CN104471437B - 能与不同的超声系统一起操作的二维超声换能器阵列 - Google Patents

能与不同的超声系统一起操作的二维超声换能器阵列 Download PDF

Info

Publication number
CN104471437B
CN104471437B CN201380034330.6A CN201380034330A CN104471437B CN 104471437 B CN104471437 B CN 104471437B CN 201380034330 A CN201380034330 A CN 201380034330A CN 104471437 B CN104471437 B CN 104471437B
Authority
CN
China
Prior art keywords
probe
matrix array
signal
ultrasonic
microbeamformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380034330.6A
Other languages
English (en)
Other versions
CN104471437A (zh
Inventor
B·J·萨沃德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN104471437A publication Critical patent/CN104471437A/zh
Application granted granted Critical
Publication of CN104471437B publication Critical patent/CN104471437B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8927Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array using simultaneously or sequentially two or more subarrays or subapertures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4438Means for identifying the diagnostic device, e.g. barcodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52079Constructional features
    • G01S7/5208Constructional features with integration of processing functions inside probe or scanhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Acoustics & Sound (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种矩阵阵列换能器探头具有换能器元件的二维阵列,所述换能器元件被耦合到能针对每个元件来调节的延迟。可控开关矩阵将多个经不同延迟的元件信号组合以形成片组信号并且以这种方式来产生多个片组信号。所述开关矩阵考虑完成波束形成的系统波束形成器的通道的数量来确定片组配置,并且考虑将要在每个片组中使用的元件的配置来设定元件延迟。可以以两个阶段来完成片组信号的形成,包括具有硬线连接的信号组合器的阶段。所述矩阵阵列探头可以与不同大小的系统波束形成器或者与针对具体的波束形成器配置而被配置的不同探头中使用的相同换能器堆叠一起操作。

