CN104538600B - 一种AgNPs/MoS2功能复合材料及其制备方法 - Google Patents

一种AgNPs/MoS2功能复合材料及其制备方法 Download PDF

Info

Publication number
CN104538600B
CN104538600B CN201510010703.7A CN201510010703A CN104538600B CN 104538600 B CN104538600 B CN 104538600B CN 201510010703 A CN201510010703 A CN 201510010703A CN 104538600 B CN104538600 B CN 104538600B
Authority
CN
China
Prior art keywords
mos
agnps
nanometer sheet
composite material
functional composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510010703.7A
Other languages
English (en)
Other versions
CN104538600A (zh
Inventor
严学华
吴肖
戴煜
缪进进
沙大巍
邹涵
任杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu intellectual property operation center Co., Ltd
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201510010703.7A priority Critical patent/CN104538600B/zh
Publication of CN104538600A publication Critical patent/CN104538600A/zh
Application granted granted Critical
Publication of CN104538600B publication Critical patent/CN104538600B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种AgNPs/MoS2功能复合材料及其制备方法。称取MoS2样品加入到十二烷基硫酸钠水溶液中,进行球磨、离心,去除团聚物取上清液,最后超声,烘干,得到层状 MoS2 纳米片;称取AgNO3 溶解在去离子水中,搅拌加热至沸腾,加入柠檬酸钠溶液继续加热,保持沸腾1 h,得到Ag 纳米颗粒溶液;将Ag 纳米颗粒与层状MoS2 纳米片按质量比1:20混合,加入CuSO4 溶液,超声45‑55h,使 0D/2D 材料完全自组装,将混合液进行离心清洗,最后在真空干燥箱中烘干。AgNPs 均匀的分布在 MoS2 纳米片表面,颗粒大小均匀,为4‑5nm,表现出优良的电化学性能。

