CN104301984A - D2d蜂窝网络中基于时域半双工中继的功率控制方法 - Google Patents

D2d蜂窝网络中基于时域半双工中继的功率控制方法 Download PDF

Info

Publication number
CN104301984A
CN104301984A CN201410588547.8A CN201410588547A CN104301984A CN 104301984 A CN104301984 A CN 104301984A CN 201410588547 A CN201410588547 A CN 201410588547A CN 104301984 A CN104301984 A CN 104301984A
Authority
CN
China
Prior art keywords
base station
transmitting terminal
receiving terminal
opt
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410588547.8A
Other languages
English (en)
Other versions
CN104301984B (zh
Inventor
张国鹏
刘鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN201410588547.8A priority Critical patent/CN104301984B/zh
Publication of CN104301984A publication Critical patent/CN104301984A/zh
Application granted granted Critical
Publication of CN104301984B publication Critical patent/CN104301984B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/46TPC being performed in particular situations in multi hop networks, e.g. wireless relay networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种D2D蜂窝网络中基于时域半双工中继的功率控制方法,适用于无线通信技术领域中使用。包括采用点对多点拓扑结构蜂窝网发射的基站B和蜂窝网接收端C、作为蜂窝通信中继的D2D发射端R和D2D接收接收端E,其使用D2D发射端作为基站B和接收端C之间蜂窝通信的中继器,对蜂窝通信和D2D通信进行联合功率控制,使用时域半双工无线中继技术实现蜂窝通信和D2D通信的正交信道频谱复用,在满足蜂窝通信最小数据吞吐量的同时,最大化D2D通信的吞吐量,从而兼顾了系统整体性能和用户的个体性能,在系统层面和用户层面达到良好的平衡。

Description

D2D蜂窝网络中基于时域半双工中继的功率控制方法
技术领域
本发明涉及一种半双工中继的功率控制方法,尤其适用于一种无线通信技术领域中使用的D2D蜂窝网络中基于时域半双工中继的功率控制方法。
背景技术
随着移动通信市场宽带无线数据业务的迅猛增加,提高蜂窝网络的用户容量、扩展蜂窝小区的覆盖范围以及增强网络的服务质量已经成为当前亟待解决的重要课题。近年来,移动通信标准化组织3GPP-LTE关注和研究一种全新的短距离数据传输技术,即D2D通信技术。D2D通信是指:在不影响其他蜂窝用户和D2D用户数据传输的前提下,地理位置较近的用户终端可以不通过基站中转而建立直接通信链路进行数据传输。其应用优势包括:D2D通信使用其所在蜂窝小区的工作频段,充分利用了稀缺的无线频谱资源;近距离D2D通信使用较低的传输能耗就能获得较高的数据吞吐量和较低的数据传输时延;由于用户终端分布广泛且数量较多,D2D通信可以扩展蜂窝小区的覆盖范围。
目前,D2D通信可以采用正交信道模式和共信道模式复用所在蜂窝小区的频谱资源。使用正交信道频谱复用模式,D2D通信与蜂窝通信使用正交、非重叠的时域(或频域)信道进行各自的数据传输,从而可以有效避免多用户通信的互干扰,不过,这也降低了无线频谱资源的利用效率。而使用共信道频谱复用模式,D2D通信与蜂窝通信使用相同的时域(或频域)信道进行数据传输,提高了无线频谱资源的利用效率,但是D2D通信和蜂窝通信之间会产生较为严重的互干扰,必须设计合适的干扰管理和功率控制机制,将上述干扰控制在可接受范围内。
针对D2D蜂窝网络中的功率控制方案可以采用集中式控制或者分布式控制方式实现。采用集中式控制方式,基站对D2D通信和蜂窝通信的时钟同步、信道状态信息获取和功率控制进行统一管理;而采用分布式控制方式,D2D终端则需要实时测量、评价网络的干扰状况,对其发射功率和传输同步进行本地控制。由于集中式控制易于实现,本专利设计的蜂窝通信和D2D通信联合功率控制方案采用集中式控制方式实现。
近年来,无线中继作为一种抗无线信道多径衰落技术,已经被广泛用于提高蜂窝网络的服务质量,扩展蜂窝小区的覆盖范围。无线中继技术的原理是在单跳无线通信链路中引入中继节点,将处于深度衰落的单跳通信链路分解成两跳传输的高质量通信链路,从而可以在不增加信道数量和传输功率的前提下,增强无线通信链路的信道质量。无线中继技术又可以分为全双工中继和半双工中继两种。全双工中继技术的实现要求中继节点必须配置两支天线:发射天线用于从数据源节点接收信息;接收天线则用于向目的节点中继转发信息。全双工中继还必须采用良好的自干扰抵消技术,从而中继节点的发射天线和接收天线可以在同一物理信道上并发工作,而不会引起较强的自干扰。全双工中继系统的频谱复用率为1。半双工中继技术仅要求中继节点配置一支天线,由于单天线无法同时接收和发射信息,因此,中继节点从数据源节点接收信息,以及向目的节点中继转发信息需要占用两个正交、非重叠的物理信道,如频域的频段,或者时域的时隙。因此,半双工中继系统的频谱复用率为1/2。
在上述应用和研究背景下,利用无线中继实现蜂窝网络中的D2D通信已经引起国内外学者广泛关注,并已经提出了以下解决方案:
文献1:C.Yu,K.Doppler,C.B.Ribeiro,et al,“Resource sharing optimization fordevice-to-device communication underlaying cellular networks,”IEEE Trans.Wirel.Commun.,vol.10,no.8,pp.2752–2763,2011.提出了一种基于半双工中继的蜂窝通信和D2D通信功率控制方案,该方案在满足蜂窝用户和D2D用户最小数据吞吐量的前提下,最大化系统的总吞吐量。然而,文献1所提出的D2D通信方案需要使用基站作为D2D通信的中继节点,这并不符合D2D通信模式的要求(仅限于在用户终端之间进行);
文献2:Y.Pei and Y.C.Liang,“Resource allocation for device-to-device communicationsoverlaying two-way cellularnetworks,”IEEE Trans.Wirel.Commun.,vol.12,no.7,pp.3611-3621,2013.提出了一种适用于双向中继蜂窝系统的蜂窝通信和D2D通信功率控制方案,在有效避免系统总吞吐量降低的同时,保障蜂窝用户和D2D用户获取Pareto公平性的吞吐量增益。然而,该方案仅适用于面向蜂窝双向链路(即蜂窝上行链路(从用户终端到基站)和下行链路(从基站到用户终端)的联合功率分配,由于蜂窝网络的下行数据量远远超过上行数据量,该方案所要求的双向中继在实际的蜂窝网络中缺乏应用场景,难以推广应用;
文献3:周斌,胡宏林.提高蜂窝系统多播效率的D2D自适应协作重传.应用科学学报,2013,31(3):221-227.
文献4:B.Zhou,H.Hu,S.-Q.Huang andH.-H.Chen,“Intracluster device-to-device relayalgorithm with optimal resource utilization,”IEEE Trans.Vehicular Technology,vol.62,no.5,pp.2315-2326,2013.
文献5:北京邮电大学.蜂窝系统中D2D和固定中继两种协作多播模式的选择方法.中国发明专利,CNIO347614OA,2013-12-25.
