CN104498990A - 半导体基底/含铬双金属碱式磷酸盐光电极及其制备方法 - Google Patents

半导体基底/含铬双金属碱式磷酸盐光电极及其制备方法 Download PDF

Info

Publication number
CN104498990A
CN104498990A CN201410645986.8A CN201410645986A CN104498990A CN 104498990 A CN104498990 A CN 104498990A CN 201410645986 A CN201410645986 A CN 201410645986A CN 104498990 A CN104498990 A CN 104498990A
Authority
CN
China
Prior art keywords
electrode
chromium
optoelectronic pole
semiconductor base
subphosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410645986.8A
Other languages
English (en)
Other versions
CN104498990B (zh
Inventor
项顼
段雪
何宛虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201410645986.8A priority Critical patent/CN104498990B/zh
Publication of CN104498990A publication Critical patent/CN104498990A/zh
Application granted granted Critical
Publication of CN104498990B publication Critical patent/CN104498990B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/33Wastewater or sewage treatment systems using renewable energies using wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明提供了一种半导体基底/含铬双金属碱式磷酸盐光电极及其制备方法,本发明是将过渡金属盐与硝酸钾加入镀铬废液中配成电解液,转移至电解池中,以半导体基底作为工作电极,在室温下电沉积,在负电势下,溶液中的硝酸根在工作电极上还原产生氢氧根,溶液中的金属离子与氢氧根反应,沉积在半导体表面,将得到的沉积氢氧化物的半导体基底在磷酸盐缓冲溶液中进行光电化学处理,得到半导体基底/双金属碱式磷酸盐光电极。该方法操作简单,反应条件温和,而且利用镀铬废液作为反应原料,适用于镀铬废液中金属元素的高效回收和高值利用。该半导体基底/双金属碱式磷酸盐光电极可直接用于光电化学催化反应,反应性能显著提高。

