CN104498874B - 低气氛敏感性掺杂非晶碳基薄膜及其制备方法 - Google Patents

低气氛敏感性掺杂非晶碳基薄膜及其制备方法 Download PDF

Info

Publication number
CN104498874B
CN104498874B CN201410749907.8A CN201410749907A CN104498874B CN 104498874 B CN104498874 B CN 104498874B CN 201410749907 A CN201410749907 A CN 201410749907A CN 104498874 B CN104498874 B CN 104498874B
Authority
CN
China
Prior art keywords
base film
amorphous carbon
doped chemical
film
sensitiveness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410749907.8A
Other languages
English (en)
Other versions
CN104498874A (zh
Inventor
吴行阳
邓兆星
张建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201410749907.8A priority Critical patent/CN104498874B/zh
Publication of CN104498874A publication Critical patent/CN104498874A/zh
Application granted granted Critical
Publication of CN104498874B publication Critical patent/CN104498874B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种低气氛敏感性掺杂非晶碳基薄膜及其制备方法。该薄膜主要由碳元素和缺电子掺杂元素经气相沉积得到,其中所述缺电子掺杂元素的原子数含量不超过10%。本发明在常见非晶碳基薄膜中掺入该类元素中的一种或两种及以上,或同时掺入其它常见的共掺杂元素,此时,缺电子掺杂元素和共掺杂元素的总含量不超过40%以增加缺电子掺杂元素的反应性和稳定性。缺电子元素的存在可在一定程度上吸引碳原子周围的电子,降低碳原子周围成键电子之间以及碳原子周围电子与环境成分和相接触材料表面间的相互作用,从而降低摩擦及其对环境气氛的敏感性,减少磨损。本发明的掺杂非晶碳基薄膜沉积于常见固体材料部件表面,主要用于部件的表面保护、润滑等领域。

