CN104538478A - 一种复合钝化膜结构的延伸波长铟镓砷探测器及制备方法 - Google Patents

一种复合钝化膜结构的延伸波长铟镓砷探测器及制备方法 Download PDF

Info

Publication number
CN104538478A
CN104538478A CN201410748529.1A CN201410748529A CN104538478A CN 104538478 A CN104538478 A CN 104538478A CN 201410748529 A CN201410748529 A CN 201410748529A CN 104538478 A CN104538478 A CN 104538478A
Authority
CN
China
Prior art keywords
micro
electrode
table top
district
inalas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410748529.1A
Other languages
English (en)
Other versions
CN104538478B (zh
Inventor
唐恒敬
邵秀梅
李雪
石铭
杨靖
汤乃云
龚海梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201410748529.1A priority Critical patent/CN104538478B/zh
Publication of CN104538478A publication Critical patent/CN104538478A/zh
Application granted granted Critical
Publication of CN104538478B publication Critical patent/CN104538478B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种复合钝化膜结构的延伸波长铟镓砷探测器及制备方法,具体包括:在外延片上刻蚀形成p型微台面;在微台面局部区域上制备P电极区,其上置有覆盖部分微台面的电极互连区,并从微台面上延伸至微台面下;在微台面的一侧有刻蚀至n型缓冲层的N槽,并制备上N电极区。除P和N电极区外,整个外延片上覆盖有复合钝化层。本发明的优点是:Al2O3/SiNx复合钝化膜结构可实现对微台面的有效覆盖,提升侧面钝化效果,降低界面态密度,提升器件的灵敏度;高温退火之后制备Al2O3/SiNx复合钝化膜,避免了In元素的外扩散和薄膜绝缘性能的退化,提高器件的可靠性。

