CN104386649B - 一种利用过渡金属固溶掺杂降低镁基氢化物释氢温度的方法 - Google Patents

一种利用过渡金属固溶掺杂降低镁基氢化物释氢温度的方法 Download PDF

Info

Publication number
CN104386649B
CN104386649B CN201410303828.4A CN201410303828A CN104386649B CN 104386649 B CN104386649 B CN 104386649B CN 201410303828 A CN201410303828 A CN 201410303828A CN 104386649 B CN104386649 B CN 104386649B
Authority
CN
China
Prior art keywords
mgh
ball
transition metal
magnesium
hydrogen temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410303828.4A
Other languages
English (en)
Other versions
CN104386649A (zh
Inventor
张健
孙立芹
毛聪
李妮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201410303828.4A priority Critical patent/CN104386649B/zh
Publication of CN104386649A publication Critical patent/CN104386649A/zh
Application granted granted Critical
Publication of CN104386649B publication Critical patent/CN104386649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/04Hydrides of alkali metals, alkaline earth metals, beryllium or magnesium; Addition complexes thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明属于氢气储存技术领域,特别涉及一种利用过渡金属固溶掺杂降低镁基氢化物释氢温度的方法。该方法为利用机械球磨法将MgH2与少量过渡金属Ti或Ni共球磨,最终得到MgH2‑Ti与MgH2‑Ni储氢复合体系。该方法制备的复合体系呈颗粒状,颗粒尺寸达几百纳米级别,球磨过程中部分Ti或Ni原子固溶于MgH2基体,导致其晶格变形,热力学稳定性降低,相对于同等球磨条件下的纯MgH2体系而言,球磨复合体系的初始释氢温度呈现显著降低,Ti和Ni的固溶掺杂导致MgH2基体的初始释氢温度分别降低了61.14℃与135.84℃,有效改善了镁基氢化物的释氢性能。本发明所使用的原材料容易获得,材料制备方法发展成熟,且其操作方便、过程可控,是一种有效降低镁基氢化物释氢温度的方法。

Description

一种利用过渡金属固溶掺杂降低镁基氢化物释氢温度的方法
技术领域
本发明属于氢气储存技术领域,具体涉及一种储氢材料改性技术,特别是利用过渡金属固溶掺杂降低镁基氢化物释氢温度的方法。
背景技术
随着能源危机与环境污染的日益加重,开发清洁可再生能源已成为全球关注的焦点。氢能因其具有清洁无污染,来源广泛,能量密度高等优点而备受关注。提供安全、高效、经济的氢储存技术则是氢能规模化应用的关键。在众多储氢材料中,镁基氢化物(MgH2)因具有较高的储氢容量(7.6wt%)、质轻、价廉、资源丰富,被认为是一种极具发展潜力的金属氢化物储氢材料。然而,其实际应用却面临着吸/释氢热、动力学障碍[1],主要表现在:热力学方面,释氢温度偏高;动力学方面,吸/释氢速率缓慢。作为车载储氢材料应用,最终目标是希望其在0.1MPa氢压下释氢温度低于80℃,且体系还需兼有快速的吸/释氢速率。为达到该目标,国内外学者开展了大量的研究工作并取得了阶段性进展[2, 3]。研究表明,借助机械球磨方式向MgH2氢化物中掺杂少量过渡金属元素,可有效改善其释氢性能[4]。但以往研究大多认为过渡金属掺杂主要通过降低MgH2的释氢活化能,进而改善其释氢动力学性能,而关于过渡金属对MgH2释氢热力学性能的调控却鲜有文献报道。事实上,在球磨过程中,一些过渡金属原子极有可能固溶进MgH2晶格,其固溶势必会对MgH2释氢性能产生一定影响,然而在实验研究中,由于过渡金属在MgH2基体中的固溶度较低,人们往往忽略其作用。近期,Zou等[5]人采用电弧等离子体法制备了掺杂稀土元素的镁基纳米储氢复合体系,发现一些稀土原子替代了Mg原子进而固溶进Mg/MgH2晶格,导致Mg/MgH2晶格收缩,从而降低了Mg/MgH2体系的释氢焓与释氢温度,这很好地证实固溶原子在调控Mg/MgH2释氢热力学方面的重要性。但Zou等选取的稀土掺杂元素价格偏高,且电弧等离子体制备方法较为复杂,若选取价格便宜的过渡金属元素、且采用操作方便、技术成熟的机械球磨方式,将过渡金属元素固溶掺杂于MgH2,以此调控其热力学稳定性与释氢温度,将有助于推动廉价镁基氢化物储氢材料的实用化进程。
参考文献:
[1] Jain IP, Lal C, Jain A. Hydrogen storage in Mg: A most promisingmaterial, Int J Hydrogen Energy 2010; 35: 5133-44.
[2] Cheng FY, Tao ZL, Liang J, Chen J. Efficient hydrogen storagewith the combination of lightweight Mg/MgH2 and nanostructures. Chem Commun2012; 48: 7334-43.
[3] da Conceicão MOT, Brum MC, dos Santos DS. The effect of V, VCl3and VC catalysts on the MgH2 hydrogen sorption properties. J Alloys Compd2014; 586: S101-4.
[4] Shao H, Felderhoff M, Schüth F, Weidenthaler C. NanostructuredTi-catalyzed MgH2 for hydrogen storage. Nanotechnology 2011; 22: 235401.
[5] Zou JX, Zeng XQ, Ying YJ, Chen X, Guo H, Zhou S, Ding WJ. Studyon the hydrogen storage properties of core-shell structured Mg-RE(RE=Nd, Gd,Er) nano-composites synthesized through arc plasma method. Int J HydrogenEnergy 2013; 38: 2337-46。
发明内容
本发明的目的在于提出一种利用过渡金属固溶掺杂降低镁基氢化物释氢温度的方法。
本发明的目的通过以下技术方案来实现:
1. 将MgH2粉末与过渡金属Ti或Ni粉末以9:1的质量比混合,采用球磨机球磨;
2. 所述MgH2粉末的纯度为99.8wt.%,Ti和Ni粉末的纯度均为99.9wt.%;
3. 所述球磨机是行星式球磨机,球料比为30:1,球磨时间为6h,球磨转速为120rpm,球磨过程中为防止罐内温度过高,每球磨55分钟停歇5分钟,得到MgH2-Ti与MgH2-Ni储氢复合体系;
4. 该方法得到复合体系的颗粒尺寸达几百纳米级别,通过XRD图谱精修计算表明一些Ti或Ni原子固溶进MgH2基体中,导致其晶格收缩或膨胀;
5. 采用该方法得到MgH2基储氢复合体系较同等球磨条件下纯MgH2体系释氢温度大幅度降低,掺杂Ti和Ni的MgH2氢化物初始释氢温度分别降低了61.14℃与135.84℃。
本发明具有以下特点:
1.本发明使用的原材料氢化镁(MgH2),钛(Ti)和镍(Ni)属于商业化产品,原料容易得到,且价格便宜;
2.机械球磨制备过程简单,操作方便;
3.采用该方法可有效降低镁基氢化物的释氢温度。
附图说明
图1为本发明的实施例中MgH2, MgH2-10wt.%Ti, MgH2-10wt.%Ni球磨6h后的SEM照片。
图2为本发明的实施例中MgH2, MgH2-10wt.%Ti, MgH2-10wt.%Ni球磨6h后的XRD图谱。
图3为本发明的实施例中MgH2, MgH2-10wt.%Ti, MgH2-10wt.%Ni球磨6h后的DSC曲线。
具体实施方式
下面结合说明书附图和实施例1与实施例2对本发明的具体实施方式作进一步详细描述。
本发明提供的利用过渡金属固溶掺杂降低镁基氢化物释氢温度的方法,所用材料包括MgH2,Ti和Ni, 主要按照下述步骤实现:
(1)将MgH2粉末与过渡金属Ti或Ni粉末以9:1的质量比混合,放入球磨罐中;
(2)采用机械球磨法,在球磨机上球磨,球料比为30:1,球磨时间为6h,球磨转速为120rpm,球磨过程中为防止罐内温度过高,每球磨55分钟停歇5分钟,得到MgH2-Ti与MgH2-Ni储氢复合体系。
上述球磨机是行星式球磨机。
实施例1:
原料为市售氢化镁粉末(MgH2,纯度99.8wt.%),过渡金属粉末钛(Ti, 纯度99.9wt.%);两者以9:1的质量比混合均匀,取3g的混合原料放入球磨罐内,磨球和混合原料比为30:1,球磨时间为6h,球磨转速为120rpm,球磨过程中为防止罐内温度过高,每球磨55分钟停歇5分钟。球磨后得到MgH2-10wt.%Ti复合体系的颗粒尺寸达到几百纳米级别,相对于同等球磨条件下的纯MgH2体系而言(见图1(a)),其颗粒尺寸明显细化且分布均匀(见图1(b));球磨产物由β-MgH2、TiH1.97、Mg、Ti多相组成(见图2(b));通过XRD图谱精修计算出该复合体系中β-MgH2相的晶格常数(见表1),与同等球磨条件下的纯MgH2体系相比,复合体系中β-MgH2相的晶格常数减小,表明一些Ti原子固溶进β-MgH2基体中,导致其晶格收缩;DSC分析结果发现,球磨复合体系的初始释氢温度(368.42℃)相对于同等球磨条件下的MgH2体系(429.56℃)降低了61.14℃。
表1 MgH2, MgH2-10wt.%Ti, MgH2-10wt.%Ni三种球磨体系中β-MgH2相的晶格常数
实施例2:
原料为市售氢化镁粉末(MgH2,纯度99.8wt.%),过渡金属粉末镍(Ni, 纯度99.9wt.%);两者以9:1的质量比混合均匀,取3g的混合原料放入球磨罐内,其它工艺参数与实施例1相同。球磨后得到的MgH2-10wt.%Ni复合体系的颗粒尺寸达到了几百纳米级别(见图1(c));球磨产物由β-MgH2、Mg、Ni多相组成(见图2(c));通过XRD图谱精修计算出该复合体系中β-MgH2的晶格常数(见表1),与同等球磨条件下的纯MgH2体系相比,复合体系中β-MgH2相的晶格常数增大,表明一些Ni原子固溶进β-MgH2基体中,导致其晶格膨胀;DSC分析结果发现,球磨复合体系的初始释氢温度(293.72℃)相对于同等球磨条件下的MgH2体系(429.56℃)降低了135.84℃。

Claims (3)

1.一种利用过渡金属固溶掺杂降低镁基氢化物释氢温度的方法,其特征在于,包括以下步骤:
a.分别将MgH2粉末与过渡金属Ni粉末以9:1的质量比混合,放入球磨罐中;
b.采用机械球磨法,在球磨机上球磨,球料比为30:1,球磨时间为6h,球磨转速为120rpm,球磨过程中为防止罐内温度过高,每球磨55分钟停歇5分钟,得到MgH2-Ni储氢复合体系;
所述方法得到的复合体系较同等球磨条件下的MgH2体系释氢温度大幅度降低,掺杂Ni的MgH2氢化物初始释氢温度降低了135.84℃;
球磨复合体系颗粒尺寸达几百纳米级别,少量Ni原子固溶于MgH2基体,导致其晶格变形,热力学稳定性降低。
2.如权利要求1所述利用过渡金属固溶掺杂降低镁基氢化物释氢温度的方法,其特征在于:MgH2粉末的纯度为99.8wt.%,Ni粉末的纯度均为99.9wt.%。
3.如权利要求1所述利用过渡金属固溶掺杂降低镁基氢化物释氢温度的方法,其特征在于:所述球磨机是行星式球磨机。
CN201410303828.4A 2014-06-30 2014-06-30 一种利用过渡金属固溶掺杂降低镁基氢化物释氢温度的方法 Active CN104386649B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410303828.4A CN104386649B (zh) 2014-06-30 2014-06-30 一种利用过渡金属固溶掺杂降低镁基氢化物释氢温度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410303828.4A CN104386649B (zh) 2014-06-30 2014-06-30 一种利用过渡金属固溶掺杂降低镁基氢化物释氢温度的方法

Publications (2)

Publication Number Publication Date
CN104386649A CN104386649A (zh) 2015-03-04
CN104386649B true CN104386649B (zh) 2017-03-29

Family

ID=52604632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410303828.4A Active CN104386649B (zh) 2014-06-30 2014-06-30 一种利用过渡金属固溶掺杂降低镁基氢化物释氢温度的方法

Country Status (1)

Country Link
CN (1) CN104386649B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105565266B (zh) * 2015-12-15 2018-01-30 湖北航天化学技术研究所 一种高超声速飞行器用吸热型载氢燃料
CN105460892B (zh) * 2015-12-24 2017-11-10 长沙理工大学 一种增强镁基氢化物解氢性能的方法
CN108996472A (zh) * 2018-08-13 2018-12-14 江苏科技大学 过渡金属纳米片/MgH2复合材料及其制备方法和应用
CN109467048A (zh) * 2018-12-27 2019-03-15 江苏科技大学 复合储氢材料及其制备方法和应用
CN112441557A (zh) * 2020-12-18 2021-03-05 长沙理工大学 一种利用NiCo固溶体催化改善MgH2吸放氢性能的方法
CN112850640A (zh) * 2021-01-16 2021-05-28 南开大学 一种金属有机框架掺杂镁基氢化物的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100811116B1 (ko) * 2006-11-14 2008-03-06 한국과학기술연구원 마그네슘계 수소저장재료의 제조방법
CN101476070B (zh) * 2009-01-16 2011-06-01 南京工业大学 一种镁基储氢合金及其制备方法

Also Published As

Publication number Publication date
CN104386649A (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
CN104386649B (zh) 一种利用过渡金属固溶掺杂降低镁基氢化物释氢温度的方法
Khan et al. Hydrogen storage properties of nanocrystalline Mg2Ni prepared from compressed 2MgH2Ni powder
CN109972010B (zh) 一种纳米镁基复合储氢材料及制备方法
Machmud et al. Sorption behavior of MgH2-Ti for Hydrogen storage material prepared by high pressure milling
Liu et al. Mg-based nanocomposites with improved hydrogen storage performances
CN104726745A (zh) 一种Ti-Zr基轻质量高容量吸氢材料及其制备和使用方法
Xie et al. Catalytic effects of decorating AlV3 nanocatalyst on hydrogen storage performance of Mg@ Mg17Al12 nanocomposite: experimental and theoretical study
Zeng et al. Enhanced hydrogen storage properties of MgH2 using a Ni and TiO2 co-doped reduced graphene oxide nanocomposite as a catalyst
CN102674245B (zh) 一种MgH2/Mg过渡金属硼化物复合储氢材料及其制备方法
CN103014384A (zh) 一种镁银储氢材料的制备方法
Neto et al. Synthesis by high-energy ball milling of MgH2-TiFe composites for hydrogen storage
JP2007254778A (ja) 合金粉末の製造方法、及び当該製造方法により得られた合金粉末
Song et al. Improvement of hydrogen-storage properties of MgH 2 by addition of Ni and Ti via reactive mechanical grinding and a rate-controlling step in its dehydriding reaction
CN105668515B (zh) 一种CaMg2基合金氢化物水解制氢材料及其制备方法和应用
CN109467048A (zh) 复合储氢材料及其制备方法和应用
Song et al. Hydriding and dehydriding rates of Mg, Mg-10TaF 5, and Mg-10NbF 5 prepared via reactive mechanical grinding
Song et al. Effects of Ni, Fe2O3, and CNT addition by reactive mechanical grinding on the reaction rates with H2 of Mg-based alloys
Kwak et al. Hydriding and dehydriding reactions of Mg-xTaF5 (x= 0, 5 and 10) prepared via reactive mechanical grinding
CN104891434B (zh) 一种硼氢化物/氟化石墨纳米复合储氢材料及其制备方法
Lee et al. Enhancement of the hydriding and dehydriding rates of Mg by adding TiCl3 and reactive mechanical grinding
Song et al. Hydrogen storage properties of pure Mg
Hong et al. Hydrogen storage properties of Mg-23.5 Ni-xCu prepared by rapid solidification process and crystallization heat treatment
Song et al. Improvement in the hydrogen-storage properties of Mg by the addition of metallic elements Ni, Fe, and Ti, and an oxide Fe2O3
Kwak et al. Comparison of hydrogen-storage properties of Mg-14Ni-3Fe 2 O 3-3Ti and Mg-14Ni-2Fe 2 O 3-2Ti-2Fe
CN104004933B (zh) 一种利用镁稀土废渣制备储氢材料的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20150304

Assignee: Hunan Longgu Intelligent Technology Co., Ltd.

Assignor: Changsha University of Sciences and Technology

Contract record no.: X2019430000008

Denomination of invention: Method for reducing magnesium-based hydride hydrogen-release temperature by utilizing solid-solution doping of transition metal

Granted publication date: 20170329

License type: Common License

Record date: 20191203

EE01 Entry into force of recordation of patent licensing contract