文献3,文献4和文献5将无线中继和D2D通信两种技术相结合,用于提高蜂窝网络中无线多播业务的数据吞吐量。然而,在上述文献中,D2D发射终端仅仅被用作辅助蜂窝无线多播传输的中继节点,而其本身不产生任何数据业务,这与实际应用中D2D用户需要传输本地数据业务是不相符的。
此外,上述文献1至文献5均未考虑D2D通信和蜂窝通信的总体功耗问题。使用无线中继提高单跳无线链路的信道质量,其前提是不能增加系统的频谱和能量、功率开销。文献1至文献5均没有对数据源节点和中继节点的联合发射功率进行限制,因此,系统性能的提升不仅仅是依靠引入无线中继节点也是依靠增加系统的能量消耗获得的,这与当前面向绿色无线电即低能耗的移动通信系统发展趋势是相违背的。
半双工中继理论上只能获得1/2的频谱资源利用率,在D2D通信和蜂窝通信联合功率约束的条件下如何实现有效的功率控制和干扰管理,在满足蜂窝通信最小数据吞吐量需求的同时,最大化D2D通信的数据吞吐量,是需要进一步研究解决的问题。
发明内容
针对上述技术问题的不足之处,本发明提供一种实现了蜂窝通信和D2D通信的正交信道复用,获得了比传统蜂窝通信更高的频谱利用效率和数据吞吐量的D2D蜂窝网络中基于时域半双工中继的功率控制方法。
为实现上述目标,本发明的D2D蜂窝网络中基于时域半双工中继的功率控制方法,包括采用点对多点拓扑结构蜂窝网发射的基站B和蜂窝网接收端C、作为蜂窝通信中继的D2D发射端R和D2D接收接收端E,构成一个由接收端C、发射端R和接收接收端E受基站B控制的嵌入D2D通信的蜂窝通信网络,所述发射端R、接收端C、接收端E均为配置一支天线的时域半双工移动终端,其方法步骤如下:
a.基站B通过蜂窝网控制信道向接收端C发送建立通信链路的请求后,当接收端C接收到基站B的信号强度大于等于预设值时,则向基站B反馈信息,基站B与接收端C建立通信链路,此时D2D发射端R和接收接收端E仅进行D2D通信;
b.当接收端C接收到基站B的信号强度小于预设值时,则不与基站B组建通信链路,此时基站B向D2D发射端R发送数据中继请求并与发射端R的天线建立第一跳蜂窝中继通信链路,D2D发射端R再通过天线发射与接收端C建立通信链路的请求,当接收端C接收到发射端R的请求后即与D2D发射端R建立蜂窝网的第二跳中继通信链路;
c.基站B通过蜂窝网专用控制信道(SDCCH)获得基站B到发射端R处的信道功率增益gB,R,从接收端C处得到基站B到接收端C的信道功率增益gB,C和发射端R到接收端C的信道功率增益gR,C,从接收端E处得到基站B到接收端E的信道功率增益gB,E和发射端R到接收端E的信道功率增益gR,E
d.基站B通过公式: γ B , R = g B , R σ 2 , γ B , C = g B , C σ 2 , γ B , E = g B , E σ 2 分别计算基站B与发射端R、基站B与接收端C、基站B与接收端E之间的信道噪声比γB,R、γB,C、γB,E,通过公式: 分别计算发射端R与接收端C、发射端R与接收端E之间的信道噪声比γR,C、γR,E,式中:发射端R、接收端C、接收端E的噪声功率均为σ2
e.基站B通过公式: p B opt = G γ B , R , p R opt = max ( 0 , P - G γ B , R ) 分别求取基站B和发射端R的最优发射功率并通过公式:
α opt = max ( 0 , min ( 1 , γ B , R γ R , C - ( p R opt ) 2 γ R , C + p R opt ( Pγ R , C - 1 ) + P - ( p R opt ) 2 γ B , R + p R opt ( Pγ B , R + 1 ) ) ) , 且0≤αopt<1,求取发射端R为中继蜂窝用户C的信息码元所分配的最优发射功率比例αopt,式中:pB为基站B的发射功率,pR为发射端R的发射功率,基站B和发射端R的联合功率约束为P,即pB+pR=P,G为常数,且为蜂窝网接收端C的最小数据吞吐量约束,W为蜂窝通信和D2D通信共享的信道带宽;
f.基站B通过公式:得到基站B与发射端R之间的最优信号噪声比通过公式:计算出发射端R与接收端C之间的最优信干噪比并通过公式:计算出发射端R与接收端E之间的最优信干噪比
g.当时,基站B将步骤e中得到的发射端R的最优发射功率和最优功率比例αopt,通过专用控制信道传输给发射端R,控制发射端R使用最优发射功率和最优发射功率比例αopt分别向接收端C和接收端E发射数据信息;
h.当 γ ‾ B , R opt ≥ γ ‾ R , C opt , 则基站B通过公式: α opt = max ( 0 , min ( 0 , - Y + Y 2 - 4 XZ 2 X ) ) , 重新计算最优功率比例αopt,并通过公式: p B opt = max ( 0 , P - 1 γ R , C G α opt ( G + 1 ) - G ) p R opt = max ( 0 , 1 γ R , C G α opt ( G + 1 ) - G ) , 重新计算基站B和发射端R的最优发射功率 p B opt p R opt , 式中:参数X=(G+1)(γR,C)2(PγB,R-G),
参数Y=-PG(γR,C)2ηB,R+(GγR,C)2-G2γR,CγB,R,参数Z=-2P(GγR,C)2γB,R
根据重新获得的最优功率比例αopt、基站B和发射端R的最优发射功率基站B通过公式:重新得到发射端R与接收端C之间的最优信号干扰噪声比基站B通过公式:重新得到发射端R与接收端E之间的最优信号干扰噪声比基站B将重新计算得到的发射端R最优发射功率和最优功率比例αopt通过专用控制信道传输给发射端R,控制发射端R使用最优发射功率和最优发射功率比例αopt分别向接收端C和接收端E发射数据信息;
i.传输数据信息时,在半双工中继传输的第一个时隙,基站B使用功率向蜂窝接收端C发射能量归一化信息码元xC,此时D2D发射端R的天线为接收状态,对基站B发射的码元xC进行接收、解码处理,解码后的信息码元为
j.在半双工中继传输的第二个时隙,基站B停止传输信息,D2D发射端R将发射功率加载到信息码元中,将发射功率加载到信息码元xE中,发射端R的天线同时向处于接收状态的接收端C和接收端E广播信息码元信息
k.接收端C在接收到的发射端R中继的集成码元信息xR后,将码元xR中的xE部分当作干扰,仅对部分进行解码,从而获得数据吞吐量TC
接收端E在接收到发射端R中继的集成码元信息xR后,将码元xR中的部分当作干扰,仅对xE部分进行解码,从而获得数据吞吐量TE
所述步骤b中基站B向D2D发射端R发送数据中继请求后发射端R作为蜂窝通信链路的中继节点需要通过公式:γR,C<min{γB,RB,C}判断,当公式γR,C<min{γB,RB,C}为真时,则D2D发射发射端R作为蜂窝通信链路的中继节点,将处于深度衰落甚至无法保证通信质量的基站B到接收端C单跳蜂窝通信链路分裂为两跳数据链路;当公式γR,C<min{γB,RB,C}为假时,则D2D发射端R无法提高蜂窝通信链路的信道质量,发射端R不对基站B到接收端C单跳蜂窝通信链路进行中继;
所述步骤e中在总发射功率受限的条件下,建立基站B和D2D发射端R的联合功率控制满足的条件为:
( p B opt , p R opt , α opt ) arg max ( p B , p R , α ) T E ,
约束条件: T C = T C min ,
pB+pR=P,pB≥0,pR≥0,
0≤α<1,
其中,TE和TC分别表示D2D用户E和蜂窝用户C的数据吞吐量:
T E = W log 2 ( 1 + γ ‾ R , E ) , T C = W log 2 ( 1 + p B γ B , R ) , γ ‾ R , E = ( 1 - α ) p R γ R , E αp R γ R , E + 1 ,
α表示发射端R为中继蜂窝用户C的信息码元所分配的功率比例;
通过上述计算从而得到最优功率控制
所述步骤h中在总发射功率受限的条件下,建立基站B和D2D发射端R的联合功率控制满足的条件为:
在总发射功率受限的条件下,建立基站B和D2D发射端R的联合功率控制数学模型:
( p B opt , p R opt , α opt ) arg max ( p B , p R , α ) T E ,
约束条件: T C = T C min ,
pB+pR=P,pB≥0,pR≥0,
0≤α<1,
其中, T C = W log 2 ( 1 + γ ‾ R , C ) , γ ‾ R , C = αp R γ R , C ( 1 - α ) p R γ R , C + 1 ;
所述步骤k中,码元 x ~ C 的数据吞吐量为 T C = 1 2 W log 2 ( 1 + min ( γ ‾ B , R opt , γ ‾ R , C opt ) ) ,
码元xE的数据吞吐量为 T E = 1 2 W log 2 ( 1 + γ ‾ R , E opt ) .
