CN104483668A - 一种高精度雷达信号检测和跟踪系统及其方法 - Google Patents

一种高精度雷达信号检测和跟踪系统及其方法 Download PDF

Info

Publication number
CN104483668A
CN104483668A CN201410840637.1A CN201410840637A CN104483668A CN 104483668 A CN104483668 A CN 104483668A CN 201410840637 A CN201410840637 A CN 201410840637A CN 104483668 A CN104483668 A CN 104483668A
Authority
CN
China
Prior art keywords
pulse
toa
signal
module
tracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410840637.1A
Other languages
English (en)
Inventor
张敏
胡元奎
恽建波
吴建飞
余海龙
王明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 38 Research Institute
Original Assignee
CETC 38 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 38 Research Institute filed Critical CETC 38 Research Institute
Priority to CN201410840637.1A priority Critical patent/CN104483668A/zh
Publication of CN104483668A publication Critical patent/CN104483668A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种高精度雷达信号检测和跟踪系统及其方法。该系统包括:预处理模块,用于对截获雷达信号进行滑窗自相关预处理,提高雷达信号的信噪比;参数测量模块,用于对预处理后的雷达信号进行参数测量,获得脉冲到达时间TOA和脉冲重复间隔PRI;重频跟踪模块,用于结合脉冲到达时间TOA和脉冲重复间隔PRI进行雷达信号重频跟踪。本发明在高精度PRI测量基础上进行雷达信号重频跟踪,提高了对雷达信号重频跟踪的稳定性和精确性,满足了对成像雷达精确干扰对重频跟踪的精度要求。本发明还公开该系统的高精度雷达信号检测和跟踪方法。

Description

一种高精度雷达信号检测和跟踪系统及其方法
技术领域
本发明涉及电子对抗领域的雷达信号重频跟踪方法,具体涉及一种基于滑窗预处理的高精度雷达信号检测和跟踪系统及其方法。
背景技术
合成孔径雷达(SAR)能全天候、全天时、实时获取大地域的高分辨率地面图像,低波段SAR还具有一定的植被和地面穿透能力,对资源勘察和军事侦察有重大意义,已广泛应用于民用和军事领域。随着SAR系统技术不断向多波段、多极化、高分辨率方向发展,SAR系统的功能、性能日益增强,对我国军事设施的侦察手段日益完善,对我重要战略目标的位置、特征、部署状态、战场目标态势等造成很大威胁,给我军事设施伪装防御能力带来了新的挑战。因此,发展具备假目标物理模型和假目标电磁回波功能的新一代电子伪装系统势在必行。高精度雷达信号检测和跟踪方法是新一代电子伪装里模拟合成孔径雷达目标回波系统的关键技术之一,决定了新一代电子伪装电磁信号在SAR接收机端对齐性和积累成像逼真性,即电子伪装效果。
目前,雷达信号检测常用的方法为实时高精度脉冲参数测量方法。该方法的脉冲到达时间TOA测量误差方差为:
σ TOA 2 = t rv 2 2 ( S N ) VF + T s 2 12 + [ PW 2 T s ] δ F 2 T s 2
其中Ts为采样间隔,PW为脉冲实际宽度,δF为A/D的频率稳定度,trv为脉冲上升沿时间,(S/N)VF为视频脉冲信号信噪比,[·]为取整运算。由于远小于所以TOA测量误差方差近视为:
σ TOA 2 = t rv 2 2 ( S N ) VF + T s 2 12
系统采样率1GHz,雷达信号脉冲上升沿为0.1us,信噪比为20dB的雷达信号TOA测量方差为7.07ns,95.2%的测量误差分布范围为28.28ns。由于脉冲重复周期PRI(i)=TOA(i+1)-TOA(i),因此PRI测量的方差即95.2%的PRI测量精度为40ns。像素点在合成孔径雷达成像处理后在距离向上12m范围内分布,难以满足逼真的图像示假要求。
发明内容
为了突破合成孔径雷达图像示假的关键技术,本发明提出一种高精度雷达信号检测和跟踪系统及其方法。该系统及其方法在高精度脉冲参数测量方法基数上,引入信号实时滑窗自相关预处理,通过滑窗预处理提高检测信号的信噪比,从而进一步提高雷达信号PRI检测精度,实现对雷达信号的高精度检测和重频跟踪。
本发明采用以下技术方案实现:一种高精度雷达信号检测和跟踪系统,其包括:
预处理模块,其用于对截获雷达信号进行滑窗自相关预处理,提高雷达信号的信噪比;
参数测量模块,其用于对预处理后的雷达信号进行参数测量,获得脉冲到达时间TOA和脉冲重复间隔PRI;
重频跟踪模块,其用于结合脉冲到达时间TOA和脉冲重复间隔PRI进行雷达信号重频跟踪。
作为上述方案的进一步改进,该预处理模块包括:
自相关函数求取模块,其用于设定滑窗宽度W,求滑窗内的自相关函数Cxx(n);
当前输出模块,其用于取自相关结果作为当前输出Sxx(n)=Cxx(n);
实时流水处理模块,其用于根据当前输出将滑窗向后滑动,依次重复启动自相关函数求取模块和当前输出模块对截获雷达信号进行实时流水处理。
作为上述方案的进一步改进,该参数测量模块包括:
一阶差分处理模块,其用于对信号进行滑窗N点均值处理,对相邻滑窗均值处理结果进行一阶差分处理,获得信号的一阶差分输出,根据一阶差分输出结果判定和存储脉冲上升沿点、脉冲下降沿点和脉冲幅值点;
自适应门限处理模块,其用于同时计算滑窗内的信号方差,取方差的4倍值作为当前滑窗的自适应门限VT,在判定到脉冲上升沿和下降沿时分别存储上升沿和下降沿所对应的自适应门限;
粗测值获得模块,其用于分别采用存储的上升沿自适应门限和下降沿自适应门限作为上升沿和下降沿检测门限,结合上升沿信号点集和下降沿信号点集分别获得TOA粗测值和TOE粗测值;即在检测门限相邻的两个采样点取大值作为TOA粗测值和TOE粗测值;
脉冲幅值估计模块,其用于采用总和法结合幅值信号点集估计脉冲幅值PAc,如下式所示:其中Sk为输入脉冲顶部的第k个信号值;
参测值获得模块,其用于采用PAc/2作为测量门限V-6dB,获得最终TOA和TOE,如公式所示:
PW=TOE-TOA;
其中a、b为检测门限相邻的两个采样点,a点值大于检测门限,b点值小于检测门限;N为粗测点与b点值相隔的采样点数;Ts为采样周期;
脉冲重复间隔获得模块,其用于根据参测的TOA集获得PRI值,即PRI(i)=TOA(i+1)-TOA(i)。
作为上述方案的进一步改进,该重频跟踪模块包括:
脉冲采样波门获得模块,其用于结合当前最新的TOA和测量结果PRI值,作为下一个脉冲到达时间的预测值;在预测值处加减Δ作为下一脉冲采样波门;
检测模块,其用于在采样波门内检测到脉冲上升沿则记录一次成功,并以新的TOA作为脉冲基准,结合PRI预置下一个脉冲到达时间窗口;否则记录失败,重复启动脉冲采样波门获得模块以获得新的PRI值和新的TOA值;
跟踪模块,其用于当成功捕捉脉冲4次时,重频跟踪成功,对该雷达信号产生跟踪波门;即结合TOA、n*PRI和PW±Δ作为后面n各脉冲的采样波门;
消失判定模块,其用于判定跟踪波门内雷达信号是否消失,如果消失则重新进行雷达信号检测和重频跟踪,即重复启动检测模块、跟踪模块;否则按产生跟踪波门进行雷达信号采样。
本发明还提供一种高精度雷达信号检测和跟踪方法,其包括以下步骤:
步骤一、对截获雷达信号进行滑窗自相关预处理,提高雷达信号的信噪比;
步骤二、对预处理后的雷达信号进行参数测量,获得脉冲到达时间(TOA)和脉冲重复间隔(PRI);
步骤三、结合TOA和PRI进行雷达信号重频跟踪。
作为上述方案的进一步改进,步骤一中对雷达信号的滑窗自相关预处理的具体方法为:
步骤a、设定滑窗宽度W,求滑窗内的自相关函数Cxx(n);
步骤b、取自相关结果作为当前输出Sxx(n)=Cxx(n);
步骤c、完成步骤a、步骤b后将滑窗向后滑动,重复步骤a、步骤b对信号进行实时流水处理。
作为上述方案的进一步改进,步骤二中对预处理后的雷达信号进行参数测量的具体方法为:
步骤A、对信号进行滑窗N点均值处理,对相邻滑窗均值处理结果进行一阶差分处理,获得信号的一阶差分输出,根据一阶差分输出结果判定和存储脉冲上升沿点、脉冲下降沿点和脉冲幅值点;
步骤B、同时计算滑窗内的信号方差,取方差的4倍值作为当前滑窗的自适应门限VT,在判定到脉冲上升沿和下降沿时分别存储上升沿和下降沿所对应的自适应门限;
步骤C、分别采用存储的上升沿自适应门限和下降沿自适应门限作为上升沿和下降沿检测门限,结合上升沿信号点集和下降沿信号点集分别获得TOA粗测值和TOE粗测值;即在检测门限相邻的两个采样点取大值作为TOA粗测值和TOE粗测值;
步骤D、采用总和法结合幅值信号点集估计脉冲幅值PAc,如下式所示:
P A c = 1 M Σ k = 1 M S k
其中Sk为输入脉冲顶部的第k个信号值;
步骤E、采用PAc/2作为测量门限V-6dB,获得最终TOA和TOE,如公式所示:
PW=TOE-TOA
其中a、b为检测门限相邻的两个采样点,a点值大于检测门限,b点值小于检测门限;N为粗测点与b点值相隔的采样点数;Ts为采样周期;
步骤F、根据参测的TOA集获得PRI值,即
PRI(i)=TOA(i+1)-TOA(i)
作为上述方案的进一步改进,步骤三中对预处理后的信号进行重频跟踪的具体方法为:
步骤(1)、结合当前最新的TOA和测量结果PRI值,作为下一个脉冲到达时间的预测值;在预测值处加减Δ作为下一脉冲采样波门;
步骤(2)、在采样波门内检测到脉冲上升沿则记录一次成功,并以新的TOA作为脉冲基准,结合PRI预置下一个脉冲到达时间窗口;否则记录失败,重复步骤二获得新的PRI值和新的TOA值,并重复步骤三进行重频跟踪;
步骤(3)、当成功捕捉脉冲4次时,重频跟踪成功,对该雷达信号产生跟踪波门;即结合TOA、n*PRI和PW±Δ作为后面n各脉冲的采样波门;
步骤(4)、判定跟踪波门内雷达信号是否消失,如果消失则重新进行雷达信号检测和重频跟踪,即重复步骤二、步骤三;否则按产生跟踪波门进行雷达信号采样。
本发明与现有技术相比具有如下优点:
1)本发明所提出的高精度雷达信号检测和重频跟踪方法大幅度提高了雷达信号PRI检测精度;
2)本发明所提出的高精度雷达信号检测和重频跟踪方法大幅度提高了雷达信号重频跟踪的效率;
3)本发明所提出的高精度雷达信号检测和重频跟踪方法在性能提高的同时仍保存信号的实时处理能力。
附图说明
图1为本发明高精度雷达信号检测和跟踪方法流程图;
图2为信号滑窗预处理流程图;
图3为高精度脉冲参数测量流程图;
图4为信号重频跟踪流程图;
图5为采用matlab软件生成信噪比20dB,上升沿0.2us,脉宽12us,重复周期24us的信号;
图6为采用matlab软件仿真高精度脉冲参数测量方法的测量精度和重频跟踪效果分析;
图7为本发明方法预处理后的仿真信号;
图8为采用本发明方法对同样仿真信号的测量精度和重频跟踪效果分析;
图9为本发明方法与已有高精度脉冲参数测量方法对仿真信号的PRI测量方差比较图;
图10为本发明方法与已有高精度脉冲参数测量方法对仿真信号的PRI测量精度比较图;
图11为本发明方法与已有高精度脉冲参数测量方法对仿真信号的重频跟踪效果比较图。
图12外场天线主瓣信号、外场天线副瓣信号和外场天线背瓣信号采用本发明方法预处理效果图。
图13本发明方法与已有高精度脉冲参数测量方法对外场信号的PRI测量精度比较图;
图14本发明方法与已有高精度脉冲参数测量方法对外场信号的重频跟踪效率比较图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的高精度雷达信号检测和跟踪系统包括预处理模块、参数测量模块、重频跟踪模块。
该预处理模块用于对截获雷达信号进行滑窗自相关预处理,提高雷达信号的信噪比。该预处理模块包括自相关函数求取模块、当前输出模块、实时流水处理模块。该自相关函数求取模块用于设定滑窗宽度W,求滑窗内的自相关函数Cxx(n);该当前输出模块用于取自相关结果作为当前输出Sxx(n)=Cxx(n);该实时流水处理模块用于根据当前输出将滑窗向后滑动,依次重复启动自相关函数求取模块和当前输出模块对截获雷达信号进行实时流水处理。
该参数测量模块用于对预处理后的雷达信号进行参数测量,获得脉冲到达时间TOA和脉冲重复间隔PRI。该参数测量模块包括一阶差分处理模块、自适应门限处理模块、粗测值获得模块、脉冲幅值估计模块、参测值获得模块、脉冲重复间隔获得模块。
该一阶差分处理模块用于对信号进行滑窗N点均值处理,对相邻滑窗均值处理结果进行一阶差分处理,获得信号的一阶差分输出,根据一阶差分输出结果判定和存储脉冲上升沿点、脉冲下降沿点和脉冲幅值点。
该自适应门限处理模块用于同时计算滑窗内的信号方差,取方差的4倍值作为当前滑窗的自适应门限VT,在判定到脉冲上升沿和下降沿时分别存储上升沿和下降沿所对应的自适应门限。
该粗测值获得模块用于分别采用存储的上升沿自适应门限和下降沿自适应门限作为上升沿和下降沿检测门限,结合上升沿信号点集和下降沿信号点集分别获得TOA粗测值和TOE粗测值;即在检测门限相邻的两个采样点取大值作为TOA粗测值和TOE粗测值。
该脉冲幅值估计模块用于采用总和法结合幅值信号点集估计脉冲幅值PAc,如下式所示:其中Sk为输入脉冲顶部的第k个信号值。
该参测值获得模块用于采用PAc/2作为测量门限V-6dB,获得最终TOA和TOE,如公式所示:
PW=TOE-TOA;
其中a、b为检测门限相邻的两个采样点,a点值大于检测门限,b点值小于检测门限;N为粗测点与b点值相隔的采样点数;Ts为采样周期。
该脉冲重复间隔获得模块用于根据参测的TOA集获得PRI值,即PRI(i)=TOA(i+1)-TOA(i)。
该重频跟踪模块用于结合脉冲到达时间TOA和脉冲重复间隔PRI进行雷达信号重频跟踪。该重频跟踪模块包括脉冲采样波门获得模块、检测模块、跟踪模块、消失判定模块。
该脉冲采样波门获得模块用于结合当前最新的TOA和测量结果PRI值,作为下一个脉冲到达时间的预测值;在预测值处加减Δ作为下一脉冲采样波门。
该检测模块用于在采样波门内检测到脉冲上升沿则记录一次成功,并以新的TOA作为脉冲基准,结合PRI预置下一个脉冲到达时间窗口;否则记录失败,重复启动脉冲采样波门获得模块以获得新的PRI值和新的TOA值。
该跟踪模块用于当成功捕捉脉冲4次时,重频跟踪成功,对该雷达信号产生跟踪波门;即结合TOA、n*PRI和PW±Δ作为后面n各脉冲的采样波门。
该消失判定模块用于判定跟踪波门内雷达信号是否消失,如果消失则重新进行雷达信号检测和重频跟踪,即重复启动检测模块、跟踪模块;否则按产生跟踪波门进行雷达信号采样。
该高精度雷达信号检测和跟踪系统在实施时,其对应的高精度雷达信号检测和跟踪方法如下介绍。
具体实施方式一、结合图1说明本实施方式,该高精度雷达信号检测和跟踪方法,其具体方法为:
步骤一、对截获雷达信号进行滑窗自相关预处理,提高雷达信号的信噪比;
步骤二、对预处理后的雷达信号进行参数测量,获得高精度TOA和PRI;
步骤三、结合高精度PRI和TOA进行雷达信号重频跟踪。
具体实施方式二、结合图2说明本实施方式,本实施方式与具体实施方式一的区别在于,步骤一中脉冲信号滑窗自相关预处理的具体方法为:
步骤a、设定滑窗宽度W,求窗内的自相关函数Cxx(n);
步骤b、取自相关结果作为当前输出Sxx(n)=Cxx(n)
步骤c、完成步骤a、步骤b后将窗向后滑动,重复步骤a、步骤b对信号进行实时流水处理。
具体实施方式三、结合图3说明本实施方式,本实施方式与具体实施方式一的区别在于,步骤二中对预处理后的雷达信号进行参数测量的具体方法为:
步骤A、对采样信号进行滑窗N点均值处理,对相邻滑窗均值处理结果进行一阶差分处理,获得信号的一阶差分输出,根据一阶差分输出结果判定和存储脉冲上升沿点、下降沿点和脉冲幅值点;
步骤B、同时计算滑窗内的信号方差,取方差的4倍值作为当前滑窗的自适应门限VT,在检测到脉冲上升沿和下降沿时分别存储上升沿和下降沿所对应的自适应门限;
步骤C、分别采用存储的上升沿自适应门限和下降沿自适应门限作为上升沿和下降沿检测门限,结合上升沿信号点集和下降沿信号点集分别获得TOA粗测值和TOE粗测值,即在检测门限相邻的两个采样点取大值作为TOA粗测值和TOE粗测值;
步骤D、采用总和法结合幅值信号点集粗略估计脉冲幅值PAc,如下式所示:
P A c = 1 M Σ k = 1 M S k
其中Sk为输入脉冲顶部的第k个信号值;
步骤E、采用PAc/2作为测量门限V-6dB,获得精确TOA和TOE,具体如公式所示:
PW=TOE-TOA
其中a、b为检测门限相邻的两个采样点,a点值大于检测门限,b点值小于检测门限;N为粗测点与b点值相隔的采样点数;Ts为采样周期。
步骤F、根据参测的TOA集获得PRI值,即
PRI(i)=TOA(i+1)-TOA(i)
具体实施方式四、结合图4、图5、图6、图7、及图8说明本实施方式,本实施方式与具体实施方式一的区别在于,步骤三中所述对预处理后的信号进行重频跟踪方法为:
步骤(1)、结合当前最新的TOA和测量结果PRI值,作为下一个脉冲到达时间的预测值;在预测值处加减Δ作为下一脉冲采样波门;
步骤(2)、在采样波门内检测到脉冲上升沿则记录一次成功,并以新的TOA作为脉冲基准,结合PRI预置下一个脉冲到达时间窗口;否则记录失败,重复步骤二获得新的PRI值和新的TOA值,并重复步骤三进行重频跟踪;
步骤(3)、当成功捕捉脉冲4次时,重频跟踪成功,对该雷达信号产生跟踪波门,即结合TOA、n*PRI和PW±Δ作为后面n个脉冲的采样波门;
步骤(4)、判定跟踪波门内雷达信号是否消失,如果消失则重新进行雷达信号检测和重频跟踪,即重复步骤二、步骤三;否则按产生跟踪波门进行雷达信号采样。
本发明采用了基于滑窗自相关预处理的高精度雷达信号测量算法获得高精度脉冲到达时间TOA、脉冲重复间隔PRI测量结果,在PRI测量结果的基础上结合当前脉冲TOA,推算出下一个脉冲到达时间预测值,并在预测值加减Δ作为时间窗口,在这一时间窗口内有实际脉冲到达,则记录一次成功,对于一次成功的捕捉,又以此实际脉冲到达时间作为新的基准,预置下一个脉冲到达的时间窗口,如此循环直到连续四次捕捉成功,可以对该脉冲列产生跟踪波门。
本发明的有益效果为:
选取仿真信号和外场采集信号作为实验样本,将本发明方法与高精度脉冲参数测量方法进行对比,验证本发明方法的有效性和优越性,结果如图9、图10、图11、图12、图13和图14所示,本发明提出的方法获得更高的PRI检测精度和重频跟踪效率。
通过上述的比较,可以验证本发明所提出的方法具有很好的优越性:更有效地提高雷达信号的PRI检测精度,更有效地提高雷达信号重频跟踪效率。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (8)

1.一种高精度雷达信号检测和跟踪系统,其特征在于:其包括:
预处理模块,其用于对截获雷达信号进行滑窗自相关预处理,提高雷达信号的信噪比;
参数测量模块,其用于对预处理后的雷达信号进行参数测量,获得脉冲到达时间TOA和脉冲重复间隔PRI;
重频跟踪模块,其用于结合脉冲到达时间TOA和脉冲重复间隔PRI进行雷达信号重频跟踪。
2.根据权利要求1所述的高精度雷达信号检测和跟踪系统,其特征在于:该预处理模块包括:
自相关函数求取模块,其用于设定滑窗宽度W,求滑窗内的自相关函数Cxx(n);
当前输出模块,其用于取自相关结果作为当前输出Sxx(n)=Cxx(n);
实时流水处理模块,其用于根据当前输出将滑窗向后滑动,依次重复启动自相关函数求取模块和当前输出模块对截获雷达信号进行实时流水处理。
3.根据权利要求1所述的高精度雷达信号检测和跟踪系统,其特征在于:该参数测量模块包括:
一阶差分处理模块,其用于对信号进行滑窗N点均值处理,对相邻滑窗均值处理结果进行一阶差分处理,获得信号的一阶差分输出,根据一阶差分输出结果判定和存储脉冲上升沿点、脉冲下降沿点和脉冲幅值点;
自适应门限处理模块,其用于同时计算滑窗内的信号方差,取方差的4倍值作为当前滑窗的自适应门限VT,在判定到脉冲上升沿和下降沿时分别存储上升沿和下降沿所对应的自适应门限;
粗测值获得模块,其用于分别采用存储的上升沿自适应门限和下降沿自适应门限作为上升沿和下降沿检测门限,结合上升沿信号点集和下降沿信号点集 分别获得TOA粗测值和TOE粗测值;即在检测门限相邻的两个采样点取大值作为TOA粗测值和TOE粗测值;
脉冲幅值估计模块,其用于采用总和法结合幅值信号点集估计脉冲幅值PAc,如下式所示:其中Sk为输入脉冲顶部的第k个信号值;
参测值获得模块,其用于采用PAc/2作为测量门限V-6dB,获得最终TOA和TOE,如公式所示:
PW=TOE-TOA;
其中a、b为检测门限相邻的两个采样点,a点值大于检测门限,b点值小于检测门限;N为粗测点与b点值相隔的采样点数;Ts为采样周期;
脉冲重复间隔获得模块,其用于根据参测的TOA集获得PRI值,即PRI(i)=TOA(i+1)-TOA(i)。
4.根据权利要求1所述的高精度雷达信号检测和跟踪系统,其特征在于:该重频跟踪模块包括:
脉冲采样波门获得模块,其用于结合当前最新的TOA和测量结果PRI值,作为下一个脉冲到达时间的预测值;在预测值处加减Δ作为下一脉冲采样波门;
检测模块,其用于在采样波门内检测到脉冲上升沿则记录一次成功,并以新的TOA作为脉冲基准,结合PRI预置下一个脉冲到达时间窗口;否则记录失败,重复启动脉冲采样波门获得模块以获得新的PRI值和新的TOA值;
跟踪模块,其用于当成功捕捉脉冲4次时,重频跟踪成功,对该雷达信号产生跟踪波门;即结合TOA、n*PRI和PW±Δ作为后面n各脉冲的采样波门;
消失判定模块,其用于判定跟踪波门内雷达信号是否消失,如果消失则重新进行雷达信号检测和重频跟踪,即重复启动检测模块、跟踪模块;否则按产 生跟踪波门进行雷达信号采样。
5.一种高精度雷达信号检测和跟踪方法,其特征在于:其包括以下步骤:
步骤一、对截获雷达信号进行滑窗自相关预处理,提高雷达信号的信噪比;
步骤二、对预处理后的雷达信号进行参数测量,获得脉冲到达时间(TOA)和脉冲重复间隔(PRI);
步骤三、结合TOA和PRI进行雷达信号重频跟踪。
6.根据权利要求5所述的高精度雷达信号检测和跟踪方法,其特征在于:步骤一中对雷达信号的滑窗自相关预处理的具体方法为:
步骤a、设定滑窗宽度W,求滑窗内的自相关函数Cxx(n);
步骤b、取自相关结果作为当前输出Sxx(n)=Cxx(n);
步骤c、完成步骤a、步骤b后将滑窗向后滑动,重复步骤a、步骤b对信号进行实时流水处理。
7.根据权利要求5所述的高精度雷达信号检测和跟踪方法,其特征在于:步骤二中对预处理后的雷达信号进行参数测量的具体方法为:
步骤A、对信号进行滑窗N点均值处理,对相邻滑窗均值处理结果进行一阶差分处理,获得信号的一阶差分输出,根据一阶差分输出结果判定和存储脉冲上升沿点、脉冲下降沿点和脉冲幅值点;
步骤B、同时计算滑窗内的信号方差,取方差的4倍值作为当前滑窗的自适应门限VT,在判定到脉冲上升沿和下降沿时分别存储上升沿和下降沿所对应的自适应门限;
步骤C、分别采用存储的上升沿自适应门限和下降沿自适应门限作为上升沿和下降沿检测门限,结合上升沿信号点集和下降沿信号点集分别获得TOA粗测值和TOE粗测值;即在检测门限相邻的两个采样点取大值作为TOA粗测值和TOE粗测值;
步骤D、采用总和法结合幅值信号点集估计脉冲幅值PAc,如下式所示:
其中Sk为输入脉冲顶部的第k个信号值;
步骤E、采用PAc/2作为测量门限V-6dB,获得最终TOA和TOE,如公式所示:
PW=TOE-TOA
其中a、b为检测门限相邻的两个采样点,a点值大于检测门限,b点值小于检测门限;N为粗测点与b点值相隔的采样点数;Ts为采样周期;
步骤F、根据参测的TOA集获得PRI值,即
PRI(i)=TOA(i+1)-TOA(i) 。
8.根据权利要求5所述的高精度雷达信号检测和跟踪方法,其特征在于:步骤三中对预处理后的信号进行重频跟踪的具体方法为:
步骤(1)、结合当前最新的TOA和测量结果PRI值,作为下一个脉冲到达时间的预测值;在预测值处加减Δ作为下一脉冲采样波门;
步骤(2)、在采样波门内检测到脉冲上升沿则记录一次成功,并以新的TOA作为脉冲基准,结合PRI预置下一个脉冲到达时间窗口;否则记录失败,重复步骤二获得新的PRI值和新的TOA值,并重复步骤三进行重频跟踪;
步骤(3)、当成功捕捉脉冲4次时,重频跟踪成功,对该雷达信号产生跟踪波门;即结合TOA、n*PRI和PW±Δ作为后面n各脉冲的采样波门;
步骤(4)、判定跟踪波门内雷达信号是否消失,如果消失则重新进行雷达信号检测和重频跟踪,即重复步骤二、步骤三;否则按产生跟踪波门进行雷达信号采样。
CN201410840637.1A 2014-12-29 2014-12-29 一种高精度雷达信号检测和跟踪系统及其方法 Pending CN104483668A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410840637.1A CN104483668A (zh) 2014-12-29 2014-12-29 一种高精度雷达信号检测和跟踪系统及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410840637.1A CN104483668A (zh) 2014-12-29 2014-12-29 一种高精度雷达信号检测和跟踪系统及其方法

Publications (1)

Publication Number Publication Date
CN104483668A true CN104483668A (zh) 2015-04-01

Family

ID=52758233

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410840637.1A Pending CN104483668A (zh) 2014-12-29 2014-12-29 一种高精度雷达信号检测和跟踪系统及其方法

Country Status (1)

Country Link
CN (1) CN104483668A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680782A (zh) * 2016-12-29 2017-05-17 中国人民解放军63889部队 基于脉冲时延匹配的雷达重频分选方法
CN111708020A (zh) * 2020-07-14 2020-09-25 南京理工大学 基于反辐射导引头的雷达信号分选跟踪方法及系统
CN112014810A (zh) * 2020-08-07 2020-12-01 西安电子科技大学 基于fpga的电子侦察信号参数高精度测量方法
CN112748410A (zh) * 2020-12-21 2021-05-04 中国航天科工集团八五一一研究所 一种基于fpga重频跟踪器的干扰时序产生方法
CN113721219A (zh) * 2021-10-08 2021-11-30 中国电子科技集团公司第三十八研究所 一种基于多参数聚类的雷达信号分选方法和系统
CN113791303A (zh) * 2021-08-19 2021-12-14 云南电网有限责任公司大理供电局 一种三芯电缆外护套故障定位方法及装置
CN114594431A (zh) * 2022-05-09 2022-06-07 南京宇安防务科技有限公司 一种基于重频跟踪器的多目标干扰实现方法
CN115201769A (zh) * 2022-08-26 2022-10-18 北京中星天视科技有限公司 雷达信号脉冲重复间隔生成方法、装置、设备和介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120293363A1 (en) * 2011-05-20 2012-11-22 Kyu-Ha Song Method and device for recognizing pri modulation type of radar signal
CN104198999A (zh) * 2014-08-07 2014-12-10 北京理工大学 一种基于同构序列的脉冲分选方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120293363A1 (en) * 2011-05-20 2012-11-22 Kyu-Ha Song Method and device for recognizing pri modulation type of radar signal
CN104198999A (zh) * 2014-08-07 2014-12-10 北京理工大学 一种基于同构序列的脉冲分选方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
孙仲康,等: "《单站无源定位跟踪技术》", 30 November 2008, 国防工业出版社 *
孙超,王世练,朱江: "基于自相关算法的TOA估计方法研究", 《微处理机》 *
李吉民: "基于改进重频跟踪器的雷达信号分选方法研究", 《科学技术与工程》 *
赵长虹: "重频分选与跟踪算法的研究", 《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680782B (zh) * 2016-12-29 2019-04-05 中国人民解放军63889部队 基于脉冲时延匹配的雷达重频分选方法
CN106680782A (zh) * 2016-12-29 2017-05-17 中国人民解放军63889部队 基于脉冲时延匹配的雷达重频分选方法
CN111708020B (zh) * 2020-07-14 2023-08-04 南京理工大学 基于反辐射导引头的雷达信号分选跟踪方法及系统
CN111708020A (zh) * 2020-07-14 2020-09-25 南京理工大学 基于反辐射导引头的雷达信号分选跟踪方法及系统
CN112014810A (zh) * 2020-08-07 2020-12-01 西安电子科技大学 基于fpga的电子侦察信号参数高精度测量方法
CN112014810B (zh) * 2020-08-07 2024-04-05 西安电子科技大学 基于fpga的电子侦察信号参数高精度测量方法
CN112748410A (zh) * 2020-12-21 2021-05-04 中国航天科工集团八五一一研究所 一种基于fpga重频跟踪器的干扰时序产生方法
CN112748410B (zh) * 2020-12-21 2022-03-22 中国航天科工集团八五一一研究所 一种基于fpga重频跟踪器的干扰时序产生方法
CN113791303A (zh) * 2021-08-19 2021-12-14 云南电网有限责任公司大理供电局 一种三芯电缆外护套故障定位方法及装置
CN113721219B (zh) * 2021-10-08 2023-07-04 中国电子科技集团公司第三十八研究所 一种基于多参数聚类的雷达信号分选方法和系统
CN113721219A (zh) * 2021-10-08 2021-11-30 中国电子科技集团公司第三十八研究所 一种基于多参数聚类的雷达信号分选方法和系统
CN114594431B (zh) * 2022-05-09 2022-07-22 南京宇安防务科技有限公司 一种基于重频跟踪器的多目标干扰实现方法
CN114594431A (zh) * 2022-05-09 2022-06-07 南京宇安防务科技有限公司 一种基于重频跟踪器的多目标干扰实现方法
CN115201769A (zh) * 2022-08-26 2022-10-18 北京中星天视科技有限公司 雷达信号脉冲重复间隔生成方法、装置、设备和介质

Similar Documents

Publication Publication Date Title
CN104483668A (zh) 一种高精度雷达信号检测和跟踪系统及其方法
CN101509972B (zh) 基于高分辨目标距离像修正相关矩阵的宽带雷达检测方法
CN107843892B (zh) 一种基于最小二乘法的高速目标多普勒测速方法
CN106872969B (zh) 基于mtd脉冲积累及滑动处理的雷达目标角度估计方法
CN104237879B (zh) 一种雷达系统中的多目标跟踪方法
CN105785340B (zh) 单脉冲雷达对主瓣内目标和诱饵干扰的测角与识别方法
CN102628936B (zh) 一种基于信息互反馈的机动弱目标检测跟踪一体化方法
CN104898103B (zh) 基于多通道杂波图的低速目标检测方法
CN106125053A (zh) 脉冲多普勒雷达极化抗干扰方法
CN105158748A (zh) 一种高速目标多通道补偿聚焦与tbd混合积累检测方法
CN106772352A (zh) 一种基于Hough和粒子滤波的PD雷达扩展微弱目标检测方法
CN104730518A (zh) 一种基于高斯拟合的雷达多普勒谱估计海面流场的方法
CN104007421B (zh) 基于全变差和压缩感知的罗兰c被动雷达toa估计方法
CN105137396A (zh) 一种smsp干扰和c&i干扰的检测方法
CN107942324B (zh) 基于多普勒引导的多帧联合小目标双重检测方法
CN106772302A (zh) 一种复合高斯背景下的知识辅助stap检测方法
CN109655819A (zh) 一种基于实孔径多普勒波束锐化的杂波抑制三维成像方法
CN109782249B (zh) 一种两目标相关时延估计算法
CN103760540B (zh) 基于重构信号和1-范数的动目标检测与参数估计方法
CN104880698A (zh) 基于距离频域多项式相位变换的空间机动目标检测方法
CN106353743A (zh) 匹配于等效形状参数的近最优雷达目标检测方法
CN105954729A (zh) 雷达抗距离-速度联合欺骗干扰的自适应迭代滤波方法
CN106342239B (zh) 一种脉冲多普勒雷达目标检测方法
CN108508433A (zh) 基于模板匹配的无源探测系统快速时频同步方法
CN108983192B (zh) 基于gps辐射源的雷达运动目标参数估计方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150401

RJ01 Rejection of invention patent application after publication