Description

半导体基底/含铬双金属碱式磷酸盐光电极及其制备方法
技术领域
本发明属于金属资源回收与高值利用领域,具体涉及镀铬废液的铬、镍资源利用,制备含铬氢氧化物修饰的光电极,该电极用于太阳光驱动的水分解。
背景技术
在不同价态的铬中,危害最大的是六价铬,其毒性约为三价铬的100倍,它可影响细胞的氧化、还原,能与核酸结合,对呼吸道、消化道有刺激,对人体有致癌作用[朱建华.不同价态铬的毒性及其对人体影响.环境与开发,1997,12(3):46-48.]。工业生产中的含铬废水被认为是对环境产生严重危害的重要来源,未经处理的电镀废液、制革废液等含铬浓度可高达600mg/L,超过我国工业废水排放标准1000倍。电镀是含铬废水污染的最大来源,目前我国仅电镀厂就约有一万多家,每年排放出的含铬废水达4.0×109m3[汪德进,何小勇.含铬废水处理的研究进展.安徽化工,2007,33(1):12-15.]。因此,为了治理工业生产中的重金属污染,对含铬废水的处理与回收利用的研究非常重要。目前对含铬废水处理方法有多种,主要采用的方式有还原-沉淀法(如化学还原、电解还原-凝聚)或回收法(如离子交换、活性炭吸附、反渗透等)处理含铬废水。最常见的是还原沉淀法,首先把六价铬离子用强还原剂还原为三价铬离子,再用碱液将废水中的铬离子以Cr(OH)3沉淀的形式分离除去。此方法设备简单、操作方便,但产生的污泥和废渣较多,所用药剂费用高,并且易产生二次污染[周青龄,桂双林,吴菲.含铬废水处理技术现状及展望.能源研究与管理,2010(2):29-33.]。更重要的是,目前的含铬废水处理方式仅仅将铬离子以沉淀物形式分离,没有对铬资源进行高效利用,因此,发展对含铬废水中铬的回收与高效利用方法具有极其重要的价值。
由于人类社会对能源的需求日益增加,而传统的能源如煤炭、石油等的存储量有限,加之化石燃料在使用过程中对自然环境造成污染,近年来,包括太阳能、风能、地热能等可再生与清洁能源的开发利用一直是研究热点。其中对于太阳能的利用目前普遍集中于太阳能光伏电池,以及利用太阳能热。但光伏电池的价格较化石燃料更高,而所产生的电能不易储存,因此,近来人们开始利用太阳能生产清洁燃料,其中最简单的途径是利用太阳光分解水以产生氢气。该过程无污染、成本低,并且氢气具有很高的储能密度,其燃烧后的产物为水,清洁且可以被重新利用。在光化学反应过程中,太阳光使水分解为氢气和氧气。水的分解是一个非自发反应,需要的吉布斯自由能为237kJ/mol,对于一个光电催化分解水系统,当阳光照射在光电极上时,光电极中的半导体产生的光生空穴可氧化水,析出氧气,而光阴极中的半导体所产生的光生电子可还原水,析出氢气。其中水的氧化反应需要累积4个电荷并释放4个质子才能进行,因此是水分解反应的瓶颈。为了提高水氧化反应的效率,人们着重研究效率更高的光电极材料,常用的光电极材料有二氧化钛、氧化锌、氧化铁等半导体。
以非贵(过渡)金属修饰半导体材料表面,增强其光电性能及稳定性,是改性半导体光电极的重要方式,已有利用钴、镍、铁等过渡金属修饰半导体材料表面,提高水氧化反应的动力学、提高其稳定性的报道[Diane K.Zhong,Sujung Choi,and Daniel R.Gamelin.J.Am.Chem.Soc.,2011,133,18370-18377;Ke Sun,Namseok Park,Zhelin Sun.Energy Environ.Sci.,2012,5,7872-7877;William D.Chemelewski,Heung-Chan Lee,Jung-Fu Lin.J.Am.Chem.Soc.,2014,136,2843-2850.]。但在对光电极改性研究中,以镀铬废液获得含铬化合物修饰光电极并提高其性能的研究未有报道。
发明内容
本发明的目的是提供一种在半导体基底上生长含铬双金属碱式磷酸盐及其制备方法,制备得到的光电极直接用于光电化学水氧化反应。
本发明提供的半导体基底/含铬双金属碱式磷酸盐光电极,由含铬双金属碱式磷酸盐生长于半导体基底上构成,含铬双金属碱式磷酸盐的化学式为:MaCrb(OH)c(PO4)d,其中M为Ni2+或Zn2+,a:b表示镍或锌离子与铬离子的摩尔比为5-1:1,c表示氢氧根的摩尔数,d表示磷酸根的摩尔数,且(a+b):c=1-0.5:1,(a+b):d=3-4:1;半导体基底/含铬双金属碱式磷酸盐光电极结构为:含铬双金属碱式磷酸盐沉积于半导体表面。所述半导体基底为二氧化钛或氧化锌基底,其厚度为0.5~3μm,面积为1~10cm2
该半导体基底/含铬双金属碱式磷酸盐光电极制备方法是:以含有铬和镍或锌的可溶性混合盐溶液为电解液,该电解液pH为4~5,与一般电镀厂的含铬废水pH值相同,且Ni2+、Zn2+也是工厂排放的含铬废水中的常见金属离子。将该电解液加入电解池中,以半导体基底作为工作电极,在室温下电沉积,向工作电极施加恒定负电势,溶液中的金属离子与工作电极表面生成的氢氧根反应,在半导体基底上生成含铬双金属氢氧化物,并通过在磷酸盐缓冲溶液中进行光电化学处理以及电化学处理,最终得到半导体基底/含铬双金属碱式磷酸盐光电极。该制备方法简便,反应条件温和,反应试剂无毒,适用于提高与改善半导体光电极的性能。
该半导体基底/含铬双金属碱式磷酸盐光电极的具体制备步骤如下:
A.用可溶性铬盐或电镀含铬废水与可溶性M盐配制总金属离子摩尔浓度为0.015~0.5mol/L的混合盐溶液,其中铬盐与M盐的摩尔比为1:5~1,再加入钾盐,其中钾盐与总金属离子的摩尔比为5~15:1;
所述可溶性铬盐指铬酸钾、铬酸钠中的一种;所述的电镀含铬废液是取自电镀车间的废水并过滤去除了其中的固体杂质,其中铬含量为30~300mg/L;所述的可溶性M盐是Ni2+、Zn2+的硝酸盐、硫酸盐中的一种,较优的是其硝酸盐;所述的钾盐指硝酸钾、硫酸钾中的一种。
B.将步骤A的混合盐溶液转移至三电极电解池中,以半导体基底基底为工作电极,以Ag/AgCl为参比电极,铂丝为对电极,电解池为单室或双室电解池,所有电势指相对于可逆氢电极的电势;采用电化学工作站向工作电极施加-1.5~0V恒定负电势,利用阴极还原法进行电沉积,电沉积时间为20~300秒;
所述的半导体基底为TiO2或ZnO的纳米棒基底,纳米棒直径为90~120nm,厚度为0.5~3μm,面积为1~10cm2;TiO2纳米棒基底合成见文献[Bin Liu and Eray S.Aydil.J.Am.Chem.Soc.,2009,131,3985-3990.];ZnO纳米棒基底合成见文献[H.M.Chen,C.K.Chen,Y.Chang,C.Tsai,R.Liu,S.Hu,W.Chang,K.H.Chen.Angew.Chem.Int.Ed.,2010,49,5966-5969.]。
C.将步骤B沉积后的TiO2或ZnO基底取出,用去离子水清洗,在60~80℃下干燥0.5~3小时,即得到半导体基底/含铬双金属氢氧化物光电极;
D.以C中得到的光电极为工作电极,Ag/AgCl为参比电极,铂丝为对电极,电解液为0.1~1mol/L磷酸二氢钾-磷酸氢二钾缓冲溶液,pH=6~8,电解池为单室或双室电解池,利用氙灯光源照射光电极正面,光强度为50~300mW/cm2,采用计时电流法,利用电化学工作站向工作电极施加0.5~2.0V外加电压,时间为15~60分钟,将反应后的光电极用去离子水清洗,并在60~80℃下干燥0.5~3小时,得光电化学处理后的光电极;
E.以D中所得到的处理后的光电极为工作电极,Ag/AgCl为参比电极,铂丝为对电极,电解液为0.1~1mol/L的磷酸缓冲溶液,pH=6~8,电解池为单室或双室电解池,采用循环伏安法,设定扫描电势范围为0.2~1.8V,扫描速率为0.01~0.1V/s,扫5~10圈,取出该工作电极用去离子水清洗,并在60~80℃下干燥0.5~3小时,得半导体基底/含铬双金属碱式磷酸盐光电极。
将上述制备的半导体基底/含铬双金属碱式磷酸盐光电极直接用作光电催化水氧化反应的催化电极,测试其催化性能,具体方法如下:在三电极构型的电解池中进行,以半导体基底/含铬双金属碱式磷酸盐光电极为工作电极,Ag/AgCl为参比电极,铂丝为对电极,电解池为单室或双室电解池;利用氙灯光源照射光电极正面,光强度为100mW/cm2;利用电化学工作站(CHI 660C)提供所施加外部电压,电解液为pH=7的磷酸盐缓冲溶液,浓度为0.1mol/L;使用循环伏安法(CV)以及计时电流法(I-t)进行测试,其中循环伏安法的扫描速率为0.1V/s,计时电流曲线的测试时间为3小时。测试得到的电势(EAg/AgCl)转化为对可逆氢电极的电势:ERHE=EAg/AgCl+0.197+0.059×pH。对于该光电极,测得的水氧化光电流起始电势为0.23~0.26V,在1.23V电势下的水氧化光电流密度为0.95~0.99mA/cm2,用计时电流法研究光阳极的稳定性,在3小时的光电催化水氧化反应期间,光电流保持稳定,没有明显下降。
图1是产品光电极的X-射线光电子能谱(XPS,Thermo VG ESCALAB 250型X射线光电子能谱仪)表征结果,图1-(1)中镍元素的873.8和856.4eV的拟合峰与Ni(II)的峰位置相对应,875.5和858.1eV的拟合峰与Ni(III)的峰位置相对应;图1-(2)中铬元素为577.6和587.3eV的峰位置与Cr(III)的氢氧化物峰位置相对应;图1-(3)中氧元素的O 1s峰可拟合为530.1eV,531.1eV,531.9eV三个峰,分别对应氧化物、氢氧化物、以及表面吸附水中的氧元素;图1-(4)中磷元素的P 2p峰位置为133.2eV,与磷酸盐中的磷元素对应。该XPS结果表明半导体上的沉积物为含镍、铬的碱式磷酸盐。
图2是产品光电极的扫描电镜(SEM,Hitachi S4700型扫描电子显微镜)图,结果显示含铬双金属碱式磷酸盐沉积层均匀包覆在半导体基底的表面。
本发明具有如下的显著效果:
(1)利用镀铬废液为原料,沉积含铬双金属碱式磷酸盐,用以增强光电极材料的性能,既有效处理了重金属污染物,不产生二次污染,又高效、高值利用污/废金属资源,镀铬废液可以多次使用,具有工业化高值利用废铬资源的巨大潜力。
(2)利用电化学与光电化学方法,以非贵金属的含铬碱式磷酸盐修饰光电极,增强其性能,该方法成本低,操作简单,可用于修饰各种光电极材料(如:二氧化钛、氧化锌、硅光伏电池板、GaAs光伏电池板),适合于规模化、大批量、大面积处理。
(3)含铬双金属碱式磷酸盐修饰的光电极用于太阳光驱动水分解的反应性能显著提高,稳定性明显增强。
附图说明
图1:为实施例1得到的半导体基底/含铬双金属碱式磷酸盐光电极的XPS图谱,其中(1)、(2)、(3)、(4)分别为镍、铬、氧、磷元素的XPS谱图。
图2:为实施例1得到的半导体基底/含铬双金属碱式磷酸盐光电极的SEM图像。
具体实施方式
实施例1
A.称取六水硝酸镍0.6543g,铬酸钾0.1456g,硝酸钾3.033g溶解于100mL去离子水中配制成混合盐溶液;
B.将步骤A的混合盐溶液转移至单室电解池中,其中工作电极为面积为1cm2的TiO2基底,对电极为铂丝电极,参比电极为Ag/AgCl电极,连通电化学工作站,对工作电极施加-0.4V的电势进行电沉积,沉积50秒;
TiO2基底合成步骤为:使用丙酮:异丙醇:水=1:1:1体积比的溶液超声清洗FTO导电玻璃片,并自然晾干;用浓盐酸与水按1:1体积比配制6mL盐酸溶液,加入100μL钛酸四正丁酯并搅拌均匀,将该溶液转移至体积为20mL带聚四氟乙烯内衬的水热釜中,放入1片FTO导电玻璃片,玻璃片的导电面向下斜倚在聚四氟乙烯内衬壁上,在150℃下水热反应5小时,取出FTO导电玻璃片并用去离子水冲洗,在70℃下烘干1小时,得到生长在FTO导电玻璃片上的TiO2基底;
C.沉积结束后取出工作电极,用去离子水充分洗涤,并在70℃烘箱中干燥0.5小时得新制的半导体基底/含铬双金属氢氧化物光电极。
D.以步骤C中新制的光电极为工作电极,参比电极、对电极、电解池同上,电解液为0.1mol/L的磷酸缓冲溶液(pH=7),利用氙灯光源照射光电极正面,光强度为100mW/cm2,采用计时电流法,利用电化学工作站向工作电极施加0.6V外加电压,时间为30分钟,将光电化学处理后的光电极用去离子水清洗,并在70℃下干燥0.5小时,得光电化学处理后的光电极;
E.以D中光电化学处理后的光电极为工作电极,参比电极、对电极、电解液、电解池同上,采用循环伏安法,设定扫描电势范围为0.2V~1.8V,扫描速率为0.01V/s,扫描5圈,将该光电极反应后用去离子水清洗,并在70℃下干燥0.5小时,得半导体基底/含铬双金属碱式磷酸盐光电极。
将得到的半导体基底/含铬双金属碱式磷酸盐光电极的进行XPS表征,结果见图1,其中(1)、(2)、(3)、(4)分别为镍、铬、氧、磷元素的XPS谱图,测得Ni/Cr的摩尔比例为2.2/1,Ni/P的摩尔比例为2.4/1,P的原子百分含量为4.39%。
图2是将得到的光电极进行的扫描电镜表征图,结果显示含铬双金属碱式磷酸盐沉积层均匀包覆在半导体基底的表面。
性能评价:量取10mL 0.1mol/L磷酸缓冲溶液(pH=7)并转移至电解池中,取所制半导体基底/含铬双金属碱式磷酸盐光电极作为工作电极,以铂丝电极为对电极,Ag/AgCl电极为参比电极,构建三电极电解池。连通电化学工作站,选用循环伏安法,设定扫描电势范围为0.2V~1.8V,扫描速率为0.1V/s,使用氙灯从工作电极正面照射,光强度为100mW/cm2,进行循环伏安扫描测试其光电流。评价结果:水氧化生成氧气的光电流起始电势为0.25V,在电势为1.23V下的光电流密度为0.97mA/cm2
实施例2
A.称取六水硝酸镍0.8724g,铬酸钾0.1942g,硝酸钾4.044g溶解于100mL去离子水中配制成混合盐溶液;
B.将步骤A的混合盐溶液转移至单室电解池中,其中工作电极为面积为1.5cm2的TiO2基底,对电极为铂丝电极,参比电极为Ag/AgCl电极,连通电化学工作站,对工作电极施加-0.4V的电势进行电沉积,沉积50秒,其中TiO2基底的制备步骤同实施例1;
C.结束后取出工作电极,用去离子水充分洗涤,并在70℃烘箱中干燥0.5小时得新制的半导体基底/含铬双金属氢氧化物光电极;
D.以步骤C中新制的光电极为工作电极,参比电极、对电极、电解池同上,电解液为0.1mol/L的磷酸缓冲溶液(pH=7),利用氙灯光源照射光电极正面,光强度为100mW/cm2,采用计时电流法,利用电化学工作站向工作电极施加0.9V外加电压,时间为30分钟,将光电化学处理后的光电极用去离子水清洗,并在70℃下干燥0.5小时,得光电化学处理后的光电极;
E.以D中光电化学处理后的光电极为工作电极,参比电极、对电极、电解液、电解池同上,采用循环伏安法,设定扫描电势范围为0.2V~1.8V,扫描速率为0.01V/s,扫描10圈,将该光电极反应后用去离子水清洗,并在70℃下干燥0.5小时,得半导体基底/含铬双金属碱式磷酸盐光电极。
性能评价:
量取10mL 0.1mol/L磷酸缓冲溶液(pH=7)并转移至电解池中,取所制半导体基底/含铬双金属碱式磷酸盐光电极作为工作电极,以铂丝电极为对电极,Ag/AgCl电极为参比电极,构建三电极电解池。连通电化学工作站,使用氙灯从工作电极正面照射,光强度为100mW/cm2,选用计时电流法,设定电势为1.23V,时间为3小时,对半导体基底/含铬双金属碱式磷酸盐光电极进行计时电流评价。评价结果:初始稳定电流为0.95mA/cm2,结束时电流为0.92mA/cm2
实施例3
A.称取六水硝酸锌0.6694g,铬酸钾0.1092g,硝酸钾2.4264g溶解于100mL去离子水中配制成混合盐溶液;
B.将步骤A的混合盐溶液转移至单室电解池中,其中工作电极为面积为1.8cm2的TiO2基底,对电极为铂丝电极,参比电极为Ag/AgCl电极,连通电化学工作站,对工作电极施加-0.4V的电势进行电沉积,沉积50秒,其中TiO2基底的制备步骤同实施例1;
C.结束后取出工作电极,用去离子水充分洗涤,并在70℃烘箱中干燥1小时,得新制的半导体基底/含铬双金属氢氧化物光电极;
D.以步骤C中新制的光电极为工作电极,参比电极、对电极、电解池同上,电解液为0.1mol/L的磷酸缓冲溶液(pH=7),利用氙灯光源照射光电极正面,光强度为100mW/cm2,采用计时电流法,利用电化学工作站向工作电极施加1.1V外加电压,时间为20分钟,将反应后的光电极用去离子水清洗,并在70℃下干燥1小时,得光电化学处理后的光电极;
E.以D中光电化学处理后的光电极为工作电极,参比电极、对电极、电解液、电解池同上,采用循环伏安法,设定扫描电势范围为0.2V~1.8V,扫描速率为0.01V/s,扫描10圈,将该光电极反应后用去离子水清洗,并在70℃下干燥1小时,得半导体基底/含铬双金属碱式磷酸盐光电极。
性能评价:量取10mL 0.1mol/L磷酸缓冲溶液(pH=7)并转移至电解池中,取所制半导体基底/含铬双金属碱式磷酸盐光电极作为工作电极,以铂丝电极为对电极,Ag/AgCl电极为参比电极,构建三电极电解池。连通电化学工作站,使用氙灯从工作电极正面照射,光强度为100mW/cm2,选用计时电流法,设定电势为1.23V,时间为3小时,对半导体基底/含铬双金属碱式磷酸盐光电极进行计时电流评价。评价结果:初始稳定电流为0.96mA/cm2,结束时电流为0.94mA/cm2
实施例4
A.称取六水硝酸锌1.1900g,铬酸钾0.1942g,硝酸钾5.055g溶解于100mL去离子水中配制成混合盐溶液;
B.将步骤A的混合盐溶液转移至单室电解池中,其中工作电极为面积为1.8cm2的ZnO基底,对电极为铂丝电极,参比电极为Ag/AgCl电极,连通电化学工作站,对工作电极施加-0.4V的电势进行电沉积,沉积100秒;
其中ZnO基底的制备步骤为:使用丙酮:异丙醇:水=1:1:1体积比的溶液超声清洗FTO导电玻璃片,并自然晾干;配制摩尔浓度为0.05mol/L的乙酸锌的乙醇溶液100mL,将清洗后的FTO导电玻璃片浸入乙酸锌溶液中20s,然后移出溶液,待溶液自然晾干后,将该玻璃片在300℃下褪火60分钟,得到生长了ZnO晶种的FTO导电玻璃片;向摩尔浓度为0.05mol/L六次甲基四胺水溶液中加入乙酸锌,其中乙酸锌的摩尔浓度为0.05mol/L;将该溶液转移至带聚四氟乙烯内衬的水热釜中,放入1片生长了ZnO晶种的FTO导电玻璃片,玻璃片的导电面向下斜倚在聚四氟乙烯内衬壁上,在100℃下水热反应24小时,取出FTO导电玻璃片并用去离子水冲洗,在70℃下烘干1小时,得到生长在FTO导电玻璃片上的ZnO基底;
C.结束后取出工作电极,用去离子水充分洗涤,并在70℃烘箱中干燥0.5小时,得新制的半导体基底/含铬双金属氢氧化物光电极;
D.以步骤C中新制的光电极为工作电极,参比电极、对电极、电解池同上,电解液为0.1mol/L的磷酸缓冲溶液(pH=7),利用氙灯光源照射光电极正面,光强度为100mW/cm2,采用计时电流法,利用电化学工作站向工作电极施加1.1V外加电压,时间为40分钟,将反应后的光电极用去离子水清洗,并在70℃下干燥0.5小时,得光电化学处理后的光电极;
E.以D中光电化学处理后的光电极为工作电极,参比电极、对电极、电解液、电解池同上,采用循环伏安法,设定扫描电势范围为0.2V~1.8V,扫描速率为0.01V/s,扫描10圈,将该光电极反应后用去离子水清洗,并在70℃下干燥0.5小时,得半导体基底/含铬双金属碱式磷酸盐光电极。
性能评价:量取10mL 0.1mol/L磷酸缓冲溶液(pH=7)并转移至电解池中,取所制半导体基底/含铬双金属碱式磷酸盐光电极作为工作电极,以铂丝电极为对电极,Ag/AgCl电极为参比电极,构建三电极电解池。连通电化学工作站,选用循环伏安法,设定扫描电势范围为0.2V~1.8V,扫描速率为0.1V/s,使用氙灯从工作电极正面照射,光强度为100mW/cm2,进行循环伏安扫描测试其光电流。评价结果:水氧化生成氧气的光电流起始电势为0.25V,在电势为1.23V下的光电流密度为0.96mA/cm2
实施例5
A.将取自电镀车间的含铬废水采用普通漏斗过滤法滤去其中的不溶固体物质,测得其总铬含量为170mg/L,量取100mL于烧杯中,称取六水硝酸镍0.4755g,硝酸钾1.9815g,溶解于含铬废水中配制成混合盐溶液;
B.将步骤A的混合盐溶液转移至单室电解池中,其中工作电极为面积为2cm2的ZnO基底,对电极为铂丝电极,参比电极为Ag/AgCl电极,连通电化学工作站,对工作电极施加-0.4V的电势进行电沉积,沉积150秒,其中ZnO基底的制备步骤同实施例4;
C.结束后取出工作电极,用去离子水充分洗涤,并在70℃烘箱中干燥0.5小时得新制的半导体基底/含铬双金属氢氧化物光电极;
D.以步骤C中新制的光电极为工作电极,参比电极、对电极、电解池同上,电解液为0.1mol/L的磷酸缓冲溶液(pH=7),利用氙灯光源照射光电极正面,光强度为120mW/cm2,采用计时电流法,利用电化学工作站向工作电极施加0.6V外加电压,时间为30分钟,将光电化学处理后的光电极用去离子水清洗,并在70℃下干燥0.5小时,得光电化学处理后的光电极;
E.以D中光电化学处理后的光电极为工作电极,参比电极、对电极、电解液、电解池同上,采用循环伏安法,设定扫描电势范围为0.2V~1.8V,扫描速率为0.01V/s,扫描8圈,将该光电极反应后用去离子水清洗,并在70℃下干燥0.5小时,得半导体基底/含铬双金属碱式磷酸盐光电极。
性能评价:量取10mL 0.1mol/L磷酸缓冲溶液(pH=7)并转移至电解池中,取所制半导体基底/含铬双金属碱式磷酸盐光电极作为工作电极,以铂丝电极为对电极,Ag/AgCl电极为参比电极,构建三电极电解池。连通电化学工作站,选用循环伏安法,设定扫描电势范围为0.2V~1.8V,扫描速率为0.1V/s,使用氙灯从工作电极正面照射,光强度为100mW/cm2,进行循环伏安扫描测试其光电流。评价结果:水氧化生成氧气的光电流起始电势为0.27V,在电势为1.23V下的光电流密度为0.95mA/cm2

Claims (3)

1.一种半导体基底/含铬双金属碱式磷酸盐光电极,由含铬双金属碱式磷酸盐生长于半导体基底上构成,含铬双金属碱式磷酸盐的化学式为:MaCrb(OH)c(PO4)d,其中M为Ni2+或Zn2+,a:b表示镍或锌离子与铬离子的摩尔比为5-1:1,c表示氢氧根的摩尔数,d表示磷酸根的摩尔数,且(a+b):c=1-0.5:1,(a+b):d=3-4:1;所述的半导体基底为TiO2或ZnO的纳米棒,纳米棒直径为90~120nm,厚度为0.5~3μm,面积为1~10cm2
2.一种制备半导体基底/含铬双金属碱式磷酸盐光电极的方法:具体制备步骤如下:
A.用可溶性铬盐或电镀含铬废水与可溶性M盐配制总金属离子摩尔浓度为0.015~0.5mol/L的混合盐溶液,其中铬盐与M盐的摩尔比为1:5~1,再加入钾盐,其中钾盐与总金属离子的摩尔比为5~15:1;
所述可溶性铬盐指铬酸钾、铬酸钠中的一种;所述的电镀含铬废液是取自电镀车间的废水并过滤去除了其中的固体杂质,其中铬含量为30~300mg/L;所述的可溶性M盐是Ni2+、Zn2+的硝酸盐、硫酸盐中的一种;所述的钾盐指硝酸钾、硫酸钾中的一种;
B.将步骤A的混合盐溶液转移至三电极电解池中,以半导体基底基底为工作电极,以Ag/AgCl为参比电极,铂丝为对电极,电解池为单室或双室电解池;所有电势均指相对于可逆氢电极的电势,利用电化学工作站向工作电极施加-1.5V~0V恒定负电势,利用阴极还原法进行电沉积,电沉积时间为20~300秒;
所述的半导体基底为TiO2或ZnO的纳米棒,纳米棒直径为90~120nm,厚度为0.5~3μm,面积为1~10cm2
C.将步骤B沉积后的TiO2或ZnO基底取出,用去离子水清洗,在60~80℃下干燥0.5~3小时,即得到半导体基底/含铬双金属氢氧化物光电极;
D.以C中得到的光电极为工作电极,Ag/AgCl为参比电极,铂丝为对电极,电解液为0.1~1mol/L磷酸二氢钾-磷酸氢二钾缓冲溶液,pH=6~8,电解池为单室或双室电解池,利用氙灯光源照射光电极正面,光强度为50~300mW/cm2,采用计时电流法,利用电化学工作站向工作电极施加0.5~2.0V外加电压,时间为15~60分钟,将反应后的光电极用去离子水清洗,并在60~80℃下干燥0.5~3小时,得光电化学处理后的光电极;
E.以D中所得到的处理后的光电极为工作电极,Ag/AgCl为参比电极,铂丝为对电极,电解液为0.1~1mol/L的磷酸缓冲溶液,pH=6~8,电解池为单室或双室电解池,采用循环伏安法,设定扫描电势范围为0.2V~1.8V,扫描速率为0.01~0.1V/s,扫5~10圈,取出该工作电极用去离子水清洗,并在60~80℃下干燥0.5~3小时,得半导体基底/含铬双金属碱式磷酸盐光电极。
3.根据权利要求2所述的制备半导体基底/含铬双金属碱式磷酸盐光电极的方法:其特征是步骤A所述的可溶性M盐是Ni2+、Zn2+的硝酸盐。
CN201410645986.8A 2014-11-14 2014-11-14 半导体基底/含铬双金属碱式磷酸盐光电极及其制备方法 Expired - Fee Related CN104498990B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410645986.8A CN104498990B (zh) 2014-11-14 2014-11-14 半导体基底/含铬双金属碱式磷酸盐光电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410645986.8A CN104498990B (zh) 2014-11-14 2014-11-14 半导体基底/含铬双金属碱式磷酸盐光电极及其制备方法

Publications (2)

Publication Number Publication Date
CN104498990A true CN104498990A (zh) 2015-04-08
CN104498990B CN104498990B (zh) 2017-04-05

Family

ID=52940439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410645986.8A Expired - Fee Related CN104498990B (zh) 2014-11-14 2014-11-14 半导体基底/含铬双金属碱式磷酸盐光电极及其制备方法

Country Status (1)

Country Link
CN (1) CN104498990B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104888823A (zh) * 2015-04-16 2015-09-09 北京化工大学 一种光化学改性双金属氢氧化物及其制备方法和应用
CN106007004A (zh) * 2016-07-09 2016-10-12 南京工业大学 一种利用其它重金属废水强化含铬废水处理的方法
CN106198653A (zh) * 2016-06-26 2016-12-07 北京化工大学 一种定性定量检测葡萄糖的传感器材料及其制备方法
CN113279009A (zh) * 2021-04-28 2021-08-20 北京化工大学 一种具有空穴传输和助催化双功能光电催化界面的复合光阳极的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101693560A (zh) * 2009-10-21 2010-04-14 华北水利水电学院 一体化太阳能光电水处理装置
CN101775615A (zh) * 2010-01-20 2010-07-14 南京大学 BiVO4纳米光电极及其在分解水制氢方面的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101693560A (zh) * 2009-10-21 2010-04-14 华北水利水电学院 一体化太阳能光电水处理装置
CN101775615A (zh) * 2010-01-20 2010-07-14 南京大学 BiVO4纳米光电极及其在分解水制氢方面的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FENG-QIANGXIONG ET AL.: "Enhanced photocatalytic water oxidation on ZnOphotoanodes in a borate buffer electrolyte", 《CATAL. SCI. TECHNOL.》 *
MINGFEI SHAO ET AL.: "Hierarchical Nanowire Arrays Based on ZnO Core−Layered Double Hydroxide Shell for Largely EnhancedPhotoelectrochemical Water Splitting", 《ADV. FUNCT. MATER.》 *
姜平等: "新型层状结构可见光催化剂的制备与性能研究", 《辽宁化工》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104888823A (zh) * 2015-04-16 2015-09-09 北京化工大学 一种光化学改性双金属氢氧化物及其制备方法和应用
CN106198653A (zh) * 2016-06-26 2016-12-07 北京化工大学 一种定性定量检测葡萄糖的传感器材料及其制备方法
CN106198653B (zh) * 2016-06-26 2019-04-09 北京化工大学 一种定性定量检测葡萄糖的传感器材料及其制备方法
CN106007004A (zh) * 2016-07-09 2016-10-12 南京工业大学 一种利用其它重金属废水强化含铬废水处理的方法
CN106007004B (zh) * 2016-07-09 2019-11-19 南京工业大学 一种利用其它重金属废水强化含铬废水处理的方法
CN113279009A (zh) * 2021-04-28 2021-08-20 北京化工大学 一种具有空穴传输和助催化双功能光电催化界面的复合光阳极的制备方法
CN113279009B (zh) * 2021-04-28 2022-05-27 北京化工大学 一种具有空穴传输和助催化双功能光电催化界面的复合光阳极的制备方法

Also Published As

Publication number Publication date
CN104498990B (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
CN102352524B (zh) 一种金属氧化物修饰TiO2纳米管阵列电极及其制备方法
CN105597784B (zh) MoS2掺杂的氧化铁光催化薄膜、制备方法及其在处理含酚废水中的应用
CN103952720B (zh) 金属基底/含钴类水滑石纳米膜电极及其制备方法
CN104498990A (zh) 半导体基底/含铬双金属碱式磷酸盐光电极及其制备方法
CN105986292B (zh) 一种钴、镍双层氢氧化物修饰的二氧化钛纳米管阵列的制备方法及光电化学水解制氢应用
CN111569896A (zh) BiVO4-Ni/Co3O4异质结的合成方法及其应用于光电解水
CN109778223A (zh) 一种ZnO修饰WO3/BiVO4异质结的制备方法及其在光电催化中的应用
CN108866563A (zh) 一种硼化钴修饰的钒酸铋膜光电阳极、其制备方法与用途
CN108511198A (zh) 一种Ni掺杂的BiVO4薄膜光电阳极、其制备方法与用途
CN113481546B (zh) 一种氧化锌/硫化锌复合薄膜光电极及太阳能光致沉积贵金属的回收装置
CN113089020B (zh) Co(OH)2/FePO4光电极薄膜及其在光电化学水分解中的应用
CN110102282A (zh) 一种铈掺杂氧化锌光催化剂及其制备方法
CN109395748A (zh) 一种具有可见光响应的Ag2ZnSnS4/Mo结构光阳极及其制备方法与应用
CN107020103A (zh) 一种氧化铁‑硫化钼‑氧化亚铜光催化薄膜及其制备方法和应用
CN113502513A (zh) 一种利用太阳能直接沉积铜金属的方法
CN113293404B (zh) 一种异质结光阳极材料及其制备方法和应用
CN103103562A (zh) 一种Ni-Co-W-Cu-B多组分阴极材料及其制备方法和用途
CN102013341B (zh) 一种双螺旋结构的染料敏化太阳能电池的制备方法
CN107287616B (zh) 一种高效光电转换和光催化性能的Zn-Cr-O/TiO2-NTs复合氧化物的制备与应用
CN108707920B (zh) 一种光电化学冶金制备二氧化锰的方法
Tezcan et al. Photocorrosion protection of BiVO4 electrode by α-Cr2O3 core–shell for photoelectrochemical hydrogen production
CN115233255A (zh) MOF衍生的NiO/BiVO4复合光电极制备方法及其光电应用
CN113293382B (zh) 一种BiVO4/MnOOH薄膜电极及其制备方法和在光生阴极防腐中的应用
CN114016082B (zh) 一种利用太阳能在导电基底上直接沉积回收金属铋的方法
CN104399454B (zh) 一种具备抗硫中毒的含钯氧化钛光催化剂的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170405

Termination date: 20171114