Description

一种AgNPs/MoS2功能复合材料及其制备方法
技术领域
本发明涉及一种AgNPs/MoS2功能复合材料及其制备方法,特别是指一种通过分层自组装制备AgNPs/MoS2功能复合材料的方法;此材料具有良好的电化学性能,制备工艺简单,属于复合材料、能源材料、超电容及锂电池等技术领域。
背景技术
随着科学技术的快速发展,地球上人口激增,再加上温室效应使气候产生巨大变化,且石化资源逐渐枯竭,环境和能源面临严重的挑战,因此发展新能源成为发达国家和发展中国家的研究热点,开发新型、具有良好电化学性能的新能源材料具有非常重要的意义。
因量子尺寸效应的存在,金属纳米颗粒具有光、电、磁、热、力学等独特的性能,这些独特的性能使金属纳米颗粒在催化、材料、信息科学、生物医药等领域有着广泛的应用前景;然而,未修饰的金属纳米颗粒是不稳定的,易发生团聚而失去优良的性能。
二维纳米材料具备比表面积大、韧度高、优良的机械强度和化学稳定性等优点,成为目前人们研究的热点;MoS2 纳米片是典型的 2D半导体材料和类石墨烯结构的材料,原子之间以 S-Mo-S 共价键的形式存在,分子间通过范德华力堆积在一起;单层MoS2,与块状不同,是一种直接带隙半导体,其带隙为1.8eV,并且荧光率比较高,其独特的特性使MoS2在制造电子、传感器、催化、光电、储能器件方面成为最有前景的材料。
近年来随着广大研究者者对二维层状纳米材料二硫化钼研究热潮的兴起,基于二硫化钼的器件随之大量出现,纯MoS2导电性不高,不利于电子传输,电子传递能力较弱,而AgNPs导电性非常好,利于电子传输;本发明采用分层自组装法将AgNPs 均匀的分布在MoS2 纳米片表面,表现出优良的电化学性能。
发明内容
本发明的目的在于提供一种成本低廉、制备简单的AgNPs/MoS2复合材料的制备方法及其应用,其属于 0D/2D 复合材料,是一种具有良好电化学性能的功能复合材料。
本发明中发明一种制备 AgNPs/MoS2 功能复合材料的制备方法,采用分层自组装法,AgNPs 均匀的分布在 MoS2 纳米片表面,颗粒大小均匀,为4-5nm,如图1所示。
本发明中的AgNPs/MoS2 功能复合材料,具有良好的电化学性能;在测试电压范围-1~1V,扫描速度为50到200 mV/s的CV循环测试中,AgNPs/MoS2 功能复合材料表现出优良的电化学性能,比电容可达 78 F/g,如图2所示。
实现本发明所采用的技术方案为:一种AgNPs/MoS2功能复合材料,通过分层自组装法制得,其特征在于成本低廉、制备简单,可制备大量的层状MoS2二维纳米片,且AgNPs均匀的分布在层状MoS2二维纳米片表面,还表现出优良的电化学性能,具体制备步骤如下:
(1)称取MoS2样品加入到十二烷基硫酸钠水溶液中,进行球磨、离心,去除团聚物取上清液,最后超声,烘干,得到层状 MoS2 纳米片。
进一步地,所述十二烷基硫酸钠水溶液的质量百分浓度为0.05%。
进一步地,每100ml十二烷基硫酸钠水溶液加入1.5g MoS2样品。
(2)称取AgNO3 溶解在去离子水中,然后使用磁力搅拌器搅拌加热至沸腾,加入柠檬酸钠溶液继续加热,保持沸腾1 h,得到Ag 纳米颗粒溶液。
进一步地,每100ml去离子水中加入18mg AgNO3
进一步地,柠檬酸钠溶液的质量百分浓度为1%,柠檬酸钠溶液与去离子水的体积比为1:50。
(3)将Ag 纳米颗粒与层状MoS2 纳米片按质量比1:20混合,加入CuSO4 溶液,超声45-55h,使 0D/2D 材料完全自组装,将混合液进行离心清洗,最后在真空干燥箱中烘干得到AgNPs/MoS2功能复合材料。
进一步地,所述离心清洗的离心速率为 8000 rpm,时间为40 min。
进一步地,所述CuSO4 质量与MoS2纳米片质量比为1:200。
进一步地,所述将Ag 纳米颗粒与层状MoS2 纳米片按质量比1:20混合指:将Ag 纳米颗粒溶液与层状MoS2 纳米片加入到去离子水中混合,Ag 纳米颗粒溶液中Ag 纳米颗粒与层状MoS2 纳米片的质量比为1:20,每100ml去离子水中加入0.8g层状MoS2 纳米片。
本发明具有如下优点:所述材料由银纳米颗粒和 MoS2 二维纳米片两种材料复合而成,在制备功能复合材料过程中,可制备大量的层状MoS2二维纳米片,利于层状MoS2二维纳米片的商业化生产,并进一步利于AgNPs/MoS2 复合材料的制备,其中 AgNPs 尺寸为4-5nm,均匀地分布在层状 MoS2 纳米片表面;而现有技术中AgNPs 尺寸较大(20nm左右),且难均匀地分布在MoS2 纳米片表面;该制备方法简单,成本低,利于0D/2D 材料的大量生产,此外,所述功能材料具有良好的电化学性能,对能源材料领域的发展有重大推动作用。
附图说明
图1为AgNPs/MoS2功能复合材料的透射电镜图。
图2为AgNPs/MoS2 功能复合材料在50到200 mV/s 扫描速度下的CV曲线图。
具体实施方式
本发明一种制备 AgNPs/MoS2 功能复合材料的制备方法,采用分层自组装法。MoS2纳米片被剥离成单层和多层纳米片,AgNPs 均匀地分布在层状 MoS2 纳米片表面,颗粒大小均匀,在4-5nm。
本发明中的AgNPs/MoS2 功能复合材料,具有良好的电化学性能,在测试电压范围-1~1V,扫描速度为50到200 mV/s的CV循环测试中,AgNPs/MoS2 功能复合材料表现出优良的电化学性能。
本发明一种优良电化学性能AgNPs/MoS2功能复合材料的制备方法,它包括以下步骤:
(1) 称取3g MoS2样品,加入到200ml质量百分浓度为 0.05%十二烷基硫酸钠水溶液中,进行球磨,然后离心清洗,离心速率为 8000 rpm,时间为40 min,去除团聚物取上清液,将所获得的上清液进行超声以进一步剥离层状材料,最终获得层状 MoS2 纳米材料。
(2) 称取90mg 的AgNO3 溶解在 500ml 的去离子水中,然后使用磁力搅拌器搅拌加热至沸腾,加入 10ml 质量百分浓度为1% 的柠檬酸钠溶液继续加热,保持沸腾1 h,得到Ag 纳米颗粒溶液。
(3) 将含4mg Ag 纳米颗粒的Ag 纳米颗粒溶液与80mg MoS2 纳米片加入到10ml去离子水中混合,加入40ml含0.4 mg的CuSO4 溶液,超声48 h,使 0D/2D 材料完全自组装;将混合液进行离心清洗,离心速率为 8000 rpm,时间为40 min,最后在真空干燥箱中烘干。

Claims (4)

1.一种AgNPs/MoS2功能复合材料的制备方法,所述的AgNPs/MoS2功能复合材料,其特征在于:AgNPs均匀的分布在MoS2纳米片表面,颗粒大小均匀,为4-5nm;在测试电压范围-1~1V,扫描速度为50到200mV/s的CV循环测试中,AgNPs/MoS2功能复合材料比电容可达78F/g,其特征在于具体步骤如下:
(1)称取MoS2样品加入到十二烷基硫酸钠水溶液中,进行球磨、离心,去除团聚物取上清液,最后超声,烘干,得到层状MoS2纳米片;
(2)称取AgNO3溶解在去离子水中,然后使用磁力搅拌器搅拌加热至沸腾,加入柠檬酸钠溶液继续加热,保持沸腾1h,得到Ag纳米颗粒溶液;
(3)将Ag纳米颗粒溶液中的Ag纳米颗粒与层状MoS2纳米片按质量比1:20混合,加入CuSO4溶液,超声45-55h,使0D/2D材料完全自组装,将混合液进行离心清洗,最后在真空干燥箱中烘干得到AgNPs/MoS2功能复合材料;步骤3中,所述将Ag纳米颗粒与层状MoS2纳米片按质量比1:20混合指:将Ag纳米颗粒溶液与层状MoS2纳米片加入到去离子水中混合,Ag纳米颗粒溶液中Ag纳米颗粒与层状MoS2纳米片的质量比为1:20,每100ml去离子水中加入0.8g层状MoS2纳米片。
2.如权利要求1所述的一种AgNPs/MoS2功能复合材料的制备方法,其特征在于:步骤1中,所述十二烷基硫酸钠水溶液的质量百分浓度为0.05%;每100ml十二烷基硫酸钠水溶液加入1.5g MoS2样品。
3.如权利要求1所述的一种AgNPs/MoS2功能复合材料的制备方法,其特征在于:步骤2中,每100ml去离子水中加入18mg AgNO3;柠檬酸钠溶液的质量百分浓度为1%,柠檬酸钠溶液与去离子水的体积比为1:50。
4.如权利要求1所述的一种AgNPs/MoS2功能复合材料的制备方法,其特征在于:步骤3中,所述离心清洗的离心速率为8000rpm,时间为40min;所述CuSO4质量与MoS2纳米片质量比为1:200。
CN201510010703.7A 2015-01-09 2015-01-09 一种AgNPs/MoS2功能复合材料及其制备方法 Active CN104538600B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510010703.7A CN104538600B (zh) 2015-01-09 2015-01-09 一种AgNPs/MoS2功能复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510010703.7A CN104538600B (zh) 2015-01-09 2015-01-09 一种AgNPs/MoS2功能复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN104538600A CN104538600A (zh) 2015-04-22
CN104538600B true CN104538600B (zh) 2017-07-18

Family

ID=52854095

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510010703.7A Active CN104538600B (zh) 2015-01-09 2015-01-09 一种AgNPs/MoS2功能复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN104538600B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105016391A (zh) * 2015-07-23 2015-11-04 江苏新光环保工程有限公司 一种三维MoS2的制备方法
CN105651756B (zh) * 2016-01-04 2018-10-26 山东师范大学 用于放大拉曼信号的拉曼增强基底及其制备方法和应用
CN105664976A (zh) * 2016-01-13 2016-06-15 三峡大学 一种负载型二维层状硫化钼复合材料及其制备方法和应用
CN106356195A (zh) * 2016-08-31 2017-01-25 江苏大学 一种Fe3O4/WS2纳米复合材料及其制备方法
CN110327952A (zh) * 2019-08-16 2019-10-15 济南大学 自吸水式二维P/MoS2基复合光催化剂的制备方法
CN111360278B (zh) * 2020-03-16 2021-11-23 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种以过渡金属硫化物为载体的银纳米颗粒及其制备方法
CN113125385B (zh) * 2021-04-13 2022-12-02 湘潭大学 基于Au@MoS2的局域表面等离子体增强NO2气体传感器及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7014941B2 (en) * 2002-05-14 2006-03-21 The Governors Of The University Of Alberta Electrode catalyst for H2S fuel cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
二硫化物层状材料的插层、剥离及组装研究;吕晴;《中国优秀硕士学位论文全文数据库》;20121215(第12期);第35-39页 *

Also Published As

Publication number Publication date
CN104538600A (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
CN104538600B (zh) 一种AgNPs/MoS2功能复合材料及其制备方法
Govindasamy et al. Molybdenum disulfide nanosheets coated multiwalled carbon nanotubes composite for highly sensitive determination of chloramphenicol in food samples milk, honey and powdered milk
Liang et al. Recent developments concerning the dispersion methods and mechanisms of graphene
Zhang et al. Direct electrochemistry of cytochrome c immobilized on one dimensional Au nanoparticles functionalized magnetic N-doped carbon nanotubes and its application for the detection of H2O2
Borode et al. Surfactant-aided dispersion of carbon nanomaterials in aqueous solution
CN103738944B (zh) 一种通过纳米粒子掺杂制备三维石墨烯的方法
Kong et al. Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks
Zhang et al. Synthesis of silver nanoparticles—effects of concerned parameters in water/oil microemulsion
Zhou et al. Microsphere organization of nanorods directed by PEG linear polymer
CN103100725B (zh) 一种银/碳量子点复合纳米材料的制备方法
CN104401979B (zh) 石墨烯基复合气凝胶的相转移制备方法
Mo et al. Electrochemical determination of nitrite by au nanoparticle/graphene-chitosan modified electrode
JP5543021B2 (ja) コアシェル型磁性合金ナノ粒子の調製方法
Abdelmoti et al. Potential-controlled electrochemical seed-mediated growth of gold nanorods directly on electrode surfaces
Saleh et al. Emergent properties and toxicological considerations for nanohybrid materials in aquatic systems
CN108417401A (zh) 硅藻土能量储存装置
Kumar et al. Synthesis and functionalization of nanomaterials
CN107233803A (zh) 一种石墨烯/银颗粒复合过滤薄膜及其制备与应用
Jo et al. Fabrication of tunable silica-mineralized nanotubes using flagella as bio-templates
Ma et al. Sensitive determination of nitrite by using an electrode modified with hierarchical three-dimensional tungsten disulfide and reduced graphene oxide aerogel
CN106141171A (zh) 核壳型超结构纳米材料、其制备方法及应用
Pandit et al. Tin oxide based hybrid nanostructures for efficient gas sensing
CN109704389A (zh) 一种采用低共熔溶剂制备ZnO纳米结构材料的方法
Sun et al. Electrochemical behavior and voltammetric determination of p-methylaminophenol sulfate using LiCoO2 nanosphere modified electrode
CN107452865B (zh) 一种金纳米颗粒包覆纳米片结构Sb2Te3热电材料的制作方法

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20181025

Address after: 212000 101 South Xu Road, run Zhou District, Zhenjiang, Jiangsu

Patentee after: JIANGSU HUIZHI INTELLECTUAL PROPERTY SERVICES CO., LTD.

Address before: No. 301, Xuefu Road, Jingkou District, Zhenjiang, Jiangsu Province

Patentee before: Jiangsu University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200522

Address after: 215500 No.13, Caotang Road, Changshu, Suzhou, Jiangsu Province

Patentee after: Changshu intellectual property operation center Co., Ltd

Address before: 101 No. 212000 Zhenjiang city of Jiangsu Province, Runzhou District Nan Xu Road

Patentee before: JIANGSU HUIZHI INTELLECTUAL PROPERTY SERVICES Co.,Ltd.

CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 215500 5th floor, building 4, 68 Lianfeng Road, Changfu street, Changshu City, Suzhou City, Jiangsu Province

Patentee after: Changshu intellectual property operation center Co.,Ltd.

Address before: No.13 caodang Road, Changshu City, Suzhou City, Jiangsu Province

Patentee before: Changshu intellectual property operation center Co.,Ltd.