Description

能与不同的超声系统一起操作的二维超声换能器阵列
技术领域
本发明涉及医学诊断超声系统,并且具体而言涉及能与不同的超声系统波束形成器操作的矩阵阵列换能器探头。
背景技术
超声阵列换能器可以被配置为换能器元件的单一的行、用于对二维(2D)图像平面进行成像的一维(1D)阵列、或者用于对三维区域进行成像的换能器元件的二维(2D)阵列。2D阵列包括沿方位角方向和高度方向两者延伸的元件,所述元件可以被完全独立地操作以沿任何方位角方向或高度方向聚焦和操纵波束。这些阵列可以被以平的或弯曲的取向来配置。本发明涉及2D阵列换能器,所述2D阵列换能器可以沿方位角和高度操纵并且聚焦以扫描2D图像平面和三维体积感兴趣区域两者。
具有大量的元件的二维阵列换能器并且甚至1D阵列由于它们的大量换能器元件而带来问题。由于这些元件中的每个必须是独立受控来发射和接收的,所以必须为每个元件提供单独的信号线。1D阵列可以包括具有100-200个元件的行,需要100-200条信号线,所述信号线可以被安置在相对较小且较轻的探头线缆中,但是可能需要与具有相对较少的通道的系统波束形成器一起操作。2D阵列可以在具有一个维度中的100-200行元件以及另一个维度中的100-200列元件,总计几千个独立的元件。对于手持并且必须由声谱仪操纵的探头,几千条信号线的线缆是不实际的。本发明的实现方法通过使用微型波束形成器集成电路克服了这些问题,所述微型波束形成器集成电路被附接到执行对被称为片组(patch)的元件组的部分波束形成的2D阵列。被独立地延迟并且加和的来自每个片组的元件的信号经过标准大小的线缆被传导到超声系统波束形成器,在所述超声系统波束形成器中来自每个片组的加和信号被应用到系统波束形成器的通道,所述系统波束形成器完成波束形成操作。比如在US专利5229933(Larson,III)、US专利5997479(Savord等)、US专利6013032(Savord)和US专利6126602(Savord等)中说明的,在探头中的微型波束形成器与系统波束形成器的通道之间对全部波束形成操作的划分使得能够在探头和超声系统之间使用具有相对较少数量的信号线的线缆。
超声探头大体上被设计有预定的配置,所述配置与对应的系统波束形成器配置一起操作。比如,64元件1D阵列探头将与64通道系统波束形成器一起操作,并且128元件阵列探头将与128通道系统波束形成器一起操作。期望有能够与不同的系统波束形成器一起操作的具有可变配置的探头。US专利7517317(Lazenby等)中示出了得到可变2D阵列探头的一种方法。在该专利中,2D阵列的元件能被分成元件的块,所述元件的块可以由开关选择性地连接在一起,以使得来自多个元件的信号被组合到单个输出上。较大数量的元件在针对较低数量的波束形成器通道的较小数量的输出上被连接在一起,并且较小数量的元件在针对较高数量的波束形成器通道的较大数量的输出上被连接在一起。阵列的间距受被连接在一起的元件的数量影响。当间距增大时,波束的旁瓣增大,进而增大杂波并且减小最终图像的清晰度和分辨率。波束可以被操纵和聚焦的程度也是受限制的。因此期望能够将2D矩阵阵列配置为与不同的系统波束形成器一起操作而不存在这些有害的影响。
发明内容
根据本发明的原理,一种超声矩阵阵列换能器探头与微型波束形成器一起操作,以处理来自换能器元件的可变片组(patch)的信号,所述换能器元件的可变片组对应系统波束形成器而变化,所述探头与所述系统波束形成器一起操作。来自每个元件的所述信号被选择性地延迟,其中,来自将被用在同一片组中的元件的信号被相对于所述片组的公共时间或相位基准而不同地延迟。经不同地延迟的信号被组合以产生微型波束形成的片组信号。以这种方式形成的片组信号的数量也被选择性地控制以与用来完成所述波束形成过程的所述系统波束形成器的通道的数量相对应。本发明的一种实现方式使得同样的矩阵阵列堆叠的微型波束形成器能够与不同的超声系统或与所述系统的性价比最大的探头线缆一起使用。
附图说明
在附图中:
图1以方框图的形式图示了本发明的2D弯曲阵列换能器和微型波束形成器探头。
图2是图示了部分波束加和(beamsum)微型波束形成器的概念的方框图。
图3图示了根据本发明的原理构造的微型波束形成器矩阵阵列探头和超声系统。
图4图示了根据本发明的原理的、用于将具有不同大小的2D阵列的微型波束形成的片组耦合到系统波束形成器通道的交叉点开关矩阵。
图5图示了具有用于与48导体线缆或48通道系统波束形成器一起使用的不同大小的片组2D矩阵阵列换能器。
图6图示了具有用于与12导体线缆或12通道系统波束形成器一起使用的不同大小的片组2D矩阵阵列换能器。
图7图示了具有用于与8导体线缆或8通道系统波束形成器一起使用的统一大小的片组2D矩阵阵列换能器。
图8图示了根据本发明的原理构造的微型波束形成器矩阵阵列探头和超声系统的第二范例,该第二范例针对预定数量的线缆导体或系统波束形成器通道而被硬线连接。
