CN104460812B - A Temperature Compensation Circuit for Output Rectifier Diode of Primary Side Feedback Converter - Google Patents
A Temperature Compensation Circuit for Output Rectifier Diode of Primary Side Feedback Converter Download PDFInfo
- Publication number
- CN104460812B CN104460812B CN201410852284.7A CN201410852284A CN104460812B CN 104460812 B CN104460812 B CN 104460812B CN 201410852284 A CN201410852284 A CN 201410852284A CN 104460812 B CN104460812 B CN 104460812B
- Authority
- CN
- China
- Prior art keywords
- circuit
- resistor
- operational amplifier
- output
- current source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003990 capacitor Substances 0.000 claims description 18
- 230000005669 field effect Effects 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 claims description 2
- 238000001914 filtration Methods 0.000 abstract 4
- 230000007423 decrease Effects 0.000 description 18
- 238000001514 detection method Methods 0.000 description 5
- 238000004804 winding Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域technical field
本发明涉及基本电子电路技术领域,尤其涉及一种原边反馈变换器的输出整流二极管温度补偿电路。The invention relates to the technical field of basic electronic circuits, in particular to an output rectifying diode temperature compensation circuit of a primary-side feedback converter.
背景技术Background technique
近年来,随着消费电子产品需求量的大幅增加以及各种电子产品的更新换代,人们对电源的要求也越来越高。采用原边反馈方式的反激变换器由于其结构简单,成本低廉,电气隔离性好,体积小等优点,目前被广泛应用在小功率电源中。采用反激拓扑结构的变换器,更容易实现低待机功耗,这使得它在当今提倡绿色节能型社会的口号下应用越来越广泛。但是,由于反馈方式的不同,在原边反馈的变换器中,需要对辅助绕组进行采样来得到反馈电压。在辅助绕组采样得到的电压中包含了输出整流二极管的压降。当温度变化时,输出二极管的压降会随着温度的变化而变化,因此导致采样的电压不准确,而影响输出电压的精准度。In recent years, with the substantial increase in the demand for consumer electronics and the upgrading of various electronic products, people have higher and higher requirements for power supplies. The flyback converter using the primary side feedback method is widely used in low-power power supplies because of its simple structure, low cost, good electrical isolation, and small size. Converters using flyback topology are easier to achieve low standby power consumption, which makes it more and more widely used under the slogan of advocating a green and energy-saving society today. However, due to the different feedback modes, in the primary-side feedback converter, it is necessary to sample the auxiliary winding to obtain the feedback voltage. The voltage drop of the output rectifier diode is included in the voltage sampled by the auxiliary winding. When the temperature changes, the voltage drop of the output diode will change with the temperature change, thus causing the sampled voltage to be inaccurate and affecting the accuracy of the output voltage.
发明内容Contents of the invention
本发明要解决的技术问题是提供一种原边反馈变换器的输出整流二极管温度补偿电路,应用在原边反馈方式的开关电源系统中,能够改善输出电压的温度效应。The technical problem to be solved by the present invention is to provide an output rectifier diode temperature compensation circuit of a primary-side feedback converter, which can improve the temperature effect of output voltage when applied in a switching power supply system of primary-side feedback mode.
为了解决上述技术问题,本发明采用如下技术方案:In order to solve the above technical problems, the present invention adopts the following technical solutions:
依据本发明的一个方面,提供了一种原边反馈变换器的输出整流二极管温度补偿电路,包括:According to one aspect of the present invention, an output rectifier diode temperature compensation circuit of a primary-side feedback converter is provided, including:
单位缓冲器,与温度系数成正比的第一电阻,电流源以及滤波电路;A unit buffer, a first resistor proportional to the temperature coefficient, a current source and a filter circuit;
其中,所述单位缓冲器的输入端连接一标准电压源,输出端与所述第一电阻的一端相连,且所述单位缓冲器与一逻辑电源的正极相连;Wherein, the input end of the unit buffer is connected to a standard voltage source, the output end is connected to one end of the first resistor, and the unit buffer is connected to the positive pole of a logic power supply;
所述第一电阻的另一端分别与所述电流源的正极和滤波电路的一端相连,所述电流源的负极接地,且与滤波电路的另一端相连,且所述滤波电路设有一用于与原边反馈开关电源控制器的误差放大器的同相端相连的补偿电压输出端。The other end of the first resistor is respectively connected to the positive pole of the current source and one end of the filter circuit, the negative pole of the current source is grounded and connected to the other end of the filter circuit, and the filter circuit is provided with a The compensation voltage output terminal connected to the same phase terminal of the error amplifier of the primary side feedback switching power supply controller.
其中,所述单位缓冲器包括第一运放电路和第二运放电路,且所述第一运放电路的输入端连接一标准电压源,所述第一运放电路的输出端与第二运放电路的输入端相连,且第二运放电路与一逻辑电源的正极相连,第二运放电路的输出端与所述第一电阻的一端相连。Wherein, the unit buffer includes a first operational amplifier circuit and a second operational amplifier circuit, and the input terminal of the first operational amplifier circuit is connected to a standard voltage source, and the output terminal of the first operational amplifier circuit is connected to the second operational amplifier circuit. The input terminal of the operational amplifier circuit is connected, and the second operational amplifier circuit is connected with the positive pole of a logic power supply, and the output terminal of the second operational amplifier circuit is connected with one end of the first resistor.
其中,所述第一运放电路为集成运算放大器,所述集成运算放大器的同相端连接一标准电压源,反相端与所述第一电阻的一端相连,所述集成运算放大器的输出端与所述第二运放电路的输入端相连。Wherein, the first operational amplifier circuit is an integrated operational amplifier, the non-inverting terminal of the integrated operational amplifier is connected to a standard voltage source, the inverting terminal is connected to one end of the first resistor, and the output terminal of the integrated operational amplifier is connected to The input ends of the second operational amplifier circuit are connected.
其中,所述第二运放电路包括第一电容、第二电阻以及P型金属氧化物半导体场效应(MOS)管;Wherein, the second operational amplifier circuit includes a first capacitor, a second resistor and a P-type metal oxide semiconductor field effect (MOS) transistor;
其中,所述第一运放电路的输出端与所述P型MOS管的栅极相连,且所述P型MOS管的源极与一逻辑电源的正极相连,所述第一电容与第二电阻串联且并接在P型MOS管的栅极和的漏极,且所述漏极与所述第一电阻的一端相连。Wherein, the output end of the first operational amplifier circuit is connected to the gate of the P-type MOS transistor, and the source of the P-type MOS transistor is connected to the positive pole of a logic power supply, and the first capacitor and the second The resistors are connected in series to the gate and the drain of the P-type MOS transistor, and the drain is connected to one end of the first resistor.
其中,所述电流源为恒定电流源。Wherein, the current source is a constant current source.
其中,所述滤波电路包括第三电阻和第二电容,且所述第三电阻的一端与所述电流源的正极相连,另一端与所述第二电容的一端相连,所述第二电容的另一端与所述电流源的负极相连,且所述第三电阻的另一端为用于与原边反馈开关电源控制器的误差放大器的同相端相连的补偿电压输出端。Wherein, the filter circuit includes a third resistor and a second capacitor, and one end of the third resistor is connected to the positive pole of the current source, and the other end is connected to one end of the second capacitor, and the second capacitor The other end is connected to the negative pole of the current source, and the other end of the third resistor is a compensation voltage output end for connecting with the non-inverting end of the error amplifier of the primary side feedback switching power supply controller.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明的原边反馈变换器的输出整流二极管温度补偿电路,包括一个单位缓冲器,一个正温度系数的第一电阻和一个电流源以及一个滤波电路。当温度升高时,第一电阻的阻值随温度的升高而增大,而流经第一电阻的电流不变,则第一电阻上的电压降增大。又因为单位缓冲器将输入的标准电压维持在恒定值,且本发明的方案中的输出电压等于标准电压值减去第一电阻上的电压降,所以可以得出,本发明的方案中的输出电压随温度的升高而降低,以此来补偿输出整流二极管在温度升高时所引起的检测电压偏低。同理,当温度降低时本发明方案的输出电压会升高来补偿输出整流二极管在温度降低时所引起的检测电压升高。The output rectifying diode temperature compensation circuit of the primary side feedback converter of the present invention includes a unit buffer, a first resistor with a positive temperature coefficient, a current source and a filter circuit. When the temperature rises, the resistance value of the first resistor increases with the rise of temperature, but the current flowing through the first resistor remains unchanged, so the voltage drop across the first resistor increases. And because the unit buffer maintains the input standard voltage at a constant value, and the output voltage in the solution of the present invention is equal to the standard voltage value minus the voltage drop on the first resistor, so it can be drawn that the output in the solution of the present invention The voltage decreases with the increase of temperature, so as to compensate the low detection voltage caused by the output rectifier diode when the temperature increases. Similarly, when the temperature decreases, the output voltage of the solution of the present invention will increase to compensate for the increase in the detection voltage caused by the output rectifying diode when the temperature decreases.
附图说明Description of drawings
图1表示本发明实施例的原边反馈变换器的输出整流二极管温度补偿电路的原理图;Fig. 1 shows the schematic diagram of the output rectifier diode temperature compensation circuit of the primary side feedback converter of the embodiment of the present invention;
图2表示原边反馈开关电源控制器的反馈环路原理图。Figure 2 shows the schematic diagram of the feedback loop of the primary side feedback switch mode power supply controller.
其中图中:101、单位缓冲器;102、滤波电路;R1、第一电阻;I、电流源;Vref0、标准电压源;VDD、逻辑电源的正极;Vref、补偿电压输出端;op、集成运算放大器;C1、第一电容;R2、第二电阻;P1、P型MOS管;G、栅极;S、源极;D、漏极;R3、第三电阻;C2、第二电容;103、反馈电压检测电路;104、误差放大器;105、逻辑控制单元;106、反激变压器;R6、第六电阻;R7、第七电阻;D1、输出整流二极管;Co、输出电容;R4、第四电阻;R5、第五电阻。In the figure: 101, unit buffer; 102, filter circuit; R1, first resistor; I, current source; Vref0, standard voltage source; VDD, positive pole of logic power supply; Vref, compensation voltage output terminal; op, integrated operation Amplifier; C1, first capacitor; R2, second resistor; P1, P-type MOS tube; G, gate; S, source; D, drain; R3, third resistor; C2, second capacitor; 103, Feedback voltage detection circuit; 104, error amplifier; 105, logic control unit; 106, flyback transformer; R6, sixth resistor; R7, seventh resistor; D1, output rectifier diode; Co, output capacitor; R4, fourth resistor ; R5, the fifth resistor.
具体实施方式detailed description
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。Exemplary embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. Although exemplary embodiments of the present disclosure are shown in the drawings, it should be understood that the present disclosure may be embodied in various forms and should not be limited by the embodiments set forth herein. Rather, these embodiments are provided for more thorough understanding of the present disclosure and to fully convey the scope of the present disclosure to those skilled in the art.
依据本发明实施例的一个方面,提供了一种原边反馈变换器的输出整流二极管温度补偿电路,如图1所示,该电路包括:单位缓冲器101,与温度系数成正比的第一电阻R1,电流源I以及滤波电路102;According to one aspect of the embodiments of the present invention, a temperature compensation circuit for an output rectifier diode of a primary-side feedback converter is provided. As shown in FIG. 1 , the circuit includes: a unit buffer 101, a first resistor proportional to the temperature coefficient R1, current source I and filter circuit 102;
其中,所述单位缓冲器101的输入端连接一标准电压源Vref0,输出端与所述第一电阻R1的一端相连,且所述单位缓冲器101与一逻辑电源的正极VDD相连;Wherein, the input end of the unit buffer 101 is connected to a standard voltage source Vref0, the output end is connected to one end of the first resistor R1, and the unit buffer 101 is connected to the positive pole VDD of a logic power supply;
所述第一电阻R1的另一端分别与所述电流源I的正极和滤波电路102的一端相连,所述电流源I的负极接地,且与滤波电路102的另一端相连,且所述滤波电路102设有一用于与原边反馈开关电源控制器的误差放大器的同相端相连的补偿电压输出端Vref。The other end of the first resistor R1 is respectively connected to the positive pole of the current source I and one end of the filter circuit 102, the negative pole of the current source I is grounded and connected to the other end of the filter circuit 102, and the filter circuit 102 is provided with a compensation voltage output terminal Vref for connecting with the non-inverting terminal of the error amplifier of the primary side feedback switching power supply controller.
可选地,电流源I为恒定电流源,能够使得流经第一电阻R1中的电流恒定不变。Optionally, the current source I is a constant current source, which can make the current flowing through the first resistor R1 constant.
如图1所示,本发明实施例的原边反馈变换器的输出整流二极管温度补偿电路中,单位缓冲器101使得第一电阻R1一端的电压恒定为标准电压源Vref0的电压值Vi。又由于补偿电压输出端Vref输出的电压值Vo等于标准电压源Vref0的电压值Vi减去第一电阻R1的电压降,即Vo=Vi-r1·i,其中r1表示第一电阻R1的电阻值,i表示流经第一电阻R1的电流值,Vi表示标准电压源Vref0的电压值。由于R1为正温度系数的电阻,所以当温度升高时,r1增大,从而Vo减小;当温度降低时,r1减小,从而Vo增大。As shown in FIG. 1 , in the output rectifier diode temperature compensation circuit of the primary side feedback converter of the embodiment of the present invention, the unit buffer 101 keeps the voltage at one end of the first resistor R1 constant at the voltage V i of the standard voltage source Vref0 . And because the voltage value Vo output by the compensation voltage output terminal Vref is equal to the voltage value V i of the standard voltage source Vref0 minus the voltage drop of the first resistor R1, that is, Vo=V i −r 1 ·i, where r 1 represents the first resistor The resistance value of R1, i represents the current value flowing through the first resistor R1, V i represents the voltage value of the standard voltage source Vref0. Since R1 is a resistor with a positive temperature coefficient, when the temperature rises, r1 increases, thus Vo decreases; when the temperature decreases, r1 decreases, thus Vo increases.
可选地,所述单位缓冲器101包括第一运放电路和第二运放电路,且所述第一运放电路的输入端连接一标准电压源Vref0,所述第一运放电路的输出端与第二运放电路的输入端相连,且第二运放电路与一逻辑电源的正极VDD相连,第二运放电路的输出端与所述第一电阻R1的一端相连。Optionally, the unit buffer 101 includes a first operational amplifier circuit and a second operational amplifier circuit, and the input terminal of the first operational amplifier circuit is connected to a standard voltage source Vref0, and the output of the first operational amplifier circuit The terminal is connected to the input terminal of the second operational amplifier circuit, and the second operational amplifier circuit is connected to the positive pole VDD of a logic power supply, and the output terminal of the second operational amplifier circuit is connected to one terminal of the first resistor R1.
本发明的原边反馈变换器的输出整流二极管温度补偿电路,应用在原边反馈方式的开关电源系统中,将本发明实施例中的补偿电压输出端Vref连接到如图2所示的误差放大器104的正相输入端,即可改善输出电压的温度特性。The output rectifier diode temperature compensation circuit of the primary side feedback converter of the present invention is applied in the switching power supply system of the primary side feedback mode, and the compensation voltage output terminal Vref in the embodiment of the present invention is connected to the error amplifier 104 as shown in FIG. 2 The non-inverting input terminal of the circuit can improve the temperature characteristics of the output voltage.
如图2所示,芯片外围,反馈环路包括了分压电阻,即第六电阻R6和第七电阻R7,反激变压器106,输出整流二极管D1以及输出电容Co。输出电压Vout通过反激变换器106外接的分压电阻来检测,则反馈电压Vfb的计算公式为:As shown in FIG. 2 , on the periphery of the chip, the feedback loop includes voltage dividing resistors, namely sixth resistor R6 and seventh resistor R7 , flyback transformer 106 , output rectifier diode D1 and output capacitor Co. The output voltage V out is detected by the voltage dividing resistor externally connected to the flyback converter 106, and the calculation formula of the feedback voltage V fb is:
其中,r6为第六电阻R6的电阻值,r7为第七电阻R7的电阻值,Naux为反激变压器106辅助绕组的匝数,Nsec为反激变压器106次级绕组的匝数,Vout为输出电压,Vd1为输出整流二极管D1的导通压降。在上式中,r6、r7、Naux、Naux及Vout均为定值,所以,反馈电压Vfb与输出整流二极管D1的导通压降Vd1有关。Wherein, r6 is the resistance value of the sixth resistor R6, r7 is the resistance value of the seventh resistor R7 , Naux is the number of turns of the auxiliary winding of the flyback transformer 106, and Nsec is the number of turns of the secondary winding of the flyback transformer 106 , V out is the output voltage, V d1 is the conduction voltage drop of the output rectifier diode D1. In the above formula, r 6 , r 7 , Naux , Naux and V out are all constant values, so the feedback voltage V fb is related to the conduction voltage drop V d1 of the output rectifier diode D1.
由于当温度升高时,输出整流二极管D1的导通压降Vd1会降低,所以会导致反馈电压Vfb降低;当温度降低时,输出整流二极管D1的导通压降Vd1会升高,所以会导致反馈电压Vfb升高。由此可知,温度的升高或降低,将导致反馈电压Vfb相应地降低或升高。Since when the temperature rises, the conduction voltage drop V d1 of the output rectifier diode D1 will decrease, so the feedback voltage V fb will decrease; when the temperature decreases, the conduction voltage drop V d1 of the output rectifier diode D1 will increase, Therefore, the feedback voltage V fb will increase. It can be known that the increase or decrease of temperature will cause the feedback voltage V fb to decrease or increase accordingly.
在芯片内部,包括反馈电压检测电路103、误差放大器104、逻辑控制单元105、第四电阻R4及第五电阻R5。芯片根据反馈电压通过内部的误差放大器104来调整输出电压。在理想情况下反馈电压检测电路103的输出电压Vfb_det等于Vfb。误差放大器104的输出电压Vea为:Inside the chip, it includes a feedback voltage detection circuit 103 , an error amplifier 104 , a logic control unit 105 , a fourth resistor R4 and a fifth resistor R5 . The chip adjusts the output voltage through the internal error amplifier 104 according to the feedback voltage. Ideally, the output voltage V fb_det of the feedback voltage detection circuit 103 is equal to V fb . The output voltage V ea of the error amplifier 104 is:
其中,Vref1表示误差放大器104的正相输入端的电压,r4表示第四电阻R4的电阻值,r5表示第五电阻R5的电阻值。在未采取对输出电压Vout进行温度补偿措施的情况下,误差放大器104的正相输入端连接的为一标准电压源。所以Vref1此时为定值,由于r5和r4也为定值,因此,误差放大器104的输出电压Vea与反馈电压Vfb有关。又因为Vfb随温度的升高而减小,温度的降低而增大,所以在未采取对输出电压Vout进行温度补偿措施的情况下,Vea随温度的升高而减小,温度的降低而增大。此外,逻辑控制电路105通过误差放大器104输出的Vea的大小来生成调制信号调整输出电压,当Vea偏大或偏小时都会引起输出电压偏离设定值。Wherein, Vref1 represents the voltage of the non-inverting input terminal of the error amplifier 104, r4 represents the resistance value of the fourth resistor R4, and r5 represents the resistance value of the fifth resistor R5. In the case that no temperature compensation measures are taken for the output voltage V out , the non-inverting input terminal of the error amplifier 104 is connected to a standard voltage source. Therefore, Vref1 is a constant value at this time, and since r 5 and r 4 are also constant values, the output voltage V ea of the error amplifier 104 is related to the feedback voltage V fb . And because V fb decreases with the increase of temperature, and increases with the decrease of temperature, V ea decreases with the increase of temperature when no temperature compensation measures are taken for the output voltage V out . Decrease and increase. In addition, the logic control circuit 105 generates a modulation signal to adjust the output voltage through the magnitude of the V ea output by the error amplifier 104 , and when the V ea is too large or too small, the output voltage will deviate from the set value.
当如图1所示的本发明实施例的原边反馈变换器的输出整流二极管温度补偿电路,通过补偿电压输出端Vref连接到如图2所示的误差放大器104的正相输入端时,Vref1等于补偿电压输出端Vref的输出电压Vo,由于温度的升高引起Vo的减小及Vfb的减小,则依据公式:When the output rectifier diode temperature compensation circuit of the primary side feedback converter of the embodiment of the present invention as shown in Figure 1 is connected to the non-inverting input terminal of the error amplifier 104 as shown in Figure 2 through the compensation voltage output terminal Vref, Vref1 It is equal to the output voltage Vo of the compensation voltage output terminal Vref. Due to the increase of temperature, the decrease of Vo and the decrease of V fb are based on the formula:
可以得出,当温度升高时,Vea可保持不变。同理,当温度降低时,Vea保持不变。It can be drawn that when the temperature increases, V ea can remain unchanged. Similarly, when the temperature decreases, V ea remains unchanged.
可选地,如图1所示,所述第一运放电路为集成运算放大器op,所述集成运算放大器op的同相端连接一标准电压源Vref0,反相端与所述第一电阻R1的一端相连,所述集成运算放大器op的输出端与所述第二运放电路的输入端相连。Optionally, as shown in FIG. 1, the first operational amplifier circuit is an integrated operational amplifier op, the non-inverting terminal of the integrated operational amplifier op is connected to a standard voltage source Vref0, and the inverting terminal is connected to the first resistor R1. One end is connected, and the output end of the integrated operational amplifier op is connected to the input end of the second operational amplifier circuit.
可选地,如图1所示,所述第二运放电路包括第一电容C1、第二电阻R2以及P型MOS管P1;Optionally, as shown in FIG. 1, the second operational amplifier circuit includes a first capacitor C1, a second resistor R2, and a P-type MOS transistor P1;
其中,所述第一运放电路的输出端与所述P型MOS管P1的栅极G相连,且所述P型MOS管P1的源极S与一逻辑电源的正极VDD相连,所述第一电容C1与第二电阻R2串联且并接在P型MOS管P1的栅极G和的漏极D,且所述漏极D与所述第一电阻R1的一端相连。Wherein, the output end of the first operational amplifier circuit is connected to the gate G of the P-type MOS transistor P1, and the source S of the P-type MOS transistor P1 is connected to the positive pole VDD of a logic power supply, and the first A capacitor C1 is connected in series with the second resistor R2 and connected in parallel to the gate G and the drain D of the P-type MOS transistor P1, and the drain D is connected to one end of the first resistor R1.
可选地,所述滤波电路102包括第三电阻R3和第二电容C2,且所述第三电阻R3的一端与所述电流源I的正极相连,另一端与所述第二电容C2的一端相连,所述第二电容C2的另一端与所述电流源I的负极相连,且所述第三电阻R3的另一端为用于与原边反馈开关电源控制器的误差放大器的同相端相连的补偿电压输出端Vref。Optionally, the filter circuit 102 includes a third resistor R3 and a second capacitor C2, and one end of the third resistor R3 is connected to the positive pole of the current source I, and the other end is connected to one end of the second capacitor C2 The other end of the second capacitor C2 is connected to the negative pole of the current source I, and the other end of the third resistor R3 is used to connect with the non-inverting end of the error amplifier of the primary side feedback switching power supply controller Compensation voltage output terminal Vref.
当然可以理解的是,本发明实施例的原边反馈变换器的输出整流二极管温度补偿电路,对于第一运放电路、第二运放电路及滤波电路102的具体电路形式,并不局限于此,只要能够使得第一运放电路与第二运放电路能够组成单位缓冲器101,滤波电路102能够保证补偿电压输出端Vref所输出的电压的稳定即可。Of course, it can be understood that the output rectifier diode temperature compensation circuit of the primary side feedback converter in the embodiment of the present invention is not limited to the specific circuit forms of the first operational amplifier circuit, the second operational amplifier circuit and the filter circuit 102. , as long as the first operational amplifier circuit and the second operational amplifier circuit can form the unit buffer 101 and the filter circuit 102 can ensure the stability of the voltage output by the compensation voltage output terminal Vref.
以上所述的是本发明的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本发明所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本发明的保护范围内。What has been described above is a preferred embodiment of the present invention. It should be pointed out that for those skilled in the art, some improvements and modifications can also be made without departing from the principles described in the present invention. within the scope of protection of the invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410852284.7A CN104460812B (en) | 2014-12-31 | 2014-12-31 | A Temperature Compensation Circuit for Output Rectifier Diode of Primary Side Feedback Converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410852284.7A CN104460812B (en) | 2014-12-31 | 2014-12-31 | A Temperature Compensation Circuit for Output Rectifier Diode of Primary Side Feedback Converter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104460812A CN104460812A (en) | 2015-03-25 |
CN104460812B true CN104460812B (en) | 2016-01-13 |
Family
ID=52907029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410852284.7A Expired - Fee Related CN104460812B (en) | 2014-12-31 | 2014-12-31 | A Temperature Compensation Circuit for Output Rectifier Diode of Primary Side Feedback Converter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104460812B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106020322B (en) * | 2016-08-04 | 2017-07-21 | 电子科技大学 | A kind of Low-Power CMOS reference source circuit |
US10684634B1 (en) * | 2019-01-30 | 2020-06-16 | Quanta Computer Inc. | Method and system for compensating for temperature rise effects |
CN110739917B (en) * | 2019-11-12 | 2023-09-26 | 苏州华太电子技术股份有限公司 | Temperature compensation circuit based on radio frequency power amplifier |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04306017A (en) * | 1991-03-13 | 1992-10-28 | Mitsubishi Electric Corp | Reference potential generating circuit |
KR0174515B1 (en) * | 1996-11-29 | 1999-04-01 | 삼성전자주식회사 | Control Circuit Using Sense Transistor |
CN1825240A (en) * | 2006-03-24 | 2006-08-30 | 启攀微电子(上海)有限公司 | Low voltage difference linear voltage stabilizer circuit |
US7504878B2 (en) * | 2006-07-03 | 2009-03-17 | Mediatek Inc. | Device having temperature compensation for providing constant current through utilizing compensating unit with positive temperature coefficient |
TW200951669A (en) * | 2008-06-04 | 2009-12-16 | Raydium Semiconductor Corp | Current source |
JP2011091759A (en) * | 2009-10-26 | 2011-05-06 | Seiko Epson Corp | Current source, amplifier circuit, electronic circuit, integrated circuit device and electronic apparatus |
CN102290995B (en) * | 2011-07-16 | 2013-09-25 | 西安电子科技大学 | Rectifier diode temperature compensation circuit in flyback converter |
CN204009644U (en) * | 2014-03-03 | 2014-12-10 | 西安华芯半导体有限公司 | A kind of device with the automatic linear adjustment stabilizer output voltage of temperature |
-
2014
- 2014-12-31 CN CN201410852284.7A patent/CN104460812B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN104460812A (en) | 2015-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105048814B (en) | Flyback power supply and control circuit and control method thereof | |
CN103066851B (en) | Control circuit for primary side flyback type converter | |
TWI519044B (en) | A system and method for adjusting the output current of a power conversion system | |
CN102290995A (en) | Rectifier diode temperature compensation circuit in flyback converter | |
CN102798749B (en) | Current detection circuit | |
JP2005300376A (en) | Voltage detection circuit, power supply device and semiconductor device | |
CN104682727A (en) | Primary-side constant-voltage feedback AC/DC (alternating current/direct current) converter provided with current compensation circuit | |
CN103298215B (en) | Control circuit of flyback LED (Light Emitting Diode) driver | |
CN102291021B (en) | PFM (Pulse Frequency Modulation) constant-current control circuit applied in AC-DC (alternating current-to-direct current) converters | |
CN110542774A (en) | A Feedback Bidirectional Current Magnetic Isolation Sampling Circuit | |
CN104101764A (en) | Novel inductor current detection circuit applied to DC-DC converter | |
TW201417466A (en) | A flyback voltage converter with primary side feedback controlling and a voltage controlling method thereof | |
CN104460812B (en) | A Temperature Compensation Circuit for Output Rectifier Diode of Primary Side Feedback Converter | |
TW201902103A (en) | Power control device and power control system | |
CN103838288A (en) | Direct-current regulated power supply | |
CN109149944B (en) | On-chip integrated active negative voltage clamping circuit suitable for flyback converter | |
WO2020143290A1 (en) | Full-bridge synchronous rectifier integrated with current detection | |
CN102331810A (en) | Alternative circuit of current sensing power metal oxide semiconductor field effect transistor (MOSFET) | |
TW202349837A (en) | Power supply device with fast discharge function | |
US9606151B2 (en) | Capacitive current sensing using a current feedback amplifier | |
JP2009033959A (en) | Power supply changeover unit controlled by sampling coil voltage | |
US20200044575A1 (en) | Switching power supply device | |
CN107132405B (en) | Zero-crossing detection circuit for synchronous buck converter | |
CN105281588B (en) | A kind of high-precision primary side feedback type power module and its control method | |
CN203645895U (en) | Load sampling circuit of non-isolated LED driving circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160113 |