Description

一种复合钝化膜结构的延伸波长铟镓砷探测器及制备方法
技术领域
本发明涉及一种铟镓砷探测器,具体是指一种复合钝化膜结构的延伸波长铟镓砷探测器及制备方法。
背景技术
根据响应波段InxGa1-xAs探测器可分为晶格匹配和延伸波长两类。晶格匹配InxGa1-xAs探测器的In组分x为0.53,此时InGaAs外延材料与InP衬底晶格常数相同,器件响应截止波长为1.7μm;增加In组分x,延伸波长InxGa1-xAs探测器可以响应至2.5μm(In组分x为0.83)。波长延伸可以大大拓展探测器的应用领域,但是In组分的增加,会造成InxGa1-xAs与InP衬底的晶格失配。延伸波长InxGa1-xAs材料的这种特殊结构对器件工艺方法提出了更高的要求,特别是台面型结构器件的表面和侧面钝化,因为吸收层的侧面暴露会引入大量界面态,这在很大程度上限制了器件灵敏度的提高,而且不良的表面与侧面钝化会使器件的可靠性降低。
目前,对于延伸波长InxGa1-xAs探测器而言,钝化膜主要采用等离子体增强化学气相沉积(PECVD)生长的单层SiNx结构。PECVD生长的SiNx钝化膜在延伸波长InxGa1-xAs探测器上可以实现较好的工艺兼容性及器件性能,但PECVD方法生长的薄膜具有以下缺点:含有较多的氢元素,致密性差;等离子体功率大,导致界面态密度增加和器件损伤;生长温度高,薄膜与衬底之间存在一定的热应力。这些因素限制了器件灵敏度的提升,而且通常器件工艺中,SiNx薄膜会经历合金化的高温过程,导致界面处半导体中In元素的外扩散以及薄膜绝缘性能的退化,从而影响器件的可靠性。
发明内容
基于上述延伸波长InxGa1-xAs探测器钝化膜结构、制备方法及器件工艺中存在的问题,本发明的目的是提出一种复合钝化膜结构的台面型延伸波长InxGa1-xAs探测器芯片,通过原子层沉积(ALD)Al2O3钝化接触层与低温感应耦合等离子体化学气相沉积(ICPCVD)SiNx钝化加固层的复合钝化膜结构来达到提升钝化效果;通过优化工艺流程,首先实现合金化,然后生长复合钝化膜,解决In元素外扩散和薄膜绝缘性能的退化的问题,提升器件的可靠性。ALD方法制备的Al2O3具有无针孔、密度高、台阶覆盖率、大面积厚度均匀性好等优点;ICPCVD方法可以产生较大的等离子体密度,实现SiNx钝化加固层低温生长(小于75℃),而且等离子体产生区域和沉积区域分开降低了等离子体对衬底的损伤,并可通过直流偏压控制等离子体的方向性,能够很好的填充高深宽比的台面,生长的薄膜含氢量很少。
本发明的台面型延伸波长InxGa1-xAs探测器芯片结构如附图1所示,在InP衬底1上依次生长N型InAlAs缓冲层2、InxGa1-xAs吸收层3、P型InAlAs帽层4、P电极区5、电极互连区6、N电极区7、复合钝化膜;P电极区5上置有电极互连区6,该电极互连区覆盖部分微台面,并从微台面上延伸至微台面下;在微台面的一侧有刻蚀至n-InAlAs层并置于n-InAlAs层上的公共电极区,即N电极区7,除P电极区5和N电极区7外,整个外延片上包括微台面的侧面覆盖有Al2O3钝化接触层8和SiNx钝化加固层9;台面上没有被极互连层覆盖电的区域为探测器光敏感区10。
其中:
所述的N型InAlAs缓冲层2的厚度1μm至2μm,载流子浓度大于2×1018cm-3
所述的InxGa1-xAs吸收层3的厚度为1.5μm至2μm,组分0.53<x≤0.83,载流子浓度5×1016cm-3至1×1017cm-3
所述的P型InAlAs帽层4的厚度为0.6μm,载流子浓度大于2×1018cm-3
所述的复合钝化膜由Al2O3钝化接触层8和SiNx钝化加固层9组成。
器件的制备方法如下:首先通过外延技术将N型InAlAs缓冲层2、InxGa1-xAs吸收层3、P型InAlAs帽层4依次沉积在InP衬底1上,然后通过刻蚀在此p-InAlAs/i-InGaAs/n-InAlAs外延片上形成p-InAlAs微台面,在p-InAlAs微台面的局部区域上制备P电极区5,然后快速热退火,形成欧姆接触;P电极区5上置有电极互连区6,该电极互连区覆盖部分微台面,并从微台面上延伸至微台面下;在微台面的一侧有刻蚀至n-InAlAs层的N槽,并在其上制备即N电极区7,除P电极区5和N电极区7外,整个外延片上包括覆盖由Al2O3钝化接触层8和SiNx钝化加固层9组成的复合钝化膜结构。
本发明的优点是:
1.采用密度高、均匀性好的ALD Al2O3作为钝化接触层,可实现对微台面的有效覆盖,提升侧面钝化效果,降低Al2O3/InxGa1-xAs界面的表面电荷密度和界面态密度,进而减小暗电流,提高延伸波长InxGa1-xAs探测器的响应率和探测率。