图9a图示了具有八个统一大小的片组的第一孔径的2D矩阵阵列换能器。
图9b图示了将图9a的孔径平移到阵列上的不同位置之后的图9a的2D矩阵阵列换能器。
具体实施方式
首先参考图1,以方框图的形式示出了根据本发明的原理构建的超声系统。探头10具有二维阵列换能器12,在该范例中,二维阵列换能器12在高度维度中是弯曲的,例如US专利7927280(Davidsen)所示。阵列的元件被耦合到被定位在探头中换能器阵列后面的微型波束形成器14。该微型波束形成器将计时发射脉冲施加到阵列的元件以沿期望的方向发射波束,并且将波束发射到阵列前面的三维图像场中的期望的焦点。来自发射出的波束的回波由阵列元件来接受并且被耦合到微型波束形成器14的延迟,其中,所述回波被分别地延迟。包括片组的一组换能器元件的被延迟信号被组合以形成片组的部分加和信号。如在本文中使用的,术语“片组”指一组换能器元件,所述一组换能器元件被一起操作并且使它们的信号相对于基准而分别地被延迟,并且所述信号接着由微型波束形成器组合以形成针对探头导体或超声系统波束形成器通道的一个信号。在典型的实现方式中,通过将来自片组的元件的被延迟信号耦合到公共总线来完成组合,消除了对于加法电路或其他复杂电路的需要。每个片组的总线被耦合到线缆16的导体,所述线缆16的导体将片组信号传导到系统主帧。在所述系统主帧中,片组信号被数字化并且被耦合到系统波束形成器22的通道,系统波束形成器22将每个片组信号适当地延迟。被延迟的片组信号接着被组合以形成相干操纵并聚焦的接收波束。由信号和图像处理器24来处理来自3D图像场的波束信号,以产生用于在图像显示器30上显示的2D或3D图像。对超声系统参数的控制(例如探头选择、波束操纵和聚焦、以及信号和图像处理)是在被耦合到系统的多个模块的控制器26的控制下完成的。在探头10的情况下,在如下面更充分地描述的线缆16的数据线上从系统主帧来提供这种控制信息中的一些。用户借助于控制面板20来控制这些操作参数中的许多。
图2图示了部分加和微型波束形成器的概念。图2的附图由虚线32和34切成三个区域。探头10的部件在线32的左边被示出,系统主帧的部件在线34的右边被示出,并且线缆16在两条线之间被示出。探头的二维矩阵阵列12被分成连续的换能器元件。附图中示出了阵列12的片组中的五个,每个包括九个邻近的元件。附图中示出了针对片组12a、12c和12e的微波波束形成器通道。片组12a的九个元件被耦合到在DL1处被指示的微波波束形成器的九条延迟线。类似地,片组12c和片组12e的九个元件被耦合到在DL2和DL3处被指示的延迟线。由这些延迟线赋予的延迟是多个变量(例如阵列的大小、元件间距、片组的间隔和维度、波束操纵范围以及其他)的函数。延迟线分组为DL1、DL2和DL3,每个将来自他们的各自片组的元件的信号延迟到针对片组的公共时间或相位基准。接着来自每组延迟线的九个被延迟的信号由各自的加法器Σ组合以形成来自片组元件的阵列部分加和信号。每个部分加和信号被施加在单独的总线15a、15b和15c上,所述总线中的每条被耦合到线缆16的导体,所述导体将部分加和信号传导到系统主帧。在系统主帧中,每个部分加和信号被施加到系统波束形成器22的延迟线22a、22b、22c。这些延迟线将部分加和信号聚焦成在系统波束形成器加法器22s的输出处的公共波束。接着完全形成的波束被转发到信号和图像处理器以用于进一步处理和显示。尽管利用9元件片组示出了图2的范例,但是应当意识到构造的微型波束形成器系统大体将拥有具有更大数量(例如12、20、48或70个元件或者更多)的元件的片组。片组的元件可以互相邻近、隔开或者甚至以棋盘图样混合,其中,“奇数”计数的元件被组合在一个片组中并且“偶数”计数的元件被组合在另一个片组中。片组可以是正方形、长方形、钻石形、六边形或任何其他期望的形状。
图3图示了根据本发明的原理构造的矩阵阵列探头10和主帧超声系统100。二维矩阵阵列12使它的独立换能器元件耦合到微型波束形成器14的可控延迟线DL。探头中的微型波束形成器控制器40通过一条或多条线42来接收控制信号。微型波束形成器控制器通过线44来施加控制信号,线44针对换能器元件信号来设定延迟线DL的延迟。这些延迟对于期望的片组大小和形状是适当的。被延迟的换能器元件信号被耦合到开关矩阵32,开关矩阵32将来自同一片组的元件的信号引导到一个输出34。例如,如下面图7所示,期望组合192个元件的被延迟信号以形成单个片组信号。开关矩阵32的开关闭合以将期望的192个元件的被延迟信号连接到公共总线上。通过由微型波束形成器控制器40提供的线46上的片组开关控制信号来控制开关闭合以及片组配置。图4中示出了使得任何被延迟元件信号能够被用在任何片组中的非常灵活的开关矩阵。图4图示了交叉点开关矩阵,所述交叉点开关矩阵适合于选择性地将来自探头微型波束形成器14的被延迟信号耦合到线缆16的导体和系统波束形成器22的通道。2D矩阵阵列换能器的每个元件(例如元件0、元件1、……元件M)被耦合到对每个接收到的信号赋予适当的延迟的微型波束形成器14的延迟电路14’。