Description

低气氛敏感性掺杂非晶碳基薄膜及其制备方法
技术领域
本发明涉及一种掺杂非晶碳基薄膜及其掺杂方法,特别是一种低气氛敏感性掺杂非晶碳基薄膜及其掺杂方法。
背景技术
非晶碳基薄膜(类金刚石膜)在水中具有低摩擦、低磨损和优异的耐腐蚀性,以水润滑替代传统的油润滑,在节约能源资源、保护环境方面具有重要的经济和社会意义,是理想的表面保护自润滑材料。然而,现有非晶碳基薄膜在空气中的摩擦系数较高且不稳定,特别是受空气湿度的影响较大,在发生水泄露或水供给出现问题时不能起到稳定润滑的作用。为了实现水或空气等多种气氛中稳定、有效的润滑,提高机械的运行稳定性并降低润滑成本,有必要开发一种在不同湿度空气和水中均具有低且稳定的摩擦系数、耐磨损的非晶碳基薄膜。
从近年来国内外的研究成果来看,非晶碳基薄膜的摩擦系数主要取决于悬挂键与对偶的相互作用。在沉积过程中非晶碳基薄膜内部会发生碳链或环的扭曲,使相邻成键电子对间的距离变小,这样相邻电子对之间的排斥力增大,导致薄膜内部往往存在较大的内应力。另一方面,在摩擦过程中,随着薄膜表面的磨损,表面碳原子将形成悬挂键,由于内部成键电子对之间较大的排斥力作用,使内部电子部分偏移至悬挂键,从而增强悬挂键作为供电子基的反应活性,悬挂键与对偶摩擦面形成悬键咬合作用,使摩擦力增大。同时,悬挂键对周围气氛极为敏感的特性也使得该类薄膜的摩擦学特性因气氛而变化,特别是空气中的摩擦系数较高且不稳定,薄膜对气氛环境的变化缺乏自适应性,应用范围受到限制。
发明内容
本发明的目的之一在于提供一种低气氛敏感性掺杂非晶碳基薄膜,以提高薄膜的自适应性。
本发明的目的之二在于提供该非晶碳基薄膜的制备方法。
为达到上述目的,本发明的构思是:在薄膜中掺入掺杂元素以降低碳悬挂键与对偶的相互作用,从而降低薄膜配副在摩擦过程中对气氛的敏感性,在不同环境中均可得到低且稳定的摩擦系数。通过在类金刚石薄膜中掺入掺杂元素,促使薄膜内部电子向掺杂元素原子迁移,就可降低相邻电子对之间的排斥力及薄膜的内应力,降低悬挂键作为供电子基的反应活性,钝化悬挂键,最终降低摩擦副间的摩擦力及其对环境的敏感程度。
根据上述构思,本发明采用如下技术方案:
一种低气氛敏感性掺杂非晶碳基薄膜,其特征在于该薄膜主要由碳元素和掺杂元素经气相沉积得到,其中所述掺杂元素的原子数含量不超过10%。
上述的掺杂元素为铟、镓、锡、镝、锗、铋中的至少一种。
上述的薄膜中还掺杂氢、硅、氮、氧、硼、铬、钛、铝、铜、锰、锌、钼、钨、铁、镍、钴、银、钒、锆、碲、硒、氟、氯、溴、硫、磷中的至少一种共掺杂元素,所述的掺杂元素和共掺杂元素的总原子数含量不超过40%。
一种制备上述的低气氛敏感性掺杂非晶碳基薄膜的方法,其特征在于该方法的具体步骤为:在利用现有的沉积法进行非晶碳基薄膜制备的同时,采用掺杂元素的纯金属、合金或有机络合物,通过物理气相法进行掺杂薄膜的制备。
上述的物理气相法为:溅射法、加热蒸发法或激光蒸发法。
上述的溅射法时溅射气体的分压不超过3Pa,加在基体上的负偏压范围为0-200V。
上述的采用所述的加热蒸发或激光蒸发法进行掺杂时,负偏压范围为0-350V。
上述的导入掺杂元素的有机络合物进行掺杂时,掺杂元素有机络合物的分压为0.01-10Pa。
一种制备上述的低气氛敏感性掺杂非晶碳基薄膜的方法,其特征在于在利用现有的沉积法进行非晶碳基薄膜制备的同时,采用掺杂元素的纯金属、合金或有机络合物,通过物理气相法进行掺杂薄膜的制备,同时导入氮气、氧气、有机化合物或络合物中的一种或两种及以上的共掺杂反应性气体,以增加掺杂元素在基体表面的反应性和稳定性,共掺杂反应性气体的分压为0.01-10Pa。
由于铟、镓、锡、镝、锗、铋等元素在发光二极管中作为空穴材料使用较广。本发明在常见非晶碳基薄膜中掺入该类元素中的一种或两种及以上,在一定程度上吸引碳原子周围的电子,降低碳原子周围成键电子之间以及碳原子周围电子与环境成分和相接触材料表面间的相互作用,从而降低摩擦及其对环境气氛的敏感性,减少磨损。本发明的掺杂非晶碳基薄膜沉积于常见固体材料部件表面,主要用于部件的表面保护、润滑等领域。
具体实施方式
作为具体实施例,本发明采用如下三种制备方法。
实施例一:采用溅射和反应溅射的物理气相沉积法,结合化学气相沉积法进行沉积。即选用铟为靶材,0.05-3Pa的氩气为溅射气体进行溅射沉积的同时,导入0.05-10Pa的碳源和共掺杂源混合反应性气体六甲基二硅氧烷和甲苯,沉积过程中基体上始终施加有射频功率进行射频化学气相沉积,负偏压为
0-200V,所得薄膜为硅、氢、氧和铟的共掺杂非晶碳基薄膜,在水和空气中的摩擦系数均约为0.05,对环境气氛的依赖程度低。
实施例二:基本方法同实施例一,不同之处在于在沉积过程中同时导入0.01-3Pa的氮气,获得氮、氢、硅、氧和铟的共掺杂非晶碳基薄膜。
实施例三:基本方法同实施例一,不同之处在于基体上施加的是直流偏压,负偏压为0-200V,沉积过程中没有引入化学气相沉积技术,即只采用物理气相沉积法进行掺杂薄膜的沉积。
实施例四:选用铟和石墨为靶材,氩气为溅射气体,采用多靶溅射进行掺杂薄膜的物理气相沉积,氩气分压为0.05-3Pa,。
实施例五:基本方法同实施例四,不同之处在于在沉积过程中导入0.01-3Pa的氮气,可获得氮和铟共掺杂非晶碳基薄膜。
实施例六:导入0.05-10Pa的甲苯为碳源气体,0.05-10Pa的六甲基二硅氧烷为共掺杂气体,0.05-10Pa的三甲基铟为掺杂元素源,采用等离子增强化学气相沉积法进行掺杂薄膜的制备,基体上施加0-350V的直流负偏压,所得薄膜为氢、氧、硅和铟的共掺杂非晶碳基薄膜。

Claims (7)

1.一种低气氛敏感性掺杂非晶碳基薄膜,其特征在于该薄膜主要由碳元素和掺杂元素经气相沉积得到,其中所述掺杂元素的原子数含量不超过10%;
所述的掺杂元素为铟、镓、锡、镝、铋中的至少一种;
所述的薄膜中还掺杂氢、硅、氮、氧、硼、铬、钛、铝、铜、锰、锌、钼、钨、铁、镍、钴、银、钒、锆、碲、硒、氟、氯、溴、硫、磷中的至少一种共掺杂元素,所述的掺杂元素和共掺杂元素的总原子数含量不超过40%。
2.一种制备根据权利要求1所述的低气氛敏感性掺杂非晶碳基薄膜的方法,其特征在于该方法的具体步骤为:在利用现有的沉积法进行非晶碳基薄膜制备的同时,采用掺杂元素的纯金属、合金或有机络合物,通过物理气相法进行掺杂薄膜的制备。
3.根据权利要求2所述的方法,其特征在于所述的物理气相法为:溅射法、加热蒸发法或激光蒸发法。
4.根据权利要求3所述的方法,其特征在于所述的溅射法时溅射气体的分压不超过3Pa,加在基体上的负偏压范围为0-200V。
5.根据权利要求3所述的方法,其特征在于采用所述的加热蒸发或激光蒸发法进行掺杂时,负偏压范围为0-350V。
6.根据权利要求2所述的方法,其特征在于所述的导入掺杂元素的有机络合物进行掺杂时,掺杂元素有机络合物的分压为0.01-10Pa。
7.一种制备根据权利要求2所述的低气氛敏感性掺杂非晶碳基薄膜的方法,其特征在于在利用现有的沉积法进行非晶碳基薄膜制备的同时,采用掺杂元素的纯金属、合金或有机络合物,通过物理气相法进行掺杂薄膜的制备,同时导入氮气、氧气、有机化合物或络合物中的一种或两种及以上的共掺杂反应性气体,以增加掺杂元素在基体表面的反应性和稳定性,共掺杂反应性气体的分压为0.01-10Pa。
CN201410749907.8A 2014-12-10 2014-12-10 低气氛敏感性掺杂非晶碳基薄膜及其制备方法 Active CN104498874B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410749907.8A CN104498874B (zh) 2014-12-10 2014-12-10 低气氛敏感性掺杂非晶碳基薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410749907.8A CN104498874B (zh) 2014-12-10 2014-12-10 低气氛敏感性掺杂非晶碳基薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN104498874A CN104498874A (zh) 2015-04-08
CN104498874B true CN104498874B (zh) 2017-12-05

Family

ID=52940324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410749907.8A Active CN104498874B (zh) 2014-12-10 2014-12-10 低气氛敏感性掺杂非晶碳基薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN104498874B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107604336A (zh) * 2017-09-11 2018-01-19 云南大学 Si基Ge掺杂石墨烯复合材料的制备方法
CN107881466B (zh) * 2017-11-03 2020-10-20 南京工业大学 一种银掺杂类石墨碳涂层及其制备方法
CN112481591B (zh) * 2020-11-11 2023-03-24 中国科学院宁波材料技术与工程研究所 自适应耐高低温循环低摩擦功能防护涂层及其制法与应用
CN112663011B (zh) * 2021-03-16 2021-06-04 中南大学湘雅医院 一种双金属掺杂dlc抗菌薄膜及其制备方法
CN113078043A (zh) * 2021-03-24 2021-07-06 长鑫存储技术有限公司 非晶碳膜的形成方法及半导体结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5559367A (en) * 1994-07-12 1996-09-24 International Business Machines Corporation Diamond-like carbon for use in VLSI and ULSI interconnect systems
CN101748381A (zh) * 2009-12-31 2010-06-23 中国地质大学(北京) 一种高性能掺杂类金刚石膜的制备方法

Also Published As

Publication number Publication date
CN104498874A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
CN104498874B (zh) 低气氛敏感性掺杂非晶碳基薄膜及其制备方法
Kim et al. Transparent indium zinc oxide top cathode prepared by plasma damage-free sputtering for top-emitting organic light-emitting diodes
Guo et al. Tribological properties of Ti‐doped diamond‐like carbon coatings under dry friction and PAO oil lubrication
US9229478B2 (en) Housing and electronic device using the same
CN104294230B (zh) 高硬度、低应力的多元复合类金刚石涂层及其制备方法
Hsu et al. Improved characteristics of organic light-emitting devicesby surface modification of nickel-doped indium tin oxide anode
Núñez-Cascajero et al. Study of high In-content AlInN deposition on p-Si (111) by RF-sputtering
CN102650043A (zh) 一种纳米复合润滑薄膜的制备方法
Zhu et al. Self‐healing of TiSiN/Ag coatings induced by Ag
Kuo et al. The influences of thickness on the optical and electrical properties of dual-ion-beam sputtering-deposited molybdenum-doped zinc oxide layer
Haque et al. Tunable n-type conductivity and transport properties of cubic boron nitride via carbon doping
Wang et al. Electrochemical corrosion behaviors of aC: H and aC: NX: H films
US20100224912A1 (en) Chromium doped diamond-like carbon
Kwon et al. Synergistic gas diffusion multilayer architecture based on the nanolaminate and inorganic-organic hybrid organic layer
Kim et al. Characteristics of indium zinc oxide top cathode layers grown by box cathode sputtering for top-emitting organic light-emitting diodes
Jao et al. Formation and characterization of DLC: Cr: Cu multi-layers coating using cathodic arc evaporation
Iijima et al. Fabrication of nitrogen-containing diamond-like carbon film by filtered arc deposition as conductive hard-coating film
Xu et al. Isothermal superplastic boronizing of high carbon and low alloy steels
Li et al. Characterization of boron doped diamond-like carbon film by HRTEM
CN104928639B (zh) 一种超强韧碳基表面防护涂层及其制备方法
Zhang et al. Structure and tribological properties of CrTiAlCN coatings with various carbon contents
Chauhan et al. Molybdenum and its oxide-based coatings: a review
TWI659435B (zh) 透明導電性層合體、透明導電性層合體之製造方法、及使用透明導電性層合體而成之電子裝置
CN108193178B (zh) 一种晶态wc硬质合金薄膜及其缓冲层技术室温生长方法
CN104233280A (zh) 一种硼碳氮化钛(Ti(B,C,N))陶瓷薄膜在基体表面的镀覆方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant