DNA的核苷酸序列。测得的该抗体轻链可变区DNA的核苷酸序列见SEQ ID NO.:3,由该DNA核苷酸序列推测得到的抗体轻链可变区氨基酸序列见SEQ ID NO.:1。该轻链抗原互补决定区(complementarity-determining regions,CDR)的CDR1、CDR2及CDR3的氨基酸序列分别见SEQ ID NO.:5、SEQ ID NO.:6和SEQ ID NO.:7。
测得的该抗体重链可变区DNA的核苷酸序列见SEQ ID NO.:4,由该DNA的核苷酸序列推测得到的抗体重链可变区氨基酸序列见SEQ ID NO.:2。该重链抗原互补决定区的CDR1、CDR2及CDR3的氨基酸序列分别见SEQ ID NO.:8、SEQ ID NO.:9和SEQ ID NO.:10。
实施例7.人-鼠嵌合抗体(cAB7)的制备
将实施例6中克隆扩增获得的AB7抗体轻链可变区基因和重链可变区基因分别与人-kappa轻链恒定区(C-domain)和人IgG1-重链恒定区基因片段融合,获得人-鼠嵌合轻链基因(cAB7L)及人-鼠嵌合重链基因(cAB7H)。其后将轻链嵌合基因与重链嵌合基因分别克隆至pcDNA3.1表达质粒,转入大肠杆菌扩增,分离获得大量含人-鼠嵌合抗体基因的表达质粒。
含人-鼠嵌合抗体基因的表达质粒再与Fugen-6脂质体(Roche)混合后共转染入CHO细胞。细胞转染后2-3天,取培养上清液,用包被人PD-1蛋白的96-孔板,用HRP酶标记的Goat-anti-human-IgG为二抗(购自上海西塘生物公司),为检测二抗,以ELISA法检测上清中的嵌合抗体(cAB7)与人PD-1蛋白结合。下表1及图7为该ELISA代表性检测结果,如表1及图7所示:人-鼠嵌合抗体基因表达质粒转染的CHO细胞上清中含有可与人PD-1的蛋白特异结合的嵌合抗体。
表1 以ELISA法检测瞬时转染细胞培养上清中抗体与人PD-1蛋白的结合活性
上述转染细胞上清经离心及0.45μm滤膜过滤后,可上样至Protein A亲合层柱(通用电气GE公司proteinA-Sepharose Fast Flow),用于分离纯化抗体蛋白。