每个被延迟元件信号被通过线112、114、……120传导到电子开关的臂,例如122、124、……126和132、134、……136。线上的电子开关中的一个闭合以将来自该元件的信号耦合到选定的系统波束形成器通道,例如系统通道0、系统通道1、……系统通道N。通过选择性地闭合交叉点开关矩阵中的期望的开关,任何被延迟元件信号可以被施加在总线102、104、……110上,以与总线上的其他信号加和;并且任何被延迟元件信号可以被施加到线缆导体并且因此被施加到系统波束形成器22的通道以用于完成波束形成操作。因此开关矩阵32能够将M个换能器元件的被延迟信号引导到N个片组信号输出32,由线缆16将N个片组信号输出32耦合到系统波束形成器22。
可以是一米长或更长的探头的线缆16在探针连接器36处终止。线缆的片组信号传导体在探头连接器36的连接器块38的管脚处终止。被定位在探头连接器中的是含有为超声系统识别探头和它的具体特性的数据(探头ID)的EPROM 50,探头被连接到所述超声系统。EPROM 50还被耦合到连接器块38的管脚。当探头连接器36被插入到超声系统100的配合连接器中时,连接器块38被耦合到系统的配合块138,并且片组信号由此被连接到系统波束形成器22。系统波束形成器控制器28被耦合到系统波束形成器以控制系统波束形成器的操作。系统波束形成器控制器还被耦合以从探头的EPROM 50接收探头ID数据,所述探头ID数据为控制器识别探头并且使得波束形成器22能够被建立以用于与具体探头一起操作。在该范例中,系统波束形成器控制器进一步地被耦合到探头线缆的一个或多个导体,以向矩阵阵列探头提供关于系统波束形成器的信息。如在42处指示的,该系统信息被耦合到微型波束形成器控制器40以使得微型波束形成器控制器能够建立矩阵阵列探头以用于与它被连接到的超声系统一起操作。
图3的矩阵阵列探头和超声系统的操作如下。当探头连接器36被插入到超声系统100中时,来自超声系统的能量为矩阵阵列探头部件供能。EPROM向超声系统提供探头ID信息,并且系统现在知晓已经被连接的探头的类型。设想作为范例,系统波束形成器22具有128通道,并且矩阵阵列探头10具有被由线缆16中的128个片组信号传导体耦合到连接器块38的128个片组输出34。由于在该范例中微型波束形成器具有最大128个输出34,在输出34处可以产生128个被延迟并且加和的片组信号,所以该微型波束形成器可以向系统波束形成器提供最大128个部分加和片组信号以用于完成波束形成过程。该部分加和片组信号的最大数量可以由具有128个或更多个波束形成器通道的系统波束形成器来处理。在该范例中,系统波束形成器控制器建立系统波束形成器以针对由探头提供的128个部分加和片组信号来进行最终的波束形成。系统波束形成器控制器28通过线缆16和线42来通知探头系统波束形成器具有128通道,并且微型波束形成器控制器40通过建立微型波束形成器延迟DL和开关矩阵32的开关来做出响应,以向系统波束形成器22提供来自128个输出34中的全部的128个部分加和片组信号。接着利用128个探头片组和片组输出信号以及128通道系统波束形成来进行成像。
设想作为另一个范例,超声系统100具有48通道系统波束形成器。矩阵阵列探头现在必须被配置为与具有比微型波束形成器能够提供的最大128个片组输出信号更少的通道的该波束形成器一起操作。微型波束形成器控制器40通过线42来获知48通道系统波波束形成器,并且通过这样来做出响应,即设定开关矩阵32的开关以使得在128个输出34中的48个上产生48个片组的部分加和片组信号。对于片组信号不需要剩余的输出。通过由微型波束形成器控制器提供的线44上的延迟控制信号来设定延迟线DL的延迟。该延迟对于2D矩阵阵列的元件分组而成的48个片组中的那些是适当的。图5中示出了一个这样的48个片组元件配置,该配置说明了对具有不同大小的48个片组的使用。较小的片组被定位在阵列换能器的中心,并且较大的片组在沿方位方向的侧边上。附图的垂直维度是高度方向。开关矩阵32的开关将来自每个片组的元件的独立延迟的信号组合,并且将输出34中的48个上的最终部分加和信号耦合。承载这48个片组信号线缆的导体被由探头连接器块38和138耦合到系统波束形成器22的48个通道的输入。接着利用48通道系统波束形成进行成像。
因此可以看出当本发明的矩阵阵列探头与具有大于或等于矩阵阵列探头可以产生的片组信号的最大数量的通道计数的系统波束形成器一起操作时,微型波束形成器控制器设定被延迟信号的延迟和加和以产生它的片组信号的最大数量,所述片组信号被耦合到系统波束形成器以完成波束形成。当矩阵阵列探头与具有小于最大值的通道计数的系统波束形成器一起操作时,微型波束形成器控制器设定被延迟信号的延迟和加和以产生小于最大值的若干部分波束形成的片组信号。
