CN104511270A - 用于吸附稀土元素的铁氧磁体吸附材及其吸附方法 - Google Patents

用于吸附稀土元素的铁氧磁体吸附材及其吸附方法 Download PDF

Info

Publication number
CN104511270A
CN104511270A CN201410225143.2A CN201410225143A CN104511270A CN 104511270 A CN104511270 A CN 104511270A CN 201410225143 A CN201410225143 A CN 201410225143A CN 104511270 A CN104511270 A CN 104511270A
Authority
CN
China
Prior art keywords
rare earth
earth element
ferrite
adsorption
adsorption material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410225143.2A
Other languages
English (en)
Inventor
罗圣宗
游镇烽
涂耀仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN104511270A publication Critical patent/CN104511270A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明提供一种用于吸附稀土元素的铁氧磁体吸附材,是由四氧化三铁所构成,其晶相为逆尖晶石结构。本发明更提供一种稀土元素的吸附方法,包括:提供一含稀土元素的水体;添加上述的铁氧磁体吸附材至该水体,以形成一混合溶液;以及调整该混合溶液为碱性,以使该铁氧磁体吸附材吸附稀土元素。

Description

用于吸附稀土元素的铁氧磁体吸附材及其吸附方法
技术领域
本揭露是有关于一种吸附材及其吸附方法,特别是有关于一种用于吸附稀土元素的铁氧磁体吸附材及其吸附方法。
背景技术
稀土元素(Rare Earth Elements,REE)称为「工业的维他命」被广泛应用于机械、冶金、玻璃、陶瓷、石油、化工、皮革、农牧等各产业,在生活中随处可见。微量的稀土添加就能明显改善金属材料性能,提高钢材的强度及耐磨性和抗腐蚀性能力,因此稀土元素常被用于生产电池、永磁、荧光、储氢、催化、精密陶瓷等材料。然而,大量的产业需求已导致全球面临供不应求的窘境。目前全世界可进行陆地开采的稀土矿估计约有9,000多万吨,但往往因品位(每吨矿石含稀土量)偏低,由于稀土元素在地壳中的含量极低,大量开采稀土矿石已造成土地环境的严重破坏,且稀土矿的开采加工成本极高,造成其产品价格高昂。有鉴于此,寻求陆地开采以外的稀土取得方法乃成为各国竞相较劲的关键技术。
吸附材(Adsorbent)在吸附程序中主宰着吸附的成效,因此,适当的选择吸附材乃发展吸附浓缩技术的关键因素。磁铁矿(Magnetite,Fe3O4),又称铁氧磁体(Ferrite),为天然常见的尖晶石铁氧化物,其结构内的三个铁离子中,包含两个Fe3+及一个Fe2+,即FeO.Fe2O3。铁氧化物中的二价离子可相互混合,形成固溶体,展现不同的磁性性质。因此,业界需要一种具有快速吸附、脱附且容易分离与回收利用等特性的吸附材。
发明内容
本发明的目的在于提供一种可快速吸附、脱附且容易分离与回收利用的吸附材。
本发明的另一目的在于提供一种可快速吸附、脱附的吸附稀土元素的方法。
本揭露的一实施例,提供一种用于吸附稀土元素的铁氧磁体吸附材,是由四氧化三铁所构成,其晶相为逆尖晶石结构。
本揭露的一实施例,提供一种稀土元素的吸附方法,包括:提供一含稀土元素的水体;添加一上述的铁氧磁体吸附材至该水体,以形成一混合溶液;以及调整该混合溶液为碱性,以使该铁氧磁体吸附材吸附所述稀土元素。
本发明的优点在于:本发明的铁氧磁体吸附材对稀土元素具有良好亲和力,可快速吸、脱附,且可快速分离铁氧磁体与稀土元素,吸附效果达20mg/g以上。利用本发明的铁氧磁体吸附材的稀土元素的吸附方法,可藉由调整铁氧磁体吸附材的表面电荷,有效吸附各类水体(工业废水、海水)中所含的稀土元素。
为让本发明的上述目的、特征及优点能更明显易懂,下文特举一较佳实施例,并配合所附的附图,作详细说明如下。
附图说明
图1是根据本揭露的一实施例的一种铁氧磁体吸附材表面形态的SEM图;
图2是根据本揭露的一实施例的稀土元素Nd的吸附动力曲线图;
图3是根据本揭露的一实施例的铁氧磁体吸附材对pH4.0水体所含稀土元素的吸附率;
图4是根据本揭露的一实施例的铁氧磁体吸附材对pH7.1水体所含稀土元素的吸附率;
图5是根据本揭露的一实施例的铁氧磁体吸附材对pH8.15水体所含稀土元素的吸附率;
图6是根据本揭露的一实施例的铁氧磁体吸附材对pH11.0水体所含稀土元素的吸附率;
图7是根据本揭露的一比较实施例的铁氧磁体吸附材对pH2.29水体所含稀土元素的吸附率;
图8A~图8M是根据本揭露的一实施例的以不同浓度、种类的脱附剂对稀土元素的脱附率;
图9是根据本揭露的一实施例的稀土元素Nd的脱附动力曲线图。
具体实施方式
本揭露的一实施例,提供一种用于吸附稀土元素的铁氧磁体吸附材,由四氧化三铁所构成,其晶相为逆尖晶石结构。
在一实施例中,上述铁氧磁体吸附材的粒径大体介于30~90nm。
本揭露的一实施例,提供一种稀土元素的吸附方法,包括:提供一含稀土元素的水体,添加一上述的铁氧磁体吸附材至水体,以形成一混合溶液,以及调整混合溶液为碱性,以使铁氧磁体吸附材吸附稀土元素。
在一实施例中,可以水热合成法制备铁氧磁体吸附材,其生成反应式如式(1)所示。制造铁氧磁体吸附材的基本原理乃以添加两价铁离子于溶液中,并加入适量的碱(调整pH值介于8~10)使其产生氢氧化物沉淀,在升温(温度控制介于60~90℃)条件下,通入空气(曝气量介于3~5L/min)进行氧化反应,经适当反应时间,即形成尖晶石结构的铁氧磁体吸附材。
3Fe2++6OH+1/2O2→Fe3O4+3H2O   式(1)
在一实施例中,上述水体可包括海水或工业废水。
在一实施例中,上述铁氧磁体吸附材的添加量大体介于1~3g/1L水体,即每1L水体中,最多可添加1~3g的铁氧磁体吸附材。
在一实施例中,上述混合溶液的酸碱值大体介于8~11。
在一实施例中,本揭露稀土元素的吸附方法更包括回收吸附稀土元素的铁氧磁体吸附材。
在一实施例中,可对上述混合溶液施予一外加磁场,以回收吸附稀土元素的铁氧磁体吸附材。
在一实施例中,本揭露稀土元素的吸附方法更包括添加一脱附剂,以分离铁氧磁体吸附材与稀土元素。
在一实施例中,上述脱附剂可包括硝酸、盐酸或硫酸。
在一实施例中,上述脱附剂的浓度大体介于0.3~1.0M。
实施例1、本揭露铁氧磁体吸附材的制备
本实施例以水热合成法制备铁氧磁体吸附材。首先,于反应器中加入1L去離子水,之后,取27.8g硫酸亚铁加入反应器中并搅拌使其完全溶解,接着,添加浓度为0.1M的氢氧化钠使pH值调整为9.5,之后,加热使溶液温度上升至80℃,同时以稳定的速率3L/min(曝气量)送入空气并开始计算反应时间,反应持续直至氧化还原电位快速转折上升为止,即可获得一铁氧磁体吸附材,如图1所示。图1为本实施例所合成铁氧磁体吸附材的SEM图,由图可知,本实施例铁氧磁体吸附材的粒径约介于30~90nm之间。
实施例2、本揭露铁氧磁体吸附材对稀土元素的吸附、分离及吸附率(1)
首先,于反应器中加入10mL含稀土元素的水体(初始浓度为1,000ppb),视水体情况添加氢氧化钠或硝酸,将水体pH值分别调整至pH4.0、pH7.1、pH8.15、pH11.0等若干pH值,之后,取0.05g铁氧磁体吸附材加入反应器中,并搅拌使铁氧磁体吸附材与各pH值溶液中的稀土元素充分混合,待吸附达平衡后,于反应器外施以一外加磁场,以分离出铁氧磁体吸附材,并量测吸附材对稀土元素的吸附率。一般而言,铁氧磁体吸附材的添加量乃由每单位铁氧磁体吸附材可吸附的稀土元素来推估,除可从实验得到此数据外,通常可藉由模式计算方式来估算,常见的评估方式为等温吸附模式,即Langmuir model或Freundlichmodel。而吸附是否完整的判定则可由吸附动力曲线作为依据。举例来说,图2为稀土元素Nd的吸附动力曲线,其中Y轴为吸附率(%),X轴为吸附时间,结果显示本实施例铁氧磁体吸附材对稀土元素Nd的吸附于10分钟内已达平衡。此外,本实施例铁氧磁体吸附材对不同pH值(例如pH4.0、pH7.1、pH8.15、pH11.0)水体所含稀土元素的吸附率如下表1及图3~图6所示,图3~图6中的Y轴为吸附率(%),X轴为吸附时间。
由表1及图3~图6可知,本揭露铁氧磁体吸附材会受pH值变化影响,随着pH值上升,吸附材对稀土元素的吸附率有明显增加的趋势。当水体环境达pH7以上(碱性环境下)时,水体中所有稀土元素在10分钟内几乎皆能被本揭露铁氧磁体吸附材吸附完毕。
实施例3、本揭露铁氧磁体吸附材对稀土元素的吸附、分离及吸附率(2)
首先,于反应器中加入10mL含稀土元素Nd的海洋深层水(原水)(pH8.1),之后,取0.05g铁氧磁体吸附材加入反应器中,并搅拌使铁氧磁体吸附材与海洋深层水(原水)中的稀土元素Nd充分混合,吸附时间为30分钟。待吸附达平衡后,以永久磁铁分离出铁氧磁体吸附材,并量测吸附材对稀土元素Nd的吸附率,其吸附率可达95.0%,如表2所载。
实施例4、本揭露铁氧磁体吸附材对稀土元素的吸附、分离及吸附率(3)
首先,于反应器中加入10mL含稀土元素Nd并经低温蒸发处理的海洋深层水(pH8.1),之后,取0.05g铁氧磁体吸附材加入反应器中,并搅拌使铁氧磁体吸附材与此海洋深层水中的稀土元素Nd充分混合,吸附时间为30分钟。待吸附达平衡后,以永久磁铁分离出铁氧磁体吸附材,并量测吸附材对稀土元素Nd的吸附率,其吸附率可达96.6%,如表2所载。
实施例5、本揭露铁氧磁体吸附材对稀土元素的吸附、分离及吸附率(4)
首先,于反应器中加入10mL含稀土元素Nd并经逆渗透处理的海洋深层水(pH8.1),之后,取0.05g铁氧磁体吸附材加入反应器中,并搅拌使铁氧磁体吸附材与此海洋深层水中的稀土元素Nd充分混合,吸附时间为30分钟。待吸附达平衡后,以永久磁铁分离出铁氧磁体吸附材,并量测吸附材对稀土元素Nd的吸附率,其吸附率可达95.6%,如表2所载。
由实施例3~5及下表2可知,本揭露铁氧磁体吸附材在pH8.1环境下,对经不同条件处理的海洋深层水所含的稀土元素Nd均有良好的吸附特性。
表2
比较实施例1、本揭露铁氧磁体吸附材对海水中主要元素的吸附、分离及吸附率
首先,于反应器中加入10mL含钙、镁、钠、钾离子的海洋深层水(原水)(pH8.15),之后,取0.05克铁氧磁体吸附材加入反应器中,并搅拌使铁氧磁体吸附材与海洋深层水(原水)中的钙、镁、钠、钾离子充分混合,吸附时间为30分钟。待吸附达平衡后,以永久磁铁分离出铁氧磁体吸附材,并量测吸附材对钙、镁、钠、钾离子的吸附率,如表3所载。
表3
由表3可知,本揭露铁氧磁体吸附材于pH8.15的吸附环境下对海洋深层水中的主要元素例如Ca、Mg、Na、K并无明显吸附特性。
比较实施例2、本揭露铁氧磁体吸附材于极酸环境下对稀土元素的吸附、分离及吸附率
首先,于反应器中加入10mL含稀土元素的水体(初始浓度为1,000ppb),将水体pH值调整至pH2.29,之后,取0.05g铁氧磁体吸附材加入反应器中,并搅拌使铁氧磁体吸附材与水体中的稀土元素充分混合,吸附时间为30分钟。待吸附达平衡后,于反应器外施以一外加磁场,以分离出铁氧磁体吸附材,并量测吸附材对稀土元素的吸附率,结果如下表4及图7所示。
根据下表4及图7,于例如pH2.29的极酸环境下,本揭露铁氧磁体吸附材对各种稀土元素的吸附率皆不到10%。由此数据可知,本揭露铁氧磁体吸附材在碱性环境下对稀土元素有绝佳的吸附效果,反观,在酸性环境下反而不利于对稀土元素的吸附。
实施例6、本揭露以不同浓度、种类脱附剂对稀土元素的脱附及脱附率
取实施例2已完成固(铁氧磁体吸附材)、液分离的溶液,之后,取不同浓度、种类的脱附剂(例如0.3M HNO3、0.3M HCl、0.3M H2SO4、1M HNO3、1MHCl、1M H2SO4)分别加入反应器中,以与吸附稀土元素的铁氧磁体吸附材进行脱附反应。脱附完成后,于反应器外再施以一外加磁场,以进行一物理性分离,以分别收集铁氧磁体吸附材及稀土元素。本揭露以不同浓度、种类脱附剂对稀土元素的脱附率如图8A~图8M所示。
以图8H(稀土元素Nd)为例,不论脱附剂为硝酸、盐酸或硫酸,在浓度为0.3M以上的情况下,其对稀土元素Nd皆有92%以上的脱附率。
要将吸附于铁氧磁体吸附材上的稀土元素脱附下来,必须使铁氧磁体吸附材处于不利吸附的条件(即酸性环境)。于酸性条件下,由于所使用的铁氧磁体吸附材表面带正电,因此,对同样带正电的稀土元素产生排斥作用,而促使稀土元素自铁氧磁体吸附材脱附下来。
一般来说,脱附完毕的判定可以脱附动力曲线为依据。举例来说,图9为稀土元素Nd的脱附动力曲线,其中Y轴为脱附率(%),X轴为脱附时间。以0.3MHNO3为脱附剂,结果显示稀土元素Nd的脱附于30分钟内已达平衡,再经历更多脱附时间亦仅能脱附约90%的稀土元素Nd。因此,脱附率的检测乃根据脱附至液相中的稀土元素Nd浓度与原来吸附于铁氧磁体吸附材上的稀土元素Nd浓度的差值来计算脱附是否完成。本实施例藉由适当的脱附剂(硝酸、盐酸、硫酸)可有效将稀土元素自铁氧磁体吸附材表面脱附于溶液中,一次脱附成效可达90%。此外,藉由外加磁场可快速(数分钟内)回收99%以上的铁氧磁体吸附材。
实施例7、本揭露铁氧磁体吸附材的耐酸性测试
取0.05克铁氧磁体吸附材分别加入10mL表5所例举的浸出试剂(leachingreagent),充分混摇30分钟后反应8小时,由实验结果可知,即使在pH0.81的H3PO4极端环境下,本揭露铁氧磁体吸附材仍仅溶出6.35%的铁,由此证明本揭露铁氧磁体吸附材具有良好耐酸特性。
表5
溶剂 pH Fe溶出量(%)
0.1M HNO3 1.41 0.29
0.1M HCl 1.43 0.31
0.1M H2SO4 1.39 0.87
0.1M H3PO4 1.62 0.89
0.2M H3PO4 1.02 2.39
0.4M H3PO4 0.81 6.35
0.01M H3PO4 2.17 6.35
本揭露稀土元素的吸附方法,可藉由调整铁氧磁体吸附材的表面电荷,有效吸附各类水体(工业废水、海水)中所含的稀土元素。本揭露的铁氧磁体吸附材对稀土元素具有良好亲和力,可快速吸、脱附,且可快速分离铁氧磁体与稀土元素,吸附效果达20mg/g以上。
虽然本发明已以数个较佳实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作任意的更动与润饰,因此本发明的保护范围当视后附的权利要求书所界定的范围为准。

Claims (11)

1.一种用于吸附稀土元素的铁氧磁体吸附材,是由四氧化三铁所构成,其晶相为逆尖晶石结构。
2.如权利要求1所述的铁氧磁体吸附材,其中所述铁氧磁体吸附材的粒径介于30~90nm。
3.一种稀土元素的吸附方法,包括:
提供含稀土元素的水体;
添加如权利要求1所述的铁氧磁体吸附材至所述水体,以形成混合溶液;以及
调整所述混合溶液为碱性,以使所述铁氧磁体吸附材吸附稀土元素。
4.如权利要求3所述的稀土元素的吸附方法,其中所述水体为工业废水或海水。
5.如权利要求3所述的稀土元素的吸附方法,其中所述铁氧磁体吸附材的添加量介于1~3g/1L水体。
6.如权利要求3所述的稀土元素的吸附方法,其中所述混合溶液的酸碱值介于8~11。
7.如权利要求3所述的稀土元素的吸附方法,更包括回收所述吸附稀土元素的铁氧磁体吸附材。
8.如权利要求7所述的稀土元素的吸附方法,其中是对所述混合溶液施予一外加磁场,以回收所述吸附稀土元素的铁氧磁体吸附材。
9.如权利要求7所述的稀土元素的吸附方法,更包括添加脱附剂,以分离所述铁氧磁体吸附材与稀土元素。
10.如权利要求9所述的稀土元素的吸附方法,其中所述脱附剂为硝酸、盐酸或硫酸。
11.如权利要求9所述的稀土元素的吸附方法,其中所述脱附剂的浓度介于0.3~1.0M。
CN201410225143.2A 2013-10-07 2014-05-26 用于吸附稀土元素的铁氧磁体吸附材及其吸附方法 Pending CN104511270A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW102136156 2013-10-07
TW102136156A TWI510287B (zh) 2013-10-07 2013-10-07 稀土元素之吸附方法

Publications (1)

Publication Number Publication Date
CN104511270A true CN104511270A (zh) 2015-04-15

Family

ID=52787490

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410225143.2A Pending CN104511270A (zh) 2013-10-07 2014-05-26 用于吸附稀土元素的铁氧磁体吸附材及其吸附方法

Country Status (3)

Country Link
JP (1) JP2015073988A (zh)
CN (1) CN104511270A (zh)
TW (1) TWI510287B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107617440A (zh) * 2016-07-15 2018-01-23 高雄应用科技大学 铜铁氧磁体作为汽车引擎废气处理三效催化剂的用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274452A (ja) * 1987-05-01 1988-11-11 Sumiyoshi Jukogyo Kk 窒素製造用帯磁吸着剤
CN101049977A (zh) * 2007-05-15 2007-10-10 河北师范大学 纳米Fe3O4的制备方法
CN101172664A (zh) * 2006-11-01 2008-05-07 中国民航大学 磁性四氧化三铁纳米超细微粒的超声波辅助水热合成工艺
CN101423258A (zh) * 2008-11-25 2009-05-06 江苏大学 液相化学氧化法制备反尖晶石四氧化三铁纳米片

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251756A (en) * 1975-10-23 1977-04-25 Kurita Water Ind Ltd Method of treating wastewater containing heavy metals
JPS5267154A (en) * 1975-12-01 1977-06-03 Nec Corp Disposing method of harmful metals contained in waste liquid
JPS5284198A (en) * 1976-01-06 1977-07-13 Mitsubishi Heavy Ind Ltd Production of activated ferrite
US6596182B1 (en) * 2001-02-02 2003-07-22 The Regents Of The University Of California Magnetic process for removing heavy metals from water employing magnetites
JP4519665B2 (ja) * 2005-01-27 2010-08-04 関東電化工業株式会社 重金属成分の回収方法
JP2014087768A (ja) * 2012-10-31 2014-05-15 Toshiba Corp 廃水処理装置及び方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274452A (ja) * 1987-05-01 1988-11-11 Sumiyoshi Jukogyo Kk 窒素製造用帯磁吸着剤
CN101172664A (zh) * 2006-11-01 2008-05-07 中国民航大学 磁性四氧化三铁纳米超细微粒的超声波辅助水热合成工艺
CN101049977A (zh) * 2007-05-15 2007-10-10 河北师范大学 纳米Fe3O4的制备方法
CN101423258A (zh) * 2008-11-25 2009-05-06 江苏大学 液相化学氧化法制备反尖晶石四氧化三铁纳米片

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
于文广等: "纳米四氧化三铁(Fe3O4)的制备和形貌", 《化学进展》 *
刘和连等: "Fe3O4纳米磁粒子对稀土La3+的吸附", 《江西科学》 *
孟哲等: "磁性纳米级Fe3O4的氧气诱导、空气氧化液相合成与表征", 《光谱实验室》 *
李永绣等: "离子吸附型稀土高效提取和分离技术进展", 《中国稀土学报》, vol. 30, no. 3, 1 July 2012 (2012-07-01) *
杨喜云等: "硫铁矿烧渣制备静电复印显影剂用Fe3O4", 《功能材料》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107617440A (zh) * 2016-07-15 2018-01-23 高雄应用科技大学 铜铁氧磁体作为汽车引擎废气处理三效催化剂的用途
CN107617440B (zh) * 2016-07-15 2019-10-18 高雄应用科技大学 铜铁氧磁体作为汽车引擎废气处理三效催化剂的用途

Also Published As

Publication number Publication date
JP2015073988A (ja) 2015-04-20
TWI510287B (zh) 2015-12-01
TW201513932A (zh) 2015-04-16

Similar Documents

Publication Publication Date Title
CN102989420B (zh) 一种磺基化氧化石墨烯磁性吸附剂及其制备方法与用途
Liang et al. The removal of Cd by sulfidated nanoscale zero-valent iron: the structural, chemical bonding evolution and the reaction kinetics
Fu et al. Molybdenum sulphide modified chelating resin for toxic metal adsorption from acid mine wastewater
Shan et al. Efficient removal of trace antimony (III) through adsorption by hematite modified magnetic nanoparticles
CN105056719B (zh) 一种羟基氧化铁低温脱硫剂的制备方法及由该方法制得的脱硫剂
Shan et al. A review on mechanism of biomineralization using microbial-induced precipitation for immobilizing lead ions
Peng et al. High-efficient recovery of chromium (VI) with lead sulfate
CN104043396B (zh) 一种磁性氨基化氧化石墨烯的制备方法与应用
Li et al. Phosphorus removal from wastewater using natural pyrrhotite
Glombitza et al. Metal-containing residues from industry and in the environment: Geobiotechnological urban mining
US10787373B2 (en) Iron filings-based green environmental media for nutrient removal and methods of use
KR101330997B1 (ko) 마그네타이트와 버네사이트의 입단 형태의 혼합물, 그 합성방법 및 그 혼합물을 이용한 수처리방법
Yang et al. Redox behavior and chemical species of arsenic in acidic aqueous system
Abdollahi et al. Superadsorbent Fe3O4-coated carbon black nanocomposite for separation of light rare earth elements from aqueous solution: GMDH-based Neural Network and sensitivity analysis
Sheng et al. Micro-dynamic process of cadmium removal by microbial induced carbonate precipitation
CN109200989A (zh) 一种强磁性羟基磷灰石重金属吸附材料及其制备方法
Kajjumba et al. A review of the application of cerium and lanthanum in phosphorus removal during wastewater treatment: Characteristics, mechanism, and recovery
Remy et al. Pseudo-first-order reaction of chemically and biologically formed green rusts with HgII and C15H15N3O2: Effects of pH and stabilizing agents (phosphate, silicate, polyacrylic acid, and bacterial cells)
Plohl et al. Magnetic nanostructures functionalized with a derived lysine coating applied to simultaneously remove heavy metal pollutants from environmental systems
Rao et al. Simultaneous removal of lead (II) and nitrate from water at low voltage
Long et al. Comparison of arsenic (V) removal with different lead-containing substances and process optimization in aqueous chloride solution
JP5540434B2 (ja) 水中に溶解しているリンの除去方法および除去装置
CN104511270A (zh) 用于吸附稀土元素的铁氧磁体吸附材及其吸附方法
CN103332773B (zh) 一种去除废水中汞的方法
Wang et al. Aqueous cadmium removal with ferrate: Influencing factors, removal mechanism, and effect of coexisting ions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150415

WD01 Invention patent application deemed withdrawn after publication