CN104528816B - 一种微波法制备纳米Gd2Ti2O7粉体的方法 - Google Patents

一种微波法制备纳米Gd2Ti2O7粉体的方法 Download PDF

Info

Publication number
CN104528816B
CN104528816B CN201510017207.4A CN201510017207A CN104528816B CN 104528816 B CN104528816 B CN 104528816B CN 201510017207 A CN201510017207 A CN 201510017207A CN 104528816 B CN104528816 B CN 104528816B
Authority
CN
China
Prior art keywords
powder
nanometer
microwave
preparation
citric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510017207.4A
Other languages
English (en)
Other versions
CN104528816A (zh
Inventor
唐培松
陈海锋
曹枫
潘国祥
张玉建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Haite Alloy Co ltd
Original Assignee
Huzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huzhou University filed Critical Huzhou University
Priority to CN201510017207.4A priority Critical patent/CN104528816B/zh
Publication of CN104528816A publication Critical patent/CN104528816A/zh
Application granted granted Critical
Publication of CN104528816B publication Critical patent/CN104528816B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

一种微波法制备纳米Gd2Ti2O7粉体的方法,涉及一种Gd2Ti2O7纳米材料的制备方法。本发明利用微波加热技术,以柠檬酸、四氯化钛、硝酸钆和聚乙烯醇(PVA-124)为原料制备了颗粒平均粒径50~70nm和带隙3.9eV,并且具有良好光催化活性的纳米Gd2Ti2O7粉体。其步骤分为反应溶液的配制和微波条件下纳米粉体的制备两步。本发明具有工艺简单、成本低、快速高效和易于工业化生产纳米Gd2Ti2O7粉体的优点。

Description

一种微波法制备纳米Gd2Ti2O7粉体的方法
技术领域
本发明涉及钛酸盐纳米材料的制备,特别是涉及一种纳米Gd2Ti2O7粉体的制备方法。
背景技术
Gd2Ti2O7(GadoliniumTitaniumOxide)是稀土钛酸盐系列的一种,是一种具有烧绿石结构(pyrochloretype)的复合氧化物,具有高化学稳定性、高熔点、优良离子导电性、易实现稀土离子掺杂等优点,在高温固体氧化物燃料电池、气体传感器和光催化等领域有广泛的应用前景。
制备Gd2Ti2O7的方法目前主要有高温固相反应法和溶胶-凝胶法。如文献(中国稀土学报,2009,27(6):735-738)报道以Gd2O3,Tm2O3,Yb2O3和TiO2为起始原料,采用高温固相反应法在1400℃条件下烧结36h制备了Tm3+/Yb3+离子共掺杂的Gd2Ti2O7粉末;文献(JournalofRareEarths,2009,27(6):900-904)报道以Eu(NO3)3·6H2O,Gd(NO3)3·6H2O,NH4VO3和Ti(OC4H9)4为主要原料,采用溶胶-凝胶法制备得到凝胶,再在800℃~1400℃条件下煅烧制备得到Eu3+/V5+离子共掺杂的Gd2Ti2O7粉术等。
目前,上述合成离子掺杂Gd2Ti2O7粉末的方法中,都需要经高温(800℃~1400℃)煅烧才能得到掺杂的Gd2Ti2O7产品。高温煅烧易导致Gd2Ti2O7颗粒的团聚和长大,并且高温煅烧会消耗更多的能源,存在制备工艺复杂、耗时长和成本高等缺点,工业化应用前景堪忧。
微波加热技术具有加热速度快、穿透性强、热惯性小,所需设备简单、反应条件易于控制、易于工业化和节能高效等优点,在陶瓷材料和纳米材料合成等领域具有广泛的应用,但利用微波加热技术来直接制备纳米Gd2Ti2O7粉体还未见报道。
发明内容
本发明的目的在于克服现有技术的不足,提供一种微波法制备纳米Gd2Ti2O7粉体的方法。
本发明的目的是通过以下技术方案来实现的,具体步骤为:
(1)反应溶液的配制
在室温条件下,将柠檬酸溶于蒸馏水中制得浓度为0.2mol/L的柠檬酸溶液100毫升;在强烈搅拌条件下,向柠檬酸溶液中缓慢加入X摩尔四氯化钛,然后加入Y毫升浓度为5.0g/L的聚乙烯醇(PVA-124)溶液,再向溶液中加入Z摩尔硝酸钆,继续搅拌30min得到反应液。
(2)微波条件下纳米粉体的制备
将100毫升反应溶液放入微波炉中,在保持微波功率600W~800W条件下反应30min至完全燃烧,冷却至室温取出,研磨细得到纳米Gd2Ti2O7粉体产品。
本发明将X限定在0.01摩尔至0.03摩尔范围,将Y限定在4毫升至12毫升范围,控制使Y∶X等于400∶1。将Z限定在0.01摩尔至0.03摩尔范围,控制使Z∶X等于1∶1;本发明中聚乙烯醇(PVA-124)的络合作用和可燃性为纳米Gd2Ti2O7的最终形成创造了条件;本发明将微波功率限定在600W~800W的范围,因为适当的微波功率能为反应的持续进行提供合适的能量。
与现有技术相比,本发明的积极效果是:采用微波法制备,具有工艺简单、无需煅烧和成本低,达到了快速高效、可工业化生产纳米Gd2Ti2O7粉体的目的。
附图说明
图1:实施例1所得Gd2Ti2O7产品的XRD图;
图2:实施例1所得Gd2Ti2O7产品的扫描电镜照片;
图3:实施例1所得Gd2Ti2O7产品的漫反射吸收谱;
图4:实施例1所得Gd2Ti2O7产品与参比商品TiO2样品P25光催化降解甲基橙的脱色率随时间的变化曲线。
具体实施方式
实施例1
在室温条件下,称取3.84克柠檬酸溶于蒸馏水中,配置得到浓度为0.2mol/L的柠檬酸溶液100毫升。在强烈搅拌条件下,向柠檬酸溶液中缓慢加入0.01摩尔四氯化钛;然后加入4毫升浓度为5.0g/L的聚乙烯醇(PVA-124)溶液,再向溶液中加入0.01摩尔硝酸钆,继续搅拌30min得到反应液。将反应液放入微波炉中,调节微波炉的功率为600W,微波反应30min至其完全燃烧得到产物,冷却至室温后将产物研磨细得到产品。对得到的产品分别进行X射线衍射分析(XRD)、扫描电镜(SEM)和漫反射吸收谱(DRS)测试,结果如图1、图2和图3所示。
图1是采用XD-6型X射线衍射分析仪,粉末法分析测试产品得到的XRD图。从图1可知,所得产品的XRD图谱与标准的Gd2Ti2O7(JCPDS:23-0259)完全吻合,这表明合成的产品是Gd2Ti2O7
图2是采用日立S-4800型场发射扫描电镜测试产品的SEM照片。从图2可知,Gd2T2O7产品以平均粒径50~70nm的颗粒存在为主,颗粒虽有团聚,但总体上均匀性好。
图3是采用带积分球的HitachiUV4100型紫外-可见光谱仪,以标准的BaSO4作参比,将Gd2Ti2O7粉末压片,然后进行测试得到的漫反射谱,并通过Kubelka-Munk方程转换为漫反射吸收谱。从图3可知,Gd2Ti2O7的吸收边波长λ为315nm。根据Kubelka-Munk理论,利用公式E(eV)=1240/λ计算得到Gd2Ti2O7的带隙宽度为3.9eV,这为纳米Gd2Ti2O7粉体具有光催化活性奠定了基础。
为了表征纳米Gd2Ti2O7粉末的光催化活性,光催化实验在自制的光催化反应装置中进行:光源为150W高压汞灯;将20mg纳米Gd2Ti2O7粉体加入到10毫升20mg/L的模拟污水甲基橙(MO)溶液中,避光吸附平衡10min后进行光催化降解实验;降解所需时间后取出离心分离去除粉末,以MO溶液最大吸收峰464nn处吸光度的标准曲线计算其脱色率,用学术界常用的商品二氧化钛P25作对比光催化实验,实验结果如图4所示。从图4可知,Gd2Ti2O7对MO溶液降解脱色率60min前迅速增加,60min时已经达到94%,90min时已经接近100%完全降解,Gd2Ti2O7产品表现出了良好的光催化活性。而参比P25对MO溶液的降解脱色率虽然在增加,但90min时才达到80%,这表明纳米Gd2Ti2O7粉体产品的光催化活性优于P25。
实施例2
在室温条件下,称取3.84克柠檬酸溶于蒸馏水中,配置得到浓度为0.2mol/L的柠檬酸溶液100毫升。在强烈搅拌条件下,向柠檬酸溶液中缓慢加入0.03摩尔四氯化钛;然后加入12毫升浓度为5.0g/L的聚乙烯醇(PVA-124),再加入0.03摩尔硝酸钆,继续搅拌30min得到反应液。将反应液放入微波炉中,调节微波炉的功率为800W,微波反应30min至其完全燃烧得到产物,冷却至室温后将产物研磨细得到纳米Gd2Ti2O7粉体产品。按照实施例1相同的光催化实验方法,光催化降解20mg/L的甲基橙溶液90min时,甲基橙脱色率达到99.7%,纳米Gd2Ti2O7粉体产品表现出了良好的光催化活性。
实施例3
在室温条件下,称取3.84克柠檬酸溶于蒸馏水中,配置得到浓度为0.2mol/L的柠檬酸溶液100毫升。在强烈搅拌条件下,向柠檬酸溶液中缓慢加入0.02摩尔四氯化钛;然后加入8毫升浓度为5.0g/L的聚乙烯醇(PVA-124),再加入0.02摩尔硝酸钆,继续搅拌30min得到反应液。将反应液放入微波炉中,调节微波炉的功率为700W,微波反应30min至其完全燃烧得到产物,冷却至室温后将产物研磨细得到纳米Gd2Ti2O7粉体产品。按照实施例1相同的光催化实验方法,光催化降解20mg/L的甲基橙溶液90min时,甲基橙脱色率达到99.8%,纳米Gd2Ti2O7粉体产品表现出了良好的光催化活性。

Claims (1)

1.一种微波法制备纳米Gd2Ti2O7粉体的方法,其特征在于包括以下步骤:(1)反应溶液的配制:在室温条件下,将柠檬酸溶于蒸馏水中制得浓度为0.2mol/L的柠檬酸溶液100毫升;在强烈搅拌条件下,向柠檬酸溶液中缓慢加入X摩尔四氯化钛,其中X限定在0.01摩尔至0.03摩尔范围;然后加入Y毫升浓度为5.0g/L的聚乙烯醇PVA-124溶液,其中Y限定在4毫升至12毫升范围,并控制使Y∶X等于400∶1,再向溶液中加入Z摩尔硝酸钆,Z限定在0.01摩尔至0.03摩尔范围,并控制使Z∶X等于1∶1,继续搅拌30min得到反应液;(2)微波条件下纳米粉体的制备:将100毫升反应溶液放入微波炉中,在保持微波功率600W~800W条件下反应30min至完全燃烧,冷却至室温取出,研磨细得到纳米Gd2Ti2O7粉体产品。
CN201510017207.4A 2015-01-08 2015-01-08 一种微波法制备纳米Gd2Ti2O7粉体的方法 Active CN104528816B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510017207.4A CN104528816B (zh) 2015-01-08 2015-01-08 一种微波法制备纳米Gd2Ti2O7粉体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510017207.4A CN104528816B (zh) 2015-01-08 2015-01-08 一种微波法制备纳米Gd2Ti2O7粉体的方法

Publications (2)

Publication Number Publication Date
CN104528816A CN104528816A (zh) 2015-04-22
CN104528816B true CN104528816B (zh) 2016-05-25

Family

ID=52844511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510017207.4A Active CN104528816B (zh) 2015-01-08 2015-01-08 一种微波法制备纳米Gd2Ti2O7粉体的方法

Country Status (1)

Country Link
CN (1) CN104528816B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106495500B (zh) * 2016-09-19 2019-01-04 沈阳理工大学 一种制备中空钛酸钆管状材料的方法
CN107955605B (zh) * 2017-11-21 2018-12-18 杭州鼎好新材料有限公司 一种Gd2Ti2O7体系无机发光材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103332733B (zh) * 2013-06-26 2015-09-23 福建师范大学 自蔓延燃烧法制备尺寸可控的稀土钛酸盐纳米晶的方法

Also Published As

Publication number Publication date
CN104528816A (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
Xu et al. Pyro-catalytic hydrogen evolution by Ba 0.7 Sr 0.3 TiO 3 nanoparticles: harvesting cold–hot alternation energy near room-temperature
Simonenko et al. Microstructural, electrophysical and gas-sensing properties of CeO2–Y2O3 thin films obtained by the sol-gel process
CN105271420B (zh) 一种制备纳米级颗粒状w18o49材料的方法
CN104528827B (zh) 纳米NbO2F粉体的水热制备方法
Ozlu Torun et al. Thermal characterization of Er-doped and Er–Gd co-doped ceria-based electrolyte materials for SOFC
CN103274451B (zh) 二氧化锡/氧化锌核壳结构纳米复合材料的合成及应用
Anjaneya et al. Synthesis and properties of gadolinium doped ceria electrolyte for IT-SOFCs by EDTA-citrate complexing method
CN103508485B (zh) 一种纳米氧化锡负载偏钛酸气敏传感材料的制备方法
CN104525182A (zh) 多孔纳米结构的铈铌锑基复合颗粒光催化剂、制备及应用
CN102408132B (zh) 一种微波法制备铁酸镧纳米粉体的方法
CN104528816B (zh) 一种微波法制备纳米Gd2Ti2O7粉体的方法
Cheng et al. A novel electrolyte for intermediate solid oxide fuel cells
CN102173459B (zh) 铁酸钇纳米粉体的微波制备方法
Suciu et al. Obtaining YSZ nanoparticles by the sol–gel method with sucrose and pectin as organic precursors
CN105905944A (zh) 一种采用非水解溶胶-凝胶法制备Bi2Zr2O7纳米材料的方法
CN101767997B (zh) 一种NiTiO3纳米粉体的溶胶-凝胶制备方法
CN104528814B (zh) 一种层状结构CaTi2O4(OH)2菱形纳米片的制备方法及产品
CN104071845B (zh) 一种slton钙钛矿型氮氧化物粉体的制备方法
CN103274468B (zh) 一种球形五氧化二钽的制备方法及应用
CN106379934A (zh) 一种制备Ho2TiO5粉体的方法
CN102303911B (zh) 铁酸铈纳米粉体的微波制备方法
CN104163627A (zh) 一种光学带隙可调的KNbO3纳米固溶体的制备方法
CN103387263B (zh) 一种钼酸铅纳米晶体材料及其制备方法
CN105366721A (zh) 海参状d相二氧化钒粉体的制备方法
Li et al. Synthesis and characterization of nanostructured Bi2O3-doped cerium oxides fabricated by PVA polymerization process

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191225

Address after: No.118, democratic section, Guangping line, Guangchen Town, Pinghu City, Jiaxing City, Zhejiang Province

Patentee after: Zhejiang Haite Alloy Co.,Ltd.

Address before: 313000 No. 1, bachelor Road, Wuxing District, Zhejiang, Huzhou

Patentee before: Huzhou Teachers College

PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A method for preparing nano GD2Ti2o7powder by microwave method

Effective date of registration: 20210915

Granted publication date: 20160525

Pledgee: Zhejiang Pinghu Rural Commercial Bank Co.,Ltd. Guangchen sub branch

Pledgor: Zhejiang Haite Alloy Co.,Ltd.

Registration number: Y2021330001628

PC01 Cancellation of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20230620

Granted publication date: 20160525

Pledgee: Zhejiang Pinghu Rural Commercial Bank Co.,Ltd. Guangchen sub branch

Pledgor: Zhejiang Haite Alloy Co.,Ltd.

Registration number: Y2021330001628