2.采用ICPCVD方法制备的SiNx作为钝化加固层,致密性好,侧面/表面厚度比高,绝缘性能好,可实现与Al2O3及半导体材料的应力匹配,同时起到增透膜的作用,提升器件的响应率和可靠性。
3、器件工艺中Al2O3/SiNx复合钝化膜制备工艺置于在合金化工艺之后,避免高温过程造成In元素的外扩散和薄膜绝缘性能的退化,提高器件的可靠性。
附图说明
图1为延伸波长InxGa1-xAs探测器的剖面结构示意图;
图2为延伸波长InxGa1-xAs探测器的俯视图;
图3为本发明的工艺步骤流程图。
图中:
1——InP衬底;
2——N型InAlAs缓冲层;
3——InxGa1-xAs吸收层;
4——P型InAlAs帽层;
5——P电极区;
6——电极互连区;
7——N电极区;
8——Al2O3钝化接触层;
9——SiNx钝化加固层;
10——光敏感区。
具体实施方式
下面结合附图和实施例对本发明的具体实施方法作进一步地详细说明。
图1为本实施例的剖面结构示意图。本实施例所用的外延片为用MBE技术在厚度为350μm的半绝缘InP衬底1上依次生长厚度为1μm至2μm的N型InAlAs缓冲层2,载流子浓度大于2×1018cm-3;厚度为1.5μm至2μm的InxGa1-xAs吸收层3(0.53<x≤0.83),载流子浓度2×1018cm-3至1×1017cm-3;厚度为0.6μm的P型InAlAs帽层4,载流子浓度大于2×1018cm-3
在外延片上通过刻蚀形成p-InAlAs微台面,在p-InAlAs微台面的局部区域上制备P电极区5,然后快速热退火,形成欧姆接触;P电极区5上置有电极互连区6,该电极互连区覆盖部分微台面,并从微台面上延伸至微台面下;在微台面的一侧有刻蚀至n-InAlAs层并置于n-InAlAs层上的公共电极区,即N电极区7,除P电极区5和N电极区7外,整个外延片上包括微台面的侧面覆盖有Al2O3钝化接触层8和SiNx钝化加固层9;台面上没有被极互连层覆盖电的区域为探测器光敏感区10。
本实施例的探测器芯片制备具体工艺过程为:
1外延片材料清洗,依次采用三氯甲烷、乙醚、丙酮、MOS级乙醇清洗,氮气吹干;
2淀积SiNx刻蚀掩膜:采用PECVD艺淀积厚度为300nm的SiNx,衬底温度为300℃~330℃、RF功率为40W~50W、气体流量为SiH4:N2=50mL/min:900mL/min;
3开刻蚀窗口:采用感应耦合等离子体(ICP)刻蚀SiNx,刻蚀条件为:ICP功率为2000W、RF功率为35W、SF6气体流量为45sccm、腔体压强为9mTorr、温度为5℃,然后用氢氟酸缓冲液在室温下腐蚀5s;
4微台面成型:采用ICP台面刻蚀,刻蚀条件为:ICP功率350W,RF功率130W,Cl2:N2=10sccm:60sccm,工作气压10mTorr,温度170℃;然后采用浓度为5%H3PO4腐蚀5s;
5开N电极槽:光刻后,采用50%酒石酸溶液:H2O2=5:1选择性腐蚀溶液湿法化学腐蚀InxGa1-xAs吸收层;
6去除刻蚀掩膜:去除扩散掩模,采用氢氟酸缓冲液湿法腐蚀,腐蚀液配比与步骤4相同;
7生长p电极:正胶光刻,后烘65℃干20分钟,然后电子束蒸发生长与p-InGaAs欧姆接触的Ti/Pt/Au(20/30/20nm)电极区5;
8快速热退火:处理的条件为420℃,时间45s;
9ALD淀积Al2O3:采用ALD方法淀积Al2O3,生长温度200℃,工艺气流为氩气400sccm,脉冲参数为0.1ms/1s/0.3ms/1s,源采用三甲基铝(TMA)和水(H2O),生长88个循环,生长厚度为10nm;
10ICPCVD淀积SiNx:采用ICPCVD方法生长SiNx钝化加固层9,生长厚度根据响应波段确定,对于In组分x=0.83的延伸波长InxGa1-xAs探测器,SiNx钝化加固层9的厚度设计为260nm,生长条件为:ICP功率为750W、衬底温度75℃、RF功率为0W、压强12mTorr、气体流量SiH4:N2=12.5sccm:15.5sccm;
11开P、N电极孔:采用ICP刻蚀Ti/Pt/Au电极区5上与N电极区7下的SiNx钝化加固层9,刻蚀条件为:ICP功率为2000W、RF功率为35W W、SF6气体流量为45sccm、腔体压强为9mTorr、温度为5℃,然后用氢氟酸缓冲液在室温下腐蚀5s;采用浓度为5%H3PO4腐蚀ICP刻蚀Ti/Pt/Au电极区5上与N电极区7下的Al2O3钝化接触层8,腐蚀时间为6~8分钟;
12淀积加厚电极:正胶光刻后,采用离子束溅射生长Cr/Au N电极区7和电极互连层6,生长前首先用Ar+辅源清洗3分钟,生长厚度为20nm/400nm;
13浮胶:丙酮浮胶,乙醇清洗,氮气吹干;
14划片:划片,复合钝化膜结构的延伸波长InxGa1-xAs探测器芯片制备完成,见图2。

Claims (2)

1.一种复合钝化膜结构的延伸波长铟镓砷探测器,其结构为:在半绝缘的InP衬底(1)上依次生长N型InAlAs缓冲层(2)、InxGa1-xAs吸收层(3)、P型InAlAs帽层(4)、P电极区(5)、电极互连区(6)、N电极区(7)及复合钝化膜,其特征在于:
所述的N型InAlAs缓冲层(2)的厚度1μm至2μm,载流子浓度大于2×1018cm-3
所述的InxGa1-xAs吸收层(3)的厚度为1.5μm至2μm,组分0.53<x≤0.83,载流子浓度5×1016cm-3至1×1017cm-3
所述的P型InAlAs帽层(4)的厚度为0.6μm,载流子浓度大于2×1018cm-3
所述的复合钝化膜由Al2O3钝化接触层(8)和SiNx钝化加固层(9)组成;
P电极区(5)上置有电极互连区(6),该电极互连区覆盖部分微台面,并从微台面上延伸至微台面下;在微台面的一侧有刻蚀至N型InAlAs缓冲层(2)并置于N型InAlAs缓冲层(2)的公共电极区,即N电极区(7),除P电极区(5)和N电极区(7)外,整个外延片上包括微台面的侧面覆盖有Al2O3钝化接触层(8)和SiNx钝化加固层(9);台面上没有被极互连层覆盖电的区域为探测器光敏感区(10)。
2.一种制备如权利要求1所述的一种复合钝化膜结构的延伸波长铟镓砷探测器的方法,其特征在于方法如下:
首先通过外延技术将N型InAlAs缓冲层(2)、InxGa1-xAs吸收层(3)、P型InAlAs帽层(4)依次沉积在InP衬底(1)上,然后通过刻蚀在此p-InAlAs/i-InGaAs/n-InAlAs外延片上形成p-InAlAs微台面,在p-InAlAs微台面的局部区域上制备P电极区(5),然后快速热退火,形成欧姆接触;P电极区(5)上置有电极互连区(6),该电极互连区覆盖部分微台面,并从微台面上延伸至微台面下;在微台面的一侧有刻蚀至n-InAlAs层的N槽,并在其上制备即N电极区(7),除P电极区(5)和N电极区(7)外,整个外延片上包括覆盖由Al2O3钝化接触层(8)和SiNx钝化加固层(9)组成的复合钝化膜。
CN201410748529.1A 2014-12-09 2014-12-09 一种复合钝化膜结构的延伸波长铟镓砷探测器及制备方法 Active CN104538478B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410748529.1A CN104538478B (zh) 2014-12-09 2014-12-09 一种复合钝化膜结构的延伸波长铟镓砷探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410748529.1A CN104538478B (zh) 2014-12-09 2014-12-09 一种复合钝化膜结构的延伸波长铟镓砷探测器及制备方法

Publications (2)

Publication Number Publication Date
CN104538478A true CN104538478A (zh) 2015-04-22
CN104538478B CN104538478B (zh) 2016-08-24

Family

ID=52853977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410748529.1A Active CN104538478B (zh) 2014-12-09 2014-12-09 一种复合钝化膜结构的延伸波长铟镓砷探测器及制备方法

Country Status (1)

Country Link
CN (1) CN104538478B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106856211A (zh) * 2016-11-28 2017-06-16 中国科学院上海微系统与信息技术研究所 一种Si(001)衬底上高In组分InGaAs探测器及其制备方法
CN109449238A (zh) * 2018-10-10 2019-03-08 中国科学院上海技术物理研究所 一种大规模小像元铟镓砷焦平面探测器制备方法
CN109755327A (zh) * 2019-01-14 2019-05-14 中国科学院上海技术物理研究所 原子尺度多层复合膜钝化的延伸波长铟镓砷探测器及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1848460A (zh) * 2006-03-15 2006-10-18 华南师范大学 双色铟镓砷红外探测器及其制备方法和应用
CN101170145A (zh) * 2007-11-30 2008-04-30 中国科学院上海技术物理研究所 铟镓砷台面列阵探测器芯片的台面钝化膜及制备方法
CN101527308A (zh) * 2009-04-10 2009-09-09 中国科学院上海技术物理研究所 一种平面结构铟镓砷阵列红外探测器
CN204332988U (zh) * 2014-12-09 2015-05-13 中国科学院上海技术物理研究所 一种复合钝化膜结构的延伸波长铟镓砷探测器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1848460A (zh) * 2006-03-15 2006-10-18 华南师范大学 双色铟镓砷红外探测器及其制备方法和应用
CN101170145A (zh) * 2007-11-30 2008-04-30 中国科学院上海技术物理研究所 铟镓砷台面列阵探测器芯片的台面钝化膜及制备方法
CN101527308A (zh) * 2009-04-10 2009-09-09 中国科学院上海技术物理研究所 一种平面结构铟镓砷阵列红外探测器
CN204332988U (zh) * 2014-12-09 2015-05-13 中国科学院上海技术物理研究所 一种复合钝化膜结构的延伸波长铟镓砷探测器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106856211A (zh) * 2016-11-28 2017-06-16 中国科学院上海微系统与信息技术研究所 一种Si(001)衬底上高In组分InGaAs探测器及其制备方法
CN106856211B (zh) * 2016-11-28 2018-10-19 中国科学院上海微系统与信息技术研究所 一种Si(001)衬底上高In组分InGaAs探测器及其制备方法
CN109449238A (zh) * 2018-10-10 2019-03-08 中国科学院上海技术物理研究所 一种大规模小像元铟镓砷焦平面探测器制备方法
CN109755327A (zh) * 2019-01-14 2019-05-14 中国科学院上海技术物理研究所 原子尺度多层复合膜钝化的延伸波长铟镓砷探测器及方法

Also Published As

Publication number Publication date
CN104538478B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
US9337380B2 (en) Method for fabricating heterojunction interdigitated back contact photovoltaic cells
CN104465748B (zh) 一种GaN基增强型HEMT器件及其制备方法
CN104576810B (zh) 共面电极模拟光电探测器芯片及其制作方法
JP2010263222A5 (zh)
CN102361046B (zh) AlGaN基MSM结构日盲型紫外探测器及其制备方法
CN109119508B (zh) 一种背入射日盲紫外探测器及其制备方法
CN109509813A (zh) 一种无掩膜的p型全背电极接触晶硅太阳电池的制备方法
CN103000759A (zh) 砷化镓薄膜多结叠层太阳电池的制备方法
CN112038448B (zh) 一种AlGaN单极载流子日盲紫外探测器及其制备方法
KR20180083922A (ko) 이중 접합 박막 태양전지 모듈 및 그 제조 방법
CN103165754A (zh) 一种抗电势诱导衰减的太阳能电池的制备工艺
CN104022176B (zh) 四结太阳能电池的制备方法
CN104576928A (zh) 一种有机/GaN异质p-n结紫外光探测器及其制备方法
US20130105930A1 (en) Method for making semiconductor light detection devices
CN104538478B (zh) 一种复合钝化膜结构的延伸波长铟镓砷探测器及制备方法
RU2354009C1 (ru) Способ изготовления фотоэлектрических преобразователей на основе многослойной структуры
CN204332988U (zh) 一种复合钝化膜结构的延伸波长铟镓砷探测器
CN104538463A (zh) 一种改善表面钝化的平面型铟镓砷光敏芯片及制备方法
CN104617184B (zh) PIN台面型InGaAs红外探测器及其制备方法
CN109755349A (zh) 一种低应力钝化的台面型延伸波长铟镓砷探测器制备方法
CN103094398B (zh) 一种免扩散的雪崩光电二极管及其制备方法
CN104393070B (zh) 太阳能电池及其制备方法
CN114678439B (zh) 一种对称叉指结构的2deg紫外探测器及制备方法
CN204332968U (zh) 一种改善表面钝化的平面型铟镓砷光敏芯片
CN204011457U (zh) 共面电极模拟光电探测器芯片

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant