CN104503450B - 实现智能化越障的服务机器人 - Google Patents

实现智能化越障的服务机器人 Download PDF

Info

Publication number
CN104503450B
CN104503450B CN201410707399.7A CN201410707399A CN104503450B CN 104503450 B CN104503450 B CN 104503450B CN 201410707399 A CN201410707399 A CN 201410707399A CN 104503450 B CN104503450 B CN 104503450B
Authority
CN
China
Prior art keywords
threshold value
robot
infrared ray
service robot
distance
Prior art date
Application number
CN201410707399.7A
Other languages
English (en)
Other versions
CN104503450A (zh
Inventor
左国民
郑小平
王学峰
牟善军
彭黎辉
高适
Original Assignee
中国人民解放军防化学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军防化学院 filed Critical 中国人民解放军防化学院
Priority to CN201410707399.7A priority Critical patent/CN104503450B/zh
Publication of CN104503450A publication Critical patent/CN104503450A/zh
Application granted granted Critical
Publication of CN104503450B publication Critical patent/CN104503450B/zh

Links

Abstract

本发明涉及一种实现智能化越障的服务机器人,包括可伸缩机构、红外线传感器、摄像机、图像处理器和ARM9型号的主控制器,可伸缩机构在竖直方向可伸缩,红外线传感器用于检测前方障碍物距离服务机器人的红外线前向距离,摄像机位于可伸缩机构上,用于拍摄前方的障碍物图像,图像处理器用于对障碍物图像进行图像处理,主控制器与可伸缩机构、红外线传感器、摄像机和图像处理器分别连接,基于红外线前向距离决定是否启动摄像机与图像处理器,并基于图像处理结果控制可伸缩机构的伸缩动作。通过本发明,能够提高机器人测距的准确性,还能根据前方障碍物三个方向的尺寸大小确定不同避让方式,提高了服务机器人的运行可靠性。

Description

实现智能化越障的服务机器人

技术领域

[0001]本发明涉及机器人控制领域,尤其涉及一种实现智能化越障的服务机器人。

背景技术

[0002]服务机器人是机器人家族中的一个年轻成员,可以分为专业领域服务机器人和个人/家庭服务机器人,服务机器人的应用范围很广,主要从事维护保养、修理、运输、清洗、保安、救援、监护等工作。

[0003]数据显示,目前,世界上至少有48个国家在发展机器人,其中25个国家已涉足服务型机器人开发。在日本、北美和欧洲,迄今已有7种类型计40余款服务型机器人进入实验和半商业化应用。近年来,全球服务机器人市场保持较快的增长速度,全球人口的老龄化带来大量的问题,例如对于老龄人的看护,以及医疗的问题,这些问题的解决带来大量的财政负担。由于服务机器人所具有的特点使之能够显著的降低财政负担,因而服务机器人能够被大量的应用。

[0004]但是,现有技术中的服务机器人存在以下缺陷:(I)测距模式单一,仅仅凭着红外线测距或超声波测距中的一种测距方式进行前方障碍物的测距,往往会因为测距设备的精度问题,导致测距不够准确;(2)越障不够智能化,服务机器人在前进过程中经常会碰到障碍物,现有技术中一般采取停止等待指令或仅仅根据障碍物高度进行越障,前者导致服务机器人工作效率低下,后者在障碍物纵向过长的情况下难于成功越障。

[0005]因此,需要一种新的实现智能化越障的服务机器人,能够提高前方障碍物测距的准确性,同时能够准确测量到前方障碍物的横向、竖向和纵向三个方向的尺寸,从而根据前方障碍物的实际情况,确定不同的自动越障方式,保障服务机器人的正常服务操作。

发明内容

[0006]为了解决上述问题,本发明提供了一种实现智能化越障的服务机器人,改造现有的服务机器人结构,引入超声波测障和红外线测障结合的方式,以提高前方障碍物测量精度,另外,引入图像识别技术确定前方障碍物的横向、竖向和纵向三个方向的尺寸,以决定采用跨越障碍物、绕行障碍物或等待指令三种越障模式的一种,使得服务机器人的正常工作受到的干扰最小,提高服务机器人的工作效率和服务效果。

[0007]根据本发明的一方面,提供了一种实现智能化越障的服务机器人,所述服务机器人包括,可伸缩机构、红外线传感器、摄像机、图像处理器和ARM 9型号的主控制器,所述可伸缩机构在竖直方向可伸缩,所述红外线传感器用于检测前方障碍物距离所述服务机器人的红外线前向距离,所述摄像机位于所述可伸缩机构上,用于拍摄前方的障碍物图像,所述图像处理器与所述摄像机连接,用于对所述障碍物图像进行图像处理,所述主控制器与所述可伸缩机构、所述红外线传感器、所述摄像机和所述图像处理器分别连接,基于所述红外线前向距离决定是否启动所述摄像机与所述图像处理器,并基于图像处理结果控制所述可伸缩机构的伸缩动作。

[0008]更具体地,在所述实现智能化越障的服务机器人中,所述服务机器人还包括,驱动机构,用于驱动所述服务机器人,包括直流无刷电动机、减速器、电机驱动器、两个电机驱动车轮和两个万向轮,所述两个万向轮为两个前轮,所述两个电机驱动车轮为两个后轮;用户输入设备,根据用户的操作,接收用户输入的预定前向距离阈值、预定高度阈值、竖向尺寸阈值、纵向尺寸阈值、横向尺寸阈值、障碍物上限灰度阈值和障碍物下限灰度阈值,所述障碍物上限灰度阈值和所述障碍物下限灰度阈值用于将图像中的障碍物目标与图像背景分离;存储器,与所述用户输入设备连接,以接收并存储所述预定前向距离阈值、所述预定高度阈值、所述竖向尺寸阈值、所述纵向尺寸阈值、所述横向尺寸阈值、所述障碍物上限灰度阈值和所述障碍物下限灰度阈值;超声波传感器,位于所述服务机器人的正前方,包括超声波发射器、超声波接收器和超声波运算器,所述超声波发射器用于发射超声波,所述超声波接收器用于接收经过前方障碍物反射回来的超声波,所述超声波运算器与所述超声波发射器和所述超声波接收器分别连接,用于基于超声波发射接收时间差和超声波传播速率,计算前方障碍物距离所述服务机器人的超声波障碍物距离;所述可伸缩机构接收所述主控制器发送的伸缩量以进行竖直方向的伸缩动作,并在检测到完成所述伸缩量后发出伸缩结束信号;所述红外线传感器位于所述服务机器人的正前方,还包括红外线发射二极管、红外线接收二极管和红外线运算器,所述红外线发射二极管发射红外线信号,当在前向方向遇到前方障碍物时,将红外线信号反射回来被所述红外线接收二极管接收,所述红外线运算器与所述红外线发射二极管和红外线接收二极管分别连接,基于红外线信号发射接收的时间差和红外线信号的传播速度,计算距离前方障碍物的红外线前向距离;所述图像处理器包括小波滤波单元、灰度化处理单元、障碍物识别单元和尺寸计算单元,所述小波滤波单元与所述摄像机连接以接收所述障碍物图像,基于小波滤波算法对所述障碍物图像执行滤波处理以输出滤波图像,所述灰度化处理单元连接所述小波滤波单元以对所述滤波图像进行灰度化处理,输出灰度化图像,所述障碍物识别单元与所述灰度化处理单元和所述存储器分别连接,将所述灰度化图像中灰度值在所述障碍物上限灰度阈值和所述障碍物下限灰度阈值之间的像素识别并组成障碍物目标子图像,所述尺寸计算单元与所述障碍物识别单元连接,以基于所述障碍物目标子图像计算所述障碍物目标子图像中前方障碍物的横向尺寸、竖向尺寸和纵向尺寸;所述主控制器与所述可伸缩机构、所述驱动机构、所述存储器、所述超声波传感器、所述红外线传感器、所述摄像机和所述图像处理器分别连接,当接收到的超声波障碍物距离和红外线前向距离不相匹配时,发出测距错误信号,控制所述驱动机构停止驱动所述服务机器人,当接收到的超声波障碍物距离和红外线前向距离相匹配且红外线前向距离小于等于所述预定前向距离阈值时,启动所述摄像机和所述图像处理器,在所述竖向尺寸小于所述预定高度阈值时,直接进入智能化越障模式,在所述竖向尺寸大于等于所述预定高度阈值时,关闭所述摄像机和所述图像处理器,基于所述竖向尺寸控制所述可伸缩机构的竖直方向的伸缩量,直到接收到所述可伸缩机构发出的伸缩结束信号后,启动所述摄像机和所述图像处理器,进入智能化越障模式;无线通信设备,与所述主控制器连接,用于将测距错误信号或障碍物报警信号通过移动通信网络发送到用户的移动终端上;其中,在所述主控制器的智能化越障模式中,所述主控制器在接收到的竖向尺寸小于等于所述竖向尺寸阈值且纵向尺寸小于等于所述纵向尺寸阈值时,进入机器跨越模式,在接收到的竖向尺寸小于等于所述竖向尺寸阈值且纵向尺寸大于所述纵向尺寸阈值且横向尺寸小于等于所述横向尺寸阈值时,或在接收到的竖向尺寸大于所述竖向尺寸阈值时且接收到的横向尺寸小于等于所述横向尺寸阈值时,进入机器绕过模式,在接收到的竖向尺寸大于所述竖向尺寸阈值时且接收到的横向尺寸大于所述横向尺寸阈值时,发送障碍物报警信号。

[0009]更具体地,在所述实现智能化越障的服务机器人中,所述无线通信设备还用于接收用户的移动终端无线发送的控制指令,以通过所述主控制器控制所述驱动机构对所述服务机器人的驱动。

[0010]更具体地,在所述实现智能化越障的服务机器人中,所述无线通信设备通过移动通信网络与所述用户的移动终端建立双向无线通信链路。

[0011]更具体地,在所述实现智能化越障的服务机器人中,所述移动通信网络为GPRS移动通信网络、3G移动通信网络和4G移动通信网络中的一种。

[0012]更具体地,在所述实现智能化越障的服务机器人中,还包括,可充电锂电池,为所述服务机器人提供供电电源,并与所述主控制器连接以在所述主控制器控制下为所述服务机器人提供节电管理。

[0013]更具体地,在所述实现智能化越障的服务机器人中,所述服务机器人为修理机器人、运输机器人、清洗机器人、保安机器人、救援机器人和监护机器人中的一种。

附图说明

[0014]以下将结合附图对本发明的实施方案进行描述,其中:

[0015]图1为根据本发明实施方案示出的实现智能化越障的服务机器人的结构方框图。

具体实施方式

[0016]下面将参照附图对本发明的实现智能化越障的服务机器人的实施方案进行详细说明。

[0017]机器人(Robot),指的是自动执行工作的机器装置。他既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。机器人的任务是协助或取代人类工作的工作,例如生产业、建筑业,或是危险的工作。

[0018] 机器人分为两大类,即工业机器人和特种机器人。所谓工业机器人就是面向工业领域的多关节机械手或多自由度机器人。而特种机器人则是除工业机器人之外的、用于非制造业并服务于人类的各种先进机器人,包括:服务机器人、水下机器人、娱乐机器人、军用机器人、农业机器人、机器人化机器等。

[0019]服务机器人的应用范围很广,主要从事维护保养、修理、运输、清洗、保安、救援、监护等工作。国际机器人联合会经过多年的搜集整理,给了服务机器人一个初步的定义:服务机器人是一种半自主或全自主工作的机器人,他能完成有意于人类健康的服务工作,但不包括从事生产的设备。这里,我们把其他一些贴近人们生活的机器人也列入其中。

[0020]现有技术中的服务机器人需要过多的人为干涉,例如远程发送指令或现场发送指令,才能完成服务机器人的通过各种障碍物,进行各种服务,自动化水平不高。

[0021]本发明的实现智能化越障的服务机器人,通过两种不同测距结果进行比较,以获得更准确的前方障碍物距离,同时,通过图像识别技术确定前方障碍物的各种尺寸,并自适应采取合适的越障方案,减少人为操作,提高了服务机器人的自动化程度。

[0022]图1为根据本发明实施方案示出的实现智能化越障的服务机器人的结构方框图,所述服务机器人包括:ARM9主控制器1、可伸缩机构2、驱动机构3、红外线传感器4、超声波传感器5、无线通信设备6、摄像机7、图像处理器8、存储器9、用户输入设备10和供电设备11。ARM9主控制器I与可伸缩机构2、驱动机构3、红外线传感器4、超声波传感器5、无线通信设备

6、摄像机7、图像处理器8、存储器9、用户输入设备10和供电设备11分别连接,摄像机7与图像处理器8连接,存储器9和用户输入设备10连接,供电设备11采用可充电锂电池,为所述服务机器人提供供电电源。

[0023]所述可伸缩机构2在竖直方向可伸缩,所述红外线传感器4用于检测前方障碍物距离所述服务机器人的红外线前向距离,所述摄像机7位于所述可伸缩机构2上,用于拍摄前方的障碍物图像,所述图像处理器8用于对所述障碍物图像进行图像处理,所述主控制器I基于所述红外线前向距离决定是否启动所述摄像机7与所述图像处理器8,并基于图像处理结果控制所述可伸缩机构2的伸缩动作。

[0024]接着,继续对本发明的实现智能化越障的服务机器人的具体结构进行进一步的说明。

[0025]在所述服务机器人中,所述可伸缩机构2接收所述主控制器I发送的伸缩量以进行竖直方向的伸缩动作,并在检测到完成所述伸缩量后发出伸缩结束信号。

[0026] 所述驱动机构3,用于驱动所述服务机器人,驱动机构3包括直流无刷电动机、减速器、电机驱动器、两个电机驱动车轮和两个万向轮,所述两个万向轮为两个前轮,所述两个电机驱动车轮为两个后轮。

[0027]所述红外线传感器4位于所述服务机器人的正前方,还包括红外线发射二极管、红外线接收二极管和红外线运算器,所述红外线发射二极管发射红外线信号,当在前向方向遇到前方障碍物时,将红外线信号反射回来被所述红外线接收二极管接收,所述红外线运算器与所述红外线发射二极管和红外线接收二极管分别连接,基于红外线信号发射接收的时间差和红外线信号的传播速度,计算距离前方障碍物的红外线前向距离。

[0028]所述超声波传感器5,位于所述服务机器人的正前方,包括超声波发射器、超声波接收器和超声波运算器,所述超声波发射器用于发射超声波,所述超声波接收器用于接收经过前方障碍物反射回来的超声波,所述超声波运算器与所述超声波发射器和所述超声波接收器分别连接,用于基于超声波发射接收时间差和超声波传播速率,计算前方障碍物距离所述服务机器人的超声波障碍物距离。

[0029]所述用户输入设备10,用于根据用户的操作,接收用户输入的预定前向距离阈值、预定高度阈值、竖向尺寸阈值、纵向尺寸阈值、横向尺寸阈值、障碍物上限灰度阈值和障碍物下限灰度阈值,所述障碍物上限灰度阈值和所述障碍物下限灰度阈值用于将图像中的障碍物目标与图像背景分离。

[0030]所述存储器9,与所述用户输入设备10连接,以接收并存储所述预定前向距离阈值、所述预定高度阈值、所述竖向尺寸阈值、所述纵向尺寸阈值、所述横向尺寸阈值、所述障碍物上限灰度阈值和所述障碍物下限灰度阈值。

[0031] 所述图像处理器8包括小波滤波单元、灰度化处理单元、障碍物识别单元和尺寸计算单元,所述小波滤波单元与所述摄像机7连接以接收所述障碍物图像,基于小波滤波算法对所述障碍物图像执行滤波处理以输出滤波图像,所述灰度化处理单元连接所述小波滤波单元以对所述滤波图像进行灰度化处理,输出灰度化图像,所述障碍物识别单元与所述灰度化处理单元和所述存储器9分别连接,将所述灰度化图像中灰度值在所述障碍物上限灰度阈值和所述障碍物下限灰度阈值之间的像素识别并组成障碍物目标子图像。

[0032]在所述图像处理器8中,所述尺寸计算单元与所述障碍物识别单元连接,以基于所述障碍物目标子图像计算所述障碍物目标子图像中前方障碍物的横向尺寸、竖向尺寸和纵向尺寸。

[0033]所述主控制器I执行以下控制,当接收到的超声波障碍物距离和红外线前向距离不相匹配时,发出测距错误信号,控制所述驱动机构3停止驱动所述服务机器人,当接收到的超声波障碍物距离和红外线前向距离相匹配且红外线前向距离小于等于所述预定前向距离阈值时,启动所述摄像机7和所述图像处理器8,在所述竖向尺寸小于所述预定高度阈值时,直接进入智能化越障模式,在所述竖向尺寸大于等于所述预定高度阈值时,关闭所述摄像机7和所述图像处理器8,基于所述竖向尺寸控制所述可伸缩机构2的竖直方向的伸缩量,直到接收到所述可伸缩机构2发出的伸缩结束信号后,启动所述摄像机7和所述图像处理器9,进入智能化越障模式。

[0034] 所述服务机器人还包括,无线通信设备6,与所述主控制器I连接,用于将测距错误信号或障碍物报警信号通过移动通信网络发送到用户的移动终端上。

[0035]其中,在所述主控制器I的智能化越障模式中,所述主控制器I在接收到的竖向尺寸小于等于所述竖向尺寸阈值且纵向尺寸小于等于所述纵向尺寸阈值时,进入机器跨越模式,在接收到的竖向尺寸小于等于所述竖向尺寸阈值且纵向尺寸大于所述纵向尺寸阈值且横向尺寸小于等于所述横向尺寸阈值时,或在接收到的竖向尺寸大于所述竖向尺寸阈值时且接收到的横向尺寸小于等于所述横向尺寸阈值时,进入机器绕过模式,在接收到的竖向尺寸大于所述竖向尺寸阈值时且接收到的横向尺寸大于所述横向尺寸阈值时,发送障碍物报警信号。

[0036]其中,所述无线通信设备6还可以用于接收用户的移动终端无线发送的控制指令,以通过所述主控制器I控制所述驱动机构3对所述服务机器人的驱动,所述无线通信设备6可选择通过移动通信网络与所述用户的移动终端建立双向无线通信链路,所述移动通信网络可为GPRS移动通信网络、3G移动通信网络和4G移动通信网络中的一种,以及所述可充电锂电池为所述服务机器人提供供电电源,并与所述主控制器I连接以在所述主控制器I控制下为所述服务机器人提供节电管理,所述服务机器人可为修理机器人、运输机器人、清洗机器人、保安机器人、救援机器人和监护机器人中的一种。

[0037]另外,小波滤波算法是基于小波分析的一种算法,小波分析是一种新兴的数学分支,他是泛函数、Fourier分析、调和分析、数值分析的结合体;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,他被认为是继Fourier分析之后的又一有效的时频分析方法。小波变换与Fourier变换相比,是一个时间和频域的局域变换,因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析,解决了 Four i er变换不能解决的许多困难问题。

[0038]另外,机器人,指的是一般由执行机构、驱动装置、检测装置和控制系统和复杂机械等组成的系统。

[0039]执行机构,即机器人本体,其臂部一般采用空间开链连杆机构,其中的运动副(转动副或移动副)常称为关节,关节个数通常即为机器人的自由度数。根据关节配置型式和运动坐标形式的不同,机器人执行机构可分为直角坐标式、圆柱坐标式、极坐标式和关节坐标式等类型。出于拟人化的考虑,常将机器人本体的有关部位分别称为基座、腰部、臂部、腕部、手部(夹持器或末端执行器)和行走部(对于移动机器人)等。

[0040]驱动装置,是驱使执行机构运动的机构,按照控制系统发出的指令信号,借助于动力元件使机器人进行动作。他输入的是电信号,输出的是线、角位移量。机器人使用的驱动装置主要是电力驱动装置,如步进电机、伺服电机等,此外也有采用液压、气动等驱动装置。

[0041]检测装置,是实时检测机器人的运动及工作情况,根据需要反馈给控制系统,与设定信息进行比较后,对执行机构进行调整,以保证机器人的动作符合预定的要求。作为检测装置的传感器大致可以分为两类:一类是内部信息传感器,用于检测机器人各部分的内部状况,如各关节的位置、速度、加速度等,并将所测得的信息作为反馈信号送至控制器,形成闭环控制。一类是外部信息传感器,用于获取有关机器人的作业对象及外界环境等方面的信息,以使机器人的动作能适应外界情况的变化,使之达到更高层次的自动化,甚至使机器人具有某种“感觉”,向智能化发展,例如视觉、声觉等外部传感器给出工作对象、工作环境的有关信息,利用这些信息构成一个大的反馈回路,从而将大大提高机器人的工作精度。

[0042]控制系统,一种是集中式控制,即机器人的全部控制由一台微型计算机完成。另一种是分散(级)式控制,即采用多台微机来分担机器人的控制,如当采用上、下两级微机共同完成机器人的控制时,主机常用于负责系统的管理、通讯、运动学和动力学计算,并向下级微机发送指令信息;作为下级从机,各关节分别对应一个CPU,进行插补运算和伺服控制处理,实现给定的运动,并向主机反馈信息。根据作业任务要求的不同,机器人的控制方式又可分为点位控制、连续轨迹控制和力(力矩)控制。

[0043]采用本发明的实现智能化越障的服务机器人,针对现有服务机器人的测距模式单一、越障效率较低的技术问题,结合利用超声波技术和红外线技术以提高前方目标测距的精度,同时,更全面地获得障碍物的更多尺寸信息,基于尺寸信息调整图像采集设备的位置,在准确的尺寸信息的基础上自适应地采用不同越障方案,实现服务机器人的智能化越障,减少人工干预。

[0044]可以理解的是,虽然本发明已以较佳实施例披露如上,然而上述实施例并非用以限定本发明。对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (1)

1.一种实现智能化越障的服务机器人,其特征在于,所述服务机器人包括可伸缩机构、红外线传感器、摄像机、图像处理器和ARM 9型号的主控制器,所述可伸缩机构在竖直方向可伸缩,所述红外线传感器用于检测前方障碍物距离所述服务机器人的红外线前向距离,所述摄像机位于所述可伸缩机构上,用于拍摄前方的障碍物图像,所述图像处理器与所述摄像机连接,用于对所述障碍物图像进行图像处理,所述主控制器与所述可伸缩机构、所述红外线传感器、所述摄像机和所述图像处理器分别连接,基于所述红外线前向距离决定是否启动所述摄像机与所述图像处理器,并基于图像处理结果控制所述可伸缩机构的伸缩动作; 所述服务机器人还包括: 驱动机构,用于驱动所述服务机器人,包括直流无刷电动机、减速器、电机驱动器、两个电机驱动车轮和两个万向轮,所述两个万向轮为两个前轮,所述两个电机驱动车轮为两个后轮; 用户输入设备,根据用户的操作,接收用户输入的预定前向距离阈值、预定高度阈值、竖向尺寸阈值、纵向尺寸阈值、横向尺寸阈值、障碍物上限灰度阈值和障碍物下限灰度阈值,所述障碍物上限灰度阈值和所述障碍物下限灰度阈值用于将图像中的障碍物目标与图像背景分离; 存储器,与所述用户输入设备连接,以接收并存储所述预定前向距离阈值、所述预定高度阈值、所述竖向尺寸阈值、所述纵向尺寸阈值、所述横向尺寸阈值、所述障碍物上限灰度阈值和所述障碍物下限灰度阈值; 超声波传感器,位于所述服务机器人的正前方,包括超声波发射器、超声波接收器和超声波运算器,所述超声波发射器用于发射超声波,所述超声波接收器用于接收经过前方障碍物反射回来的超声波,所述超声波运算器与所述超声波发射器和所述超声波接收器分别连接,用于基于超声波发射接收时间差和超声波传播速率,计算前方障碍物距离所述服务机器人的超声波障碍物距离; 所述可伸缩机构接收所述主控制器发送的伸缩量以进行竖直方向的伸缩动作,并在检测到完成所述伸缩量后发出伸缩结束信号; 所述红外线传感器位于所述服务机器人的正前方,还包括红外线发射二极管、红外线接收二极管和红外线运算器,所述红外线发射二极管发射红外线信号,当在前向方向遇到前方障碍物时,将红外线信号反射回来被所述红外线接收二极管接收,所述红外线运算器与所述红外线发射二极管和红外线接收二极管分别连接,基于红外线信号发射接收的时间差和红外线信号的传播速度,计算距离前方障碍物的红外线前向距离; 所述图像处理器包括小波滤波单元、灰度化处理单元、障碍物识别单元和尺寸计算单元,所述小波滤波单元与所述摄像机连接以接收所述障碍物图像,基于小波滤波算法对所述障碍物图像执行滤波处理以输出滤波图像,所述灰度化处理单元连接所述小波滤波单元以对所述滤波图像进行灰度化处理,输出灰度化图像,所述障碍物识别单元与所述灰度化处理单元和所述存储器分别连接,将所述灰度化图像中灰度值在所述障碍物上限灰度阈值和所述障碍物下限灰度阈值之间的像素识别并组成障碍物目标子图像,所述尺寸计算单元与所述障碍物识别单元连接,以基于所述障碍物目标子图像计算所述障碍物目标子图像中前方障碍物的横向尺寸、竖向尺寸和纵向尺寸; 所述主控制器与所述可伸缩机构、所述驱动机构、所述存储器、所述超声波传感器、所述红外线传感器、所述摄像机和所述图像处理器分别连接,当接收到的超声波障碍物距离和红外线前向距离不相匹配时,发出测距错误信号,控制所述驱动机构停止驱动所述服务机器人,当接收到的超声波障碍物距离和红外线前向距离相匹配且红外线前向距离小于等于所述预定前向距离阈值时,启动所述摄像机和所述图像处理器,在所述竖向尺寸小于所述预定高度阈值时,直接进入智能化越障模式,在所述竖向尺寸大于等于所述预定高度阈值时,关闭所述摄像机和所述图像处理器,基于所述竖向尺寸控制所述可伸缩机构的竖直方向的伸缩量,直到接收到所述可伸缩机构发出的伸缩结束信号后,启动所述摄像机和所述图像处理器,进入智能化越障模式; 无线通信设备,与所述主控制器连接,用于将测距错误信号或障碍物报警信号通过移动通信网络发送到用户的移动终端上; 其中,在所述主控制器的智能化越障模式中,所述主控制器在接收到的竖向尺寸小于等于所述竖向尺寸阈值且纵向尺寸小于等于所述纵向尺寸阈值时,进入机器跨越模式,在接收到的竖向尺寸小于等于所述竖向尺寸阈值且纵向尺寸大于所述纵向尺寸阈值且横向尺寸小于等于所述横向尺寸阈值时,或在接收到的竖向尺寸大于所述竖向尺寸阈值时且接收到的横向尺寸小于等于所述横向尺寸阈值时,进入机器绕过模式,在接收到的竖向尺寸大于所述竖向尺寸阈值时且接收到的横向尺寸大于所述横向尺寸阈值时,发送障碍物报警信号; 所述无线通信设备还用于接收用户的移动终端无线发送的控制指令,以通过所述主控制器控制所述驱动机构对所述服务机器人的驱动; 所述无线通信设备通过移动通信网络与所述用户的移动终端建立双向无线通信链路; 所述移动通信网络为GPRS移动通信网络、3G移动通信网络和4G移动通信网络中的一种; 可充电锂电池,为所述服务机器人提供供电电源,并与所述主控制器连接以在所述主控制器控制下为所述服务机器人提供节电管理; 所述服务机器人为修理机器人、运输机器人、清洗机器人、保安机器人、救援机器人和监护机器人中的一种。
CN201410707399.7A 2014-11-27 2014-11-27 实现智能化越障的服务机器人 CN104503450B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410707399.7A CN104503450B (zh) 2014-11-27 2014-11-27 实现智能化越障的服务机器人

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510166102.5A CN104765367B (zh) 2014-11-27 2014-11-27 实现智能化越障的服务机器人
CN201410707399.7A CN104503450B (zh) 2014-11-27 2014-11-27 实现智能化越障的服务机器人
CN201510159527.3A CN104765366B (zh) 2014-11-27 2014-11-27 实现智能化越障的服务机器人

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN201510166102.5A Division CN104765367B (zh) 2014-11-27 2014-11-27 实现智能化越障的服务机器人
CN201510159527.3A Division CN104765366B (zh) 2014-11-27 2014-11-27 实现智能化越障的服务机器人

Publications (2)

Publication Number Publication Date
CN104503450A CN104503450A (zh) 2015-04-08
CN104503450B true CN104503450B (zh) 2016-12-07

Family

ID=52944854

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201410707399.7A CN104503450B (zh) 2014-11-27 2014-11-27 实现智能化越障的服务机器人
CN201510159527.3A CN104765366B (zh) 2014-11-27 2014-11-27 实现智能化越障的服务机器人
CN201510166102.5A CN104765367B (zh) 2014-11-27 2014-11-27 实现智能化越障的服务机器人

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201510159527.3A CN104765366B (zh) 2014-11-27 2014-11-27 实现智能化越障的服务机器人
CN201510166102.5A CN104765367B (zh) 2014-11-27 2014-11-27 实现智能化越障的服务机器人

Country Status (1)

Country Link
CN (3) CN104503450B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105068537A (zh) * 2015-08-14 2015-11-18 国网天津市电力公司 一种绝缘子冲洗机器人的控制装置
CN105270525B (zh) 2015-09-28 2018-02-02 小米科技有限责任公司 两轮平衡车的控制方法及装置
CN105223952B (zh) * 2015-09-28 2019-03-29 小米科技有限责任公司 平衡车的控制方法及装置
CN105362048B (zh) * 2015-10-15 2018-01-19 广东欧珀移动通信有限公司 基于移动设备的障碍物信息提示方法、装置及移动设备
CN105539655B (zh) * 2015-12-07 2018-06-19 小米科技有限责任公司 提示方法及装置
CN107875472B (zh) * 2017-07-06 2020-05-12 青岛市妇女儿童医院 一种多功能儿童输液椅
CN107550650A (zh) * 2017-07-07 2018-01-09 宋秀梅 颈椎牵引式担架的使用方法
CN107397630A (zh) * 2017-07-13 2017-11-28 胡景鲁 一种道路分析和智能行进方法
CN107432794A (zh) * 2017-07-13 2017-12-05 刘纪君 一种智能识别并安全驱动的方法
CN107432793A (zh) * 2017-07-13 2017-12-05 刘纪君 安全型双轮驱动轮椅
CN107432789A (zh) * 2017-07-20 2017-12-05 赵家琦 助力式担架车
CN108784532A (zh) * 2017-08-17 2018-11-13 孙立民 一种智能扫地机器人的行走机构
CN107796403A (zh) * 2017-10-24 2018-03-13 深圳市沃特沃德股份有限公司 机器人的移动方法、装置和机器人
CN108007464A (zh) * 2017-12-04 2018-05-08 国网山东省电力公司电力科学研究院 高压输电线路巡线机器人自主导航方法和系统
CN108283466A (zh) * 2017-12-27 2018-07-17 信利光电股份有限公司 一种扫地机器人的障碍物高度检测装置和方法以及跨越装置和方法
CN108209746A (zh) * 2017-12-27 2018-06-29 信利光电股份有限公司 一种扫地机器人的障碍物高度检测装置和方法以及跨越装置和方法
CN111766877A (zh) * 2018-06-27 2020-10-13 北京航空航天大学 一种机器人

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1727129A (zh) * 2004-07-28 2006-02-01 中国科学院自动化研究所 高压输电线自动巡检机器人控制器
CN101774170A (zh) * 2010-01-29 2010-07-14 华北电力大学 核电站作业机器人及其控制系统
CN102114635A (zh) * 2009-12-31 2011-07-06 武汉大学 巡线机器人智能控制器
CN204241962U (zh) * 2014-11-27 2015-04-01 无锡北斗星通信息科技有限公司 实现智能化越障的服务机器人

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10117341A (ja) * 1996-10-11 1998-05-06 Yazaki Corp 車両周辺監視装置、この装置に用いられる障害物検出方法、及びこの装置に用いられる障害物検出プログラムを記憶した媒体
KR20070087759A (ko) * 2005-10-27 2007-08-29 엘지전자 주식회사 Travel control device of mobile robot and its method
JP5160370B2 (ja) * 2008-10-15 2013-03-13 株式会社Ihi Autonomous mobile robot device, mobile body steering assist device, autonomous mobile robot device control method, and mobile body steering assist method
CN101763119B (zh) * 2009-12-16 2012-01-04 东南大学 基于遥操作移动机器人的辅助避障方法
JP5205366B2 (ja) * 2009-12-25 2013-06-05 本田技研工業株式会社 移動可能領域抽出装置、移動可能領域抽出システム、移動可能領域抽出方法、およびプログラム
CN201905823U (zh) * 2010-12-31 2011-07-27 桂林电子科技大学 单目家用清洁机器人
US20120215380A1 (en) * 2011-02-23 2012-08-23 Microsoft Corporation Semi-autonomous robot that supports multiple modes of navigation
CN102489838B (zh) * 2011-12-15 2013-06-19 上海交通大学 越障全位置自主焊接机器人
CN102789233B (zh) * 2012-06-12 2016-03-09 湖北三江航天红峰控制有限公司 基于视觉的组合导航机器人及导航方法
CN203012510U (zh) * 2013-01-07 2013-06-19 西北农林科技大学 一种基于多传感器信息融合的山地农业机器人避障系统
CN103019245A (zh) * 2013-01-07 2013-04-03 西北农林科技大学 一种基于多传感器信息融合的山地农业机器人避障系统
CN103584980A (zh) * 2013-07-12 2014-02-19 宁波大红鹰学院 一种导盲棒
CN103465908B (zh) * 2013-09-13 2017-02-08 广汽吉奥汽车有限公司 一种路面探测方法、装置及车辆
CN103744110B (zh) * 2014-01-24 2016-10-05 哈尔滨工业大学 超声与单目视觉传感器结合的障碍物识别装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1727129A (zh) * 2004-07-28 2006-02-01 中国科学院自动化研究所 高压输电线自动巡检机器人控制器
CN102114635A (zh) * 2009-12-31 2011-07-06 武汉大学 巡线机器人智能控制器
CN101774170A (zh) * 2010-01-29 2010-07-14 华北电力大学 核电站作业机器人及其控制系统
CN204241962U (zh) * 2014-11-27 2015-04-01 无锡北斗星通信息科技有限公司 实现智能化越障的服务机器人

Also Published As

Publication number Publication date
CN104765366A (zh) 2015-07-08
CN104503450A (zh) 2015-04-08
CN104765367B (zh) 2015-12-02
CN104765367A (zh) 2015-07-08
CN104765366B (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
US10155310B2 (en) Adaptive predictor apparatus and methods
Santos et al. An evaluation of 2D SLAM techniques available in robot operating system
Duguleana et al. Neural networks based reinforcement learning for mobile robots obstacle avoidance
Bagnell et al. An integrated system for autonomous robotics manipulation
Stroupe et al. Distributed sensor fusion for object position estimation by multi-robot systems
CN103271784B (zh) 基于双目视觉的人机交互式机械手控制系统和控制方法
Samuel et al. A review of some pure-pursuit based path tracking techniques for control of autonomous vehicle
AU2018271237B2 (en) Method for building a map of probability of one of absence and presence of obstacles for an autonomous robot
US9862090B2 (en) Surrogate: a body-dexterous mobile manipulation robot with a tracked base
KR100834761B1 (ko) 이동 로봇의 자기 위치 인식 방법 및 장치
US9008840B1 (en) Apparatus and methods for reinforcement-guided supervised learning
US9242372B2 (en) Adaptive robotic interface apparatus and methods
CN106573377B (zh) 具有冲突避免和轨迹恢复能力的类人机器人
US20150005937A1 (en) Action selection apparatus and methods
US10717191B2 (en) Apparatus and methods for haptic training of robots
US9981389B2 (en) Robotics platforms incorporating manipulators having common joint designs
CN102323819B (zh) 一种基于协调控制的智能轮椅室外导航方法
JP2012236244A (ja) ロボット装置、ロボット装置の制御方法、並びにロボット装置制御用プログラム
US10274325B2 (en) Systems and methods for robotic mapping
US20150032258A1 (en) Apparatus and methods for controlling of robotic devices
WO2017105643A1 (en) Autonomous visual navigation
Samani et al. Robotic automated external defibrillator ambulance for emergency medical service in smart cities
CN104049634B (zh) 基于Camshift算法的智能体模糊动态避障方法
Singh et al. Path optimisation of a mobile robot using an artificial neural network controller
Holz et al. Continuous 3D sensing for navigation and SLAM in cluttered and dynamic environments

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20161017

Address after: 102205 Beijing city center Changping District Yangfang town No. 1 North Street

Applicant after: The Chemical Defense College of PLA

Address before: 214016 Jiangsu province Wuxi chonganou Guangrui Road 1906, 1908-257

Applicant before: Wuxi Beidouxing Communication Information Science and Technology Co., Ltd.

COR Change of bibliographic data
CB03 Change of inventor or designer information

Inventor after: Zuo Guomin

Inventor after: Zheng Xiaoping

Inventor after: Wang Xuefeng

Inventor after: Mou Shanjun

Inventor after: Peng Lihui

Inventor after: Gao Shi

Inventor before: The inventor has waived the right to be mentioned

C14 Grant of patent or utility model
GR01 Patent grant