图6图示了当对于12通道系统波束形成器只需要十二个片组时的矩阵阵列换能器12的片组配置。在该情况下,延迟和开关矩阵被设定为提供在开关矩阵输出34中的十二个上的十二个部分加和片组信号。十二个片组信号被通过线缆16传导并且被施加到12通道系统波束形成器的通道输入。图7图示了另一矩阵阵列片组配置,在所述配置中2D阵列12的元件中的全部被分组为八个均一大小的片组。接着延迟线DL和开关矩阵32在128(“N”)个开关矩阵输出中的八个上并且在被应用到8通道系统波束形成器的八个通道输入的线缆导体上产生八个片组信号。
尽管图3的矩阵阵列探头被视为能够与各个不同的系统波束形成器一起操作,但是备选地期望将矩阵阵列探头配置为仅与一个系统波束形成器一起使用。这可以利用图3中示出的相同的探头部件中的多数来完成,具体利用相同的矩阵换能器阵列和微型波束形成器堆叠来完成。因此,相同的换能器堆叠可以被用于针对不同超声系统的不同探头。专用探头配置还可以提供低成本矩阵阵列探头。常见的情况是探头线缆是探头的最贵的部件,其中,成本随线缆中的导体的数量而成比例变化。例如,如果矩阵阵列探头旨在严格地与8通道系统波束形成器一起使用,那么对于片组信号在线缆中只需要八个信号传导体而不是128个信号传导体。通过使用仅具有八个片组信号传导体而不是全部128个导体的线缆来减少整个矩阵阵列探头成本。
具有诸如图3的开关矩阵32的开关矩阵的换能器堆叠可以通过这样来与各个不同的系统波束形成器一起使用,即配置矩阵32的开关以使得从矩阵阵列的M个元件到N个片组输出信号的被延迟信号的M:N组合造成最终期望的数量的片组信号输出。比如,N可以是与系统波束形成器的通道数量相匹配的8个、16个、48个或者任何其他数量的片组输出。也可能通过将信号组合划分为两个阶段来使用同一128输出开关矩阵,其中,开关矩阵32产生128个片组信号,接着由第二信号组合器将所述128个片组信号进一步组合为最终的较少数量的期望片组信号。当矩阵阵列探头仅与一个系统波束形成器配置一起操作时,该第二信号组合器可以是如图8所示的硬线连接的信号组合器60。比如,硬线连接的信号组合器60可以是印刷电路板或者柔性电路,在其中由p.c.b或柔性电路的经连接的布线62来将信号组合。经连接的布线62的数量产生在输出64处的期望的片组信号的最终数量。在图8的矩阵阵列探头中,开关矩阵32对开关矩阵32的128个输出34进行M:128信号组合,并且第二信号组合器60通过组合128个片组信号来进一步地减少片组信号的数量,以产生片组信号的最终期望的固定数量N。比如,如果图8的矩阵阵列探头仅与8通道系统波束形成器一起操作,那么第二信号组合器60将具有产生八个片组输出64的八组经连接的布线62。八个片组输出64被耦合到线缆16的N个片组信号传导体,其中,N是八。当探头连接器36被插入到具有8通道系统波束形成器的超声系统中时,通过线缆传导的八个片组信号被连接到系统波束形成器的八个通道。因此可以使用每个探头中的同一矩阵阵列换能器12、延迟线DL、开关矩阵32和微型波束形成器控制器40,而利用不同的硬线连接的第二信号组合器60和针对每个不同的系统波束形成器的通道数量的探头线缆,来构造针对不同通道计数系统波束形成器的一系列探头。因此,同一换能器堆叠可以被用在具有廉价硬线连接的组合器和与系统波束形成器通道配置相匹配的减少的导体线缆中。如果期望,则不同的探头连接器36和减少的管脚计数连接器块38还可以被用于进一步地减少成本。
图9a和图9b图示了针对如图8所示构造的矩阵阵列探头的片组配置。这些配置说明了使用矩阵阵列12上的八个片组以用于与8通道系统波束形成器一起使用。在该范例中,八个片组中的每个包括48个换能器元件,1536个元件的矩阵阵列12的八个片组的有效孔径中总共有384个元件。延迟线DL的延迟被针对片组大小和位置来调节,并且开关矩阵32的开关被设定为将来自开关矩阵的128个输出中的每个上的三个换能器元件的被延迟信号组合。因此开关矩阵提供M:128被延迟信号组合,其中,M是八个片组的384个元件。接着硬线连接的第二组合器60执行128:N组合,其中,N是八,将开关矩阵输出34中的十六个组合为在输出64处的一个最终片组信号。接着八个片组信号被通过线缆16的八个片组信号传导体(N=8)传导,以用于完成8通道系统波束形成器中的波束形成。
图9b示出了相同的具有八个片组的孔径,但是其中,所述孔径向右偏移一个元件。有效孔径被以这种方式沿高度方向在阵列上平移以进行线性阵列扫描。为了利用该经重新定位的孔径来扫描,必须针对新的经平移的片组位置来设定延迟DL和开关矩阵的开关。一旦矩阵32的延迟和开关已经被针对新的片组位置来设定,则从新的孔径位置来发射并接收另一个波束,并且第二组合器60如之前那样进行128:8组合以向系统波束形成器提供八个新的片组信号。不仅可以如图9a和图9b所示逐波束地改变孔径,如2012年5月9日提交的US专利申请序号61/644524中描述的,还可以在接收波束期间改变孔径从而根据增大的波束深度随着接收信号来使孔径增长;在此通过引用将该申请内容并入。

Claims (15)

1.一种超声矩阵阵列探头,包括:
换能器元件的矩阵阵列(12);
微型波束形成器(14),其被耦合到所述矩阵阵列的所述换能器元件,所述微型波束形成器包括:
多个可控延迟(112、114、116、118、120),其被耦合到所述矩阵阵列的元件以产生被不同地延迟换能器信号;以及
多个可控开关(122、124、126、132、134、136),其被耦合以将被不同地延迟的换能器信号组合以形成多个片组信号,其中,所述微型波束形成器能够产生最大数量的片组信号;
微型波束形成器控制器(40),其被耦合以控制所述可控延迟和所述可控开关;
探头连接器(36),其将所述矩阵阵列探头连接到超声系统的系统波束形成器(22),所述系统波束形成器具有给定数量的波束形成器通道;以及
探头线缆,其被耦合到所述微型波束形成器(14)和所述探头连接器(36),所述探头线缆将所述多个片组信号耦合到所述系统波束形成器,
其中,所述微型波束形成器控制器(40)控制所述延迟和所述开关以在系统波束形成器通道的所述给定数量等于或超出所述最大数量时产生所述最大数量的片组信号,并且在系统波束形成器通道的所述给定数量小于所述最大数量时产生小于所述最大数量的若干片组信号。
2.如权利要求1所述的超声矩阵阵列探头,其中,所述微型波束形成器控制器(40)还被耦合以借助于所述探头线缆来接收信号,所述信号识别要由所述微型波束形成器(14)产生的片组信号的数量。
3.如权利要求2所述的超声矩阵阵列探头,其中,识别片组信号的所述数量的所述信号识别系统波束形成器通道的数量。
4.如权利要求3所述的超声矩阵阵列探头,其中,识别系统波束形成器通道的所述数量的所述信号是由系统波束形成器控制器(28)产生的,并且经由所述探头连接器和所述探头线缆被耦合到所述微型波束形成器控制器(40)。
5.如权利要求1所述的超声矩阵阵列探头,还包括存储关于所述超声矩阵阵列探头(10)的信息的存储器设备,其中,当所述探头连接器(36)将所述矩阵阵列探头连接到所述系统波束形成器(22)时,关于所述超声矩阵阵列探头的所述信息被耦合到所述超声系统(100)。
6.如权利要求1所述的超声矩阵阵列探头,其中,所述探头线缆还包括多个片组信号传导体,所述多个片组信号传导体等于由所述微型波束形成器在所述微型波束形成器控制器(40)的控制下产生的片组信号的数量。
7.如权利要求1所述的超声矩阵阵列探头,其中,能够由所述微型波束形成器产生的片组信号的所述最大数量是128。
8.如权利要求7所述的超声矩阵阵列探头,其中,系统波束形成器通道的所述给定数量是48或更少。
9.一种超声矩阵阵列探头,包括:
换能器元件的矩阵阵列(12);
微型波束形成器(14),其被耦合到所述矩阵阵列的所述换能器元件,所述微型波束形成器包括:
多个可控延迟(112、114、116、118、120),其被耦合到所述矩阵阵列的元件以产生被不同地延迟换能器信号;以及
多个可控开关(122、124、126),其被耦合以将被不同地延迟的换能器信号组合从而形成给定数量的片组信号;
信号组合器(60),其被耦合以接收所述给定数量的片组信号,并且将所述片组信号组合以产生小于片组信号的所述给定数量的固定的数量的片组输出信号;
微型波束形成器控制器(40),其被耦合以控制所述可控延迟和所述可控开关;
探头连接器(36),其将所述矩阵阵列探头连接到超声系统(100)的系统波束形成器(22),所述系统波束形成器(22)具有等于片组输出信号的所述固定数量的若干波束形成器通道;以及
探头线缆,其被耦合到所述微型波束形成器(14)和所述探头连接器(36),所述探头线缆将所述片组输出信号耦合到所述系统波束形成器(22)。
10.如权利要求9所述的超声矩阵阵列探头,还包括存储关于所述超声矩阵阵列探头的信息的存储器设备,其中,当所述探头连接器将所述矩阵阵列探头连接到系统波束形成器(22)时,关于所述超声矩阵阵列探头的所述信息被耦合到所述超声系统(100)。
11.如权利要求9所述的超声矩阵阵列探头,其中,所述探头线缆还包括多个片组信号传导体,所述多个片组信号传导体等于由所述微型波束形成器(14)产生的片组输出信号的所述固定数量。
12.如权利要求9所述的超声矩阵阵列探头,其中,能够由所述微型波束形成器(14)产生的片组信号的所述给定数量是128,其中,系统波束形成器通道的所述数量是48或更少。
13.多个超声矩阵阵列探头,包括如权利要求9所述的超声矩阵阵列探头;以及
第二超声矩阵阵列探头,其包括:
换能器元件的矩阵阵列(12),其与如权利要求9所述的矩阵阵列探头的换能器元件的矩阵阵列相同;
微型波束形成器(14),其与如权利要求9所述的矩阵阵列探头的微型波束形成器相同,除了所述信号组合器(60)包括被耦合以接收所述给定数量的片组信号并且将所述片组信号组合从而产生小于补片信号的所述给定数量的第二固定的数量的片组输出信号的信号组合器;
微型波束形成器控制器(40),其与如权利要求9所述的矩阵阵列探头的微型波束形成器控制器相同;
探头连接器(36),其将所述矩阵阵列探头连接到第二超声系统的系统波束形成器(22),所述第二超声系统的所述系统波束形成器具有等于所述第二固定的、更少的数量的若干波束形成器通道;以及
探头线缆,其被耦合到所述微型波束形成器(14)和所述探头连接器,所述探头线缆将所述片组输出信号耦合到所述第二超声系统的所述系统波束形成器。
14.如权利要求13所述的多个超声矩阵阵列探头,其中,所述第二超声矩阵阵列探头的所述探头连接器与如权利要求9所述的超声矩阵阵列探头的所述探头连接器不同。
15.如权利要求13所述的多个超声矩阵阵列探头,其中,如权利要求9所述的超声矩阵阵列探头的所述探头线缆具有若干片组信号传导体,并且
其中,所述第二超声矩阵阵列探头的所述探头线缆具有与如权利要求9所述的超声矩阵阵列探头的片组信号传导体的数量不同的若干片组信号传导体。
CN201380034330.6A 2012-06-28 2013-06-18 能与不同的超声系统一起操作的二维超声换能器阵列 Active CN104471437B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261665571P 2012-06-28 2012-06-28
US61/665,571 2012-06-28
PCT/IB2013/054988 WO2014001962A1 (en) 2012-06-28 2013-06-18 Two dimensional ultrasound transducer arrays operable with different ultrasound systems

Publications (2)

Publication Number Publication Date
CN104471437A CN104471437A (zh) 2015-03-25
CN104471437B true CN104471437B (zh) 2017-12-05

Family

ID=49034121

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380034330.6A Active CN104471437B (zh) 2012-06-28 2013-06-18 能与不同的超声系统一起操作的二维超声换能器阵列

Country Status (7)

Country Link
US (1) US9983176B2 (zh)
EP (1) EP2867697B1 (zh)
JP (1) JP6165855B2 (zh)
CN (1) CN104471437B (zh)
BR (1) BR112014032126A2 (zh)
RU (1) RU2623818C2 (zh)
WO (1) WO2014001962A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10499878B2 (en) 2012-07-26 2019-12-10 Interson Corporation Portable ultrasonic imaging probe including a transducer array
CA2967646A1 (en) * 2014-11-14 2016-05-19 Ursus Medical, Llc Ultrasound beamforming system and method based on aram array
WO2016100354A1 (en) * 2014-12-15 2016-06-23 Edison Welding Institute, Inc. Matrix phased array system for inspection of brazed welds
US11179581B2 (en) 2015-03-09 2021-11-23 The Research Foundation For The State University Of New York Systems and methods for promoting cellular activities for tissue maintenance, repair, and regeneration
US20180161011A1 (en) * 2015-06-11 2018-06-14 Koninklijke Philips N.V. Ultrasonic transducer array probe for shear wave imaging
WO2017026278A1 (ja) * 2015-08-07 2017-02-16 株式会社日立製作所 超音波撮像装置および超音波探触子
US20180317888A1 (en) * 2015-11-24 2018-11-08 Koninklijke Philips N.V. Ultrasound systems with microbeamformers for different transducer arrays
US10562070B2 (en) * 2016-05-10 2020-02-18 Invensense, Inc. Receive operation of an ultrasonic sensor
US10816650B2 (en) 2016-05-27 2020-10-27 Interson Corporation Ultrasonic imaging probe including composite aperture receiving array
US10396468B2 (en) * 2016-08-18 2019-08-27 Echodyne Corp Antenna having increased side-lobe suppression and improved side-lobe level
GB2562035B (en) 2017-04-15 2021-03-10 Knowledge Economy Developments Ltd Ultrasound apparatus having switches
US20180360421A1 (en) * 2017-06-15 2018-12-20 General Electric Company Ultrasound imaging systems having improved transducer architectures
GB201810711D0 (en) * 2018-06-29 2018-08-15 King S College London Ultrasound Method and Apparatus
CN110680381B (zh) * 2019-09-03 2021-11-30 东软医疗系统股份有限公司 医用1.x维超声探头及医用超声诊断系统
JP7426293B2 (ja) * 2020-06-16 2024-02-01 富士フイルムヘルスケア株式会社 2次元アレイ超音波探触子および加算回路
JP2022068431A (ja) * 2020-10-22 2022-05-10 富士フイルムヘルスケア株式会社 超音波探触子
TWI787734B (zh) * 2021-02-09 2022-12-21 謝承原 具有拉鍊式陣列換能元件的超音波探頭
FR3125957A1 (fr) * 2021-08-04 2023-02-10 Piezomedic Dispositif et système de localisation d’un implant ou d’un organe dans un corps humain ou animal, par émission-réception de signaux ultrasons via des transducteurs piézoélectriques et/ou capacitifs

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971962A (en) * 1972-09-21 1976-07-27 Stanford Research Institute Linear transducer array for ultrasonic image conversion
US5229933A (en) 1989-11-28 1993-07-20 Hewlett-Packard Company 2-d phased array ultrasound imaging system with distributed phasing
JP2851114B2 (ja) * 1990-03-17 1999-01-27 株式会社東芝 超音波診断装置
US5103129A (en) * 1990-07-26 1992-04-07 Acoustic Imaging Technologies Corporation Fixed origin biplane ultrasonic transducer
RU2080592C1 (ru) * 1994-02-21 1997-05-27 Товарищество с ограниченной ответственностью "Фирма АКС" Ультразвуковая антенная решетка в виде двухмерной матрицы
US5520187A (en) * 1994-11-25 1996-05-28 General Electric Company Ultrasonic probe with programmable multiplexer for imaging systems with different channel counts
DE19741361C1 (de) * 1997-09-19 1999-04-15 Siemens Ag Instrumentarium zur Anwendung von Ultraschall
US6013032A (en) 1998-03-13 2000-01-11 Hewlett-Packard Company Beamforming methods and apparatus for three-dimensional ultrasound imaging using two-dimensional transducer array
US5997479A (en) 1998-05-28 1999-12-07 Hewlett-Packard Company Phased array acoustic systems with intra-group processors
US6102860A (en) * 1998-12-24 2000-08-15 Agilent Technologies, Inc. Ultrasound transducer for three-dimensional imaging
US6371918B1 (en) * 1999-05-05 2002-04-16 Sonosite Inc. Transducer connector
US6705995B1 (en) * 2002-10-04 2004-03-16 Koninklijke Philips Electronics N.V. Method and apparatus for 1D array ultrasound probe
US6915696B2 (en) * 2003-02-27 2005-07-12 Vermon Intersecting ultrasonic transducer arrays
JP3977827B2 (ja) * 2003-06-25 2007-09-19 アロカ株式会社 超音波診断装置
US20070016052A1 (en) * 2003-09-24 2007-01-18 Matsushita Electric Industrial Co., Ltd. Ultrasonic diagnostic apparatus
WO2005053664A2 (en) * 2003-11-26 2005-06-16 Teratech Corporation Modular portable ultrasound systems
US8257262B2 (en) * 2003-12-19 2012-09-04 Siemens Medical Solutions Usa, Inc. Ultrasound adaptor methods and systems for transducer and system separation
US7691063B2 (en) * 2004-02-26 2010-04-06 Siemens Medical Solutions Usa, Inc. Receive circuit for minimizing channels in ultrasound imaging
US7517317B2 (en) 2004-02-26 2009-04-14 Siemens Medical Solutions Usa, Inc. Subarray forming system and method for ultrasound
US20070016023A1 (en) * 2005-06-28 2007-01-18 Siemens Medical Solutions Usa, Inc. Scalable ultrasound system and methods
US7927280B2 (en) 2005-08-05 2011-04-19 Koninklijke Philips Electronics N.V. Curved 2-D array ultrasound transducer and method for volumetric imaging
US8177718B2 (en) * 2006-03-01 2012-05-15 Koninklijke Philips Electronics N.V. Linear array ultrasound transducer with variable patch boundaries
US8161817B2 (en) * 2006-03-01 2012-04-24 Koninklijke Philips Electronics N.V Linear array ultrasound transducer with microbeamformer
JP4931611B2 (ja) * 2007-01-16 2012-05-16 株式会社日立メディコ 超音波撮像装置
CN102216805B (zh) * 2008-11-11 2015-06-03 皇家飞利浦电子股份有限公司 用于超声诊断成像系统的可配置的微波束形成器电路
JP2011000426A (ja) * 2009-05-19 2011-01-06 Toshiba Corp 超音波診断装置及び超音波プローブ
JP5433429B2 (ja) * 2010-01-12 2014-03-05 株式会社東芝 超音波プローブ
RU2638967C2 (ru) 2012-05-09 2017-12-19 Конинклейке Филипс Н.В. Матрицы ультразвуковых преобразователей с переменными геометриями участков поверхности

Also Published As

Publication number Publication date
RU2623818C2 (ru) 2017-06-29
US20150241397A1 (en) 2015-08-27
EP2867697B1 (en) 2020-10-07
EP2867697A1 (en) 2015-05-06
US9983176B2 (en) 2018-05-29
JP6165855B2 (ja) 2017-07-19
WO2014001962A1 (en) 2014-01-03
RU2015102598A (ru) 2016-08-20
BR112014032126A2 (pt) 2017-06-27
JP2015521882A (ja) 2015-08-03
CN104471437A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
CN104471437B (zh) 能与不同的超声系统一起操作的二维超声换能器阵列
US5897501A (en) Imaging system with multiplexer for controlling a multi-row ultrasonic transducer array
EP1491914B1 (en) Ultrasound diagnosis apparatus comprising a 2D transducer with variable subarray shape pattern
CN102216805B (zh) 用于超声诊断成像系统的可配置的微波束形成器电路
EP1936404B1 (en) Ultrasound diagnosis apparatus
EP3376253A2 (en) Ultrasound 3d imaging system
US6183419B1 (en) Multiplexed array transducers with improved far-field performance
CN102866401B (zh) 一种基于mimo技术的三维成像方法
CN103635829B (zh) 具有两个波束成形器阶段的二维超声诊断成像系统
JP2008514335A (ja) マイクロビーム形成を行うトランスデューサの構造
US10245005B2 (en) Ultrasound transducer probe with microbeamformer for multiline imaging
CN104335066B (zh) 具有可变面片几何结构的超声换能器阵列
US9482753B2 (en) Split row-column addressing method for three-dimensional ultrasound imaging
KR100911879B1 (ko) 초음파 합성 구경 빔포머 및 이를 이용한 초음파 영상 장치
WO2010031057A1 (en) Ultrasound 3d imaging system
JP2022502113A (ja) 高い表示フレームレートで幅広集束送信ビームを用いる3d超音波イメージング
CN108885258B (zh) 具有一维片块的二维超声阵列换能器
WO2017168279A1 (en) Two dimensional ultrasonic array transducer with one dimensional subpatches
US11707261B2 (en) Ultrasound probe enabled for ultrasound reception operation of at least two modes
JP4037769B2 (ja) 超音波診断装置
JPWO2019215115A5 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant