CN104525108A - 一种具有超大铀吸附容量的骨炭吸附剂及其制备方法 - Google Patents

一种具有超大铀吸附容量的骨炭吸附剂及其制备方法 Download PDF

Info

Publication number
CN104525108A
CN104525108A CN201410723253.1A CN201410723253A CN104525108A CN 104525108 A CN104525108 A CN 104525108A CN 201410723253 A CN201410723253 A CN 201410723253A CN 104525108 A CN104525108 A CN 104525108A
Authority
CN
China
Prior art keywords
uranium
preparation
adsorption capacity
bone
uranium adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410723253.1A
Other languages
English (en)
Inventor
曹小红
耿艳霞
刘云海
张志宾
花榕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Institute of Technology
Original Assignee
East China Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Institute of Technology filed Critical East China Institute of Technology
Priority to CN201410723253.1A priority Critical patent/CN104525108A/zh
Publication of CN104525108A publication Critical patent/CN104525108A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种具有超大铀吸附容量的骨炭吸附剂及其制备方法。具体步骤为:将畜骨压碎,置于反应容器中煮沸、过滤、烘干、高温炭化和粉碎,即得超大吸附容量的骨炭吸附剂。本方法制备的骨炭吸附剂具有原料来源广、成本低、制备工艺简单、生产周期短、所需化学试剂少、产品收率高、吸附铀的容量大和选择性强等优点,适用于各种受铀污染的水体,对场所和设备无特殊要求,简单易行。

Description

一种具有超大铀吸附容量的骨炭吸附剂及其制备方法
技术领域
本发明涉及一种具有超大铀吸附容量的骨炭吸附剂的制备方法,属于生物质资源开发利用技术领域。
背景技术
在铀矿开采、水冶、铀利用和后处理等核燃料循环过程中会产生大量含铀废水。若不妥善处理,铀在环境中大量累积,作为兼有化学毒性和放射性毒性的重金属,会造成环境本底辐射,造成物种基因畸变,对植物、农田和土壤产生不可逆转的破坏,对人类的生存和发展构成潜在的威胁。
目前分离富集水体中铀的方法有化学沉淀、溶剂萃取、吸附、离子交换和膜分离等,其中,吸附法因具有操作简单、工艺成熟、适用范围广、可回收有用重金属、吸附材料可重复使用等优点,一直是重要的研究方向之一。为此,许多研究者致力于新型吸附材料的研究与开发。CN 102079823A使用乙二胺和环氧氯丙烷改性戊二醛交联的壳聚糖,并用于吸附放射性核素铀。CN101596449A、CN102211017A和CN102587117A提出了三种偕胺肟基提铀吸附剂的制备方法,对铀表现出较强的吸附选择性。这类生物质吸附剂存在的主要缺陷:成本高、制备工艺较复杂和吸附容量低等,不适合于修复含铀废水领域的应用推广。
发明内容
本发明的目的是开发出一种成本低、环境友好和超大铀吸附容量的的骨炭吸附剂的制备方法,解决吸附法在处理含铀废水应用中的技术瓶颈。
为了实现上述发明,采用如下技术方案:
一种具有超大铀吸附容量的骨炭吸附剂的制备方法,将畜骨压碎至10mm以下,并置于反应容器中煮沸1~8小时,以去除骨中的脂肪,再100~140℃烘干1-3小时,然后在马弗炉中350~650℃炭化1~3小时,最后粉碎至60~200目,即得骨炭吸附剂。
本发明与同类产品相比,具有显著的有益效果:
(1)本发明使用的原料为畜骨,来源广,价格低,变废为宝,绿色环保;
(2)本发明的制备过程相对简单,易于控制,生产周期短,无需化学试剂,产品收率高;
(3)本发明制备过程中的副产品骨油和胶液是其他化工产品的主要原材料;
(4)本发明制备的骨炭吸附剂耐酸,耐碱,耐辐照,对核素离子的吸附容量极大,选择性较强。
附图说明
图1 BC-0~BC-3的X射线衍射图谱;
图2 溶液pH值对BC吸附铀容量的影响;
图3 BC-2对重金属离子的去除率。
具体实施方式
下面通过实施例进一步说明本发明。
实施例1
将猪骨压碎至10mm以下,置于反应容器中煮沸3小时,再110℃烘干4小时,然后在马弗炉中350℃炭化3小时,最后粉碎至100目,即得骨炭吸附剂BC-1。
实施例2
将猪骨压碎至10mm以下,置于反应容器中煮沸3小时,再110℃烘干4小时,然后在马弗炉中450℃炭化4小时,最后粉碎至100目,即得骨炭吸附剂BC-2。
实施例3
将猪骨压碎至10mm以下,置于反应容器中煮沸3小时,再110℃烘干4小时,然后在马弗炉中550℃炭化4小时,最后粉碎至100目,即得骨炭吸附剂BC-3。
应用例1
比较本发明的骨炭吸附剂(BC-1~BC-3)和市售的骨炭(BC-0)的X射线衍射图谱和铀吸附容量。将0.01g BC-0~BC-4分别加入到100ml铀浓度为100mg/L的溶液中(溶液的pH值为2.0、3.0、4.0和5.0),25℃振荡150min,溶液pH值对BC-0~BC-3的吸附铀容量的影响如图1所示,BC-0~BC-3的X射线衍射图谱如图2所示。
结果表明:本发明的骨炭吸附剂(BC-1~BC-3)的主要矿物组成为非晶态的羟基磷灰石,市售的骨炭(BC-0)的主要矿物组成晶态的羟基磷灰石。当炭化温度为450℃时,骨炭吸附剂吸附铀的容量最高(881.19mg/g),而市售骨炭吸附铀的容量仅有475.22 mg/g。
应用例2
将0.4g骨炭吸附剂BC-2投加到1L放射性废水中,其中Na+、Mg2+、Zn2+、Mn2+、Ni2+、Sr2+和U6+的浓度为10 mg/L,废水的pH值为3.0,搅拌时间为3小时,各重金属离子的去除率如图3所示。
结果表明:当Na+、Mg2+、Zn2+、Mn2+、Ni2+和Sr2+离子共存时,骨炭吸附剂BC-2对铀离子有较高的选择性吸附性能,铀离子的去除率高达92%以上,其他离子的去除率均低于30%。
对比例1
将中英文文献中常见的吸附剂和BC-2对吸附铀容量进行对比,吸附剂的用量为0.01g,溶液的体积为100mL,浓度为100mg/L,溶液的pH值为各吸附剂的最佳吸附酸度,对铀的吸附容量如表1所示。结果表明:BC-2的最佳吸附pH值最低,更接近于铀矿水冶废水的酸度,吸附容量高达881.21mg/g,远远高于其他吸附剂,是目前铀吸附剂中吸附容量最大的。
表1 BC-2与其他吸附剂对铀吸附容量的比较

Claims (1)

1.一种具有超大铀吸附容量的骨炭吸附剂及其制备方法,其特征在于,将畜骨压碎至10mm以下,并置于反应容器中煮沸1~8小时,以去除骨中的脂肪,再100~140℃烘干1-3小时,然后在马弗炉中350~650℃炭化1~3小时,最后粉碎至60~200目,即得骨炭吸附剂。
CN201410723253.1A 2013-12-06 2014-12-04 一种具有超大铀吸附容量的骨炭吸附剂及其制备方法 Pending CN104525108A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410723253.1A CN104525108A (zh) 2013-12-06 2014-12-04 一种具有超大铀吸附容量的骨炭吸附剂及其制备方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2013106468896 2013-12-06
CN201310646889 2013-12-06
CN201410723253.1A CN104525108A (zh) 2013-12-06 2014-12-04 一种具有超大铀吸附容量的骨炭吸附剂及其制备方法

Publications (1)

Publication Number Publication Date
CN104525108A true CN104525108A (zh) 2015-04-22

Family

ID=52840841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410723253.1A Pending CN104525108A (zh) 2013-12-06 2014-12-04 一种具有超大铀吸附容量的骨炭吸附剂及其制备方法

Country Status (1)

Country Link
CN (1) CN104525108A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104923159A (zh) * 2015-06-15 2015-09-23 武汉理工大学 一种鱼骨炭吸附剂及其制备方法和应用
CN105251461A (zh) * 2015-11-11 2016-01-20 林砚秋 一种基于改性骨粉的高效可重复利用的放射性废水处理吸附剂以及制备方法
CN105621815A (zh) * 2016-03-10 2016-06-01 广州聚注专利研发有限公司 一种利用鱼骨粉处理重金属废水的方法
CN106179203A (zh) * 2016-07-06 2016-12-07 江苏大学 一种牛骨基多级孔碳材料的制备方法及其用途
CN110510698A (zh) * 2019-08-27 2019-11-29 中国科学院合肥物质科学研究院 一种采用生物环境材料治理水体污染物的方法
CN111672453A (zh) * 2020-06-12 2020-09-18 兰州大学 一种猪骨高值资源化利用方法
CN114082399A (zh) * 2021-10-15 2022-02-25 东华理工大学 一种基于n,p-掺杂多孔碳材料的铀吸附剂及其制备方法
CN114749472A (zh) * 2022-04-14 2022-07-15 浙江工业大学 一种铀污染土壤修复剂的应用方法
CN114956717A (zh) * 2022-04-14 2022-08-30 浙江工业大学 一种用于含铀废弃物固化的骨炭水泥复合材料的应用方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104923159A (zh) * 2015-06-15 2015-09-23 武汉理工大学 一种鱼骨炭吸附剂及其制备方法和应用
CN105251461A (zh) * 2015-11-11 2016-01-20 林砚秋 一种基于改性骨粉的高效可重复利用的放射性废水处理吸附剂以及制备方法
CN105621815A (zh) * 2016-03-10 2016-06-01 广州聚注专利研发有限公司 一种利用鱼骨粉处理重金属废水的方法
CN106179203A (zh) * 2016-07-06 2016-12-07 江苏大学 一种牛骨基多级孔碳材料的制备方法及其用途
CN110510698A (zh) * 2019-08-27 2019-11-29 中国科学院合肥物质科学研究院 一种采用生物环境材料治理水体污染物的方法
CN111672453A (zh) * 2020-06-12 2020-09-18 兰州大学 一种猪骨高值资源化利用方法
CN114082399A (zh) * 2021-10-15 2022-02-25 东华理工大学 一种基于n,p-掺杂多孔碳材料的铀吸附剂及其制备方法
CN114749472A (zh) * 2022-04-14 2022-07-15 浙江工业大学 一种铀污染土壤修复剂的应用方法
CN114956717A (zh) * 2022-04-14 2022-08-30 浙江工业大学 一种用于含铀废弃物固化的骨炭水泥复合材料的应用方法

Similar Documents

Publication Publication Date Title
CN104525108A (zh) 一种具有超大铀吸附容量的骨炭吸附剂及其制备方法
Bhatti et al. Efficient remediation of Zr (IV) using citrus peel waste biomass: Kinetic, equilibrium and thermodynamic studies
Gupta et al. Biosorption-an alternative method for nuclear waste management: a critical review
Shi et al. Synergistic effect of rice husk addition on hydrothermal treatment of sewage sludge: fate and environmental risk of heavy metals
Al-Masri et al. Biosorption of cadmium, lead, and uranium by powder of poplar leaves and branches
Aly et al. Uranium extraction from aqueous solution using dried and pyrolyzed tea and coffee wastes
Jain et al. Removal and recovery of uranium (VI) by waste digested activated sludge in fed-batch stirred tank reactor
CN104492382A (zh) 一种用于修复含铀废水的羧基化水热生物质炭的制备方法
Negi et al. Biosorption of heavy metals by utilising onion and garlic wastes
Hu et al. Bamboo (Acidosasa longiligula) shoot shell biochar: its potential application to isolation of uranium (VI) from aqueous solution
Kusrini et al. Adsorption of lanthanide ions from an aqueous solution in multicomponent systems using activated carbon from banana peels (Musa paradisiaca L.)
CN104841685B (zh) 对吸附或吸收重金属后的植物进行稳定化处理的方法
Chen et al. Integrated comparisons of thorium (IV) adsorption onto alkali-treated duckweed biomass and duckweed-derived hydrothermal and pyrolytic biochar
KR101598607B1 (ko) 미세조류를 이용한 방사성 핵종의 제거방법
Barot et al. Biosorption of radiotoxic 90 Sr by green adsorbent: dry cow dung powder
Boveiri Monji et al. Selective sorption of thorium (IV) from highly acidic aqueous solutions by rice and wheat bran
Waghmare et al. Fluoride removal by industrial, agricultural, and biomass wastes as adsorbents
Hu et al. Removal of hexavalent chromium, an analogue of pertechnetate, from aqueous solution using bamboo (Acidosasa edulis) shoot shell
Naskar et al. Development of sustainable extraction method for long-lived radioisotopes, 133Ba and 134Cs using a potential bio-sorbent
Canteral et al. Biochars from agro-industrial residues of the Amazon: an ecological alternative to enhance the use of phosphorus in agriculture
Yi et al. Removal of uranium from aqueous solution by using activated palm kernel shell carbon: adsorption equilibrium and kinetics
PENG et al. Modes of iodine occurrence in bituminous coal and anthracite and their environmental effects
Rodrigues Silva et al. Uranium biosorption under dynamic conditions: Preliminary tests with Sargassum filipendula in real radioactive wastewater containing Ba, Cr, Fe, Mn, Pb, Ca and Mg
Moattar et al. Application of chitin and zeolite adsorbents for treatment of low level radioactive liquid wastes
Sun et al. Biosorption of heavy metals: a case study using potato peel waste

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150422

WD01 Invention patent application deemed withdrawn after publication