有益效果:本发明的功率控制方法,使用D2D发射端作为基站B和接收端C之间蜂窝通信的中继器,同时保证D2D发射端在作为蜂窝通信中继的同时继续与接收端E进行D2D通信,使用时域半双工无线中继技术实现蜂窝通信和D2D通信的正交信道频谱复用,提高D2D蜂窝网络的频谱资源利用效率;对蜂窝通信和D2D通信进行联合功率控制,在满足蜂窝通信最小数据吞吐量的同时,最大化D2D通信的吞吐量,从而兼顾了系统整体性能和用户的个体性能,在系统层面和用户层面达到了一个很好的平衡。
附图说明
图1是本发明基于时域半双工中继的D2D蜂窝网络组成示意图;
图2是本发明的功率控制方案流程图;
图3是本发明中随中继链路的信道噪声比γB,R以及D2D链路的γR,E变化,接收端E所获得吞吐量增益示意图;
图4是本发明中随蜂窝用户两跳中继链路的信道噪声比γB,R和γR,C变化,接收端E所获得吞吐量增益示意图。
具体实施方式
下面结合附图对本发明的一个实施例作进一步的描述:
如图1所示,本发明的D2D蜂窝网络中基于时域半双工中继的功率控制方法,包括采用点对多点拓扑结构蜂窝网发射的基站B和蜂窝网接收端C、作为蜂窝通信中继的D2D发射端R和D2D接收接收端E,构成一个由接收端C、发射端R和接收接收端E受基站B控制的嵌入D2D通信的蜂窝通信网络,所述发射端R、接收端C、接收端E均为配置一支天线的时域半双工移动终端,天线工作于时域半双工模式,即只能在不同的时隙进行信息的发射或接收;当基站B进行下行链路数据传输时,部分被服务的蜂窝用户终端,如蜂窝接收端C,处于无线信道的深度衰落中,无法成功接收数据;此时,使用能够成功接收基站数据的D2D发射端R作为接收端C的中继节点,从而构建基于时域半双工中继的蜂窝通信和D2D通信正交信道频谱复用模式;应用半双工中继技术提高D2D蜂窝网络的能量和频谱资源利用效率,在满足蜂窝通信最小数据吞吐量的同时,最大化D2D通信的吞吐量。
如图2所示,D2D蜂窝网络中基于时域半双工中继的功率控制方法如下:
a.基站B通过蜂窝网控制信道向接收端C发送建立通信链路的请求后,当接收端C接收到基站B的信号强度大于等于预设值时,则向基站B反馈信息,基站B与接收端C建立通信链路,此时D2D发射端R和接收接收端E仅进行D2D通信;
b.当接收端C接收到基站B的信号强度小于预设值时,则不与基站B组建通信链路,此时基站B向D2D发射端R发送数据中继请求并与发射端R的天线建立第一跳蜂窝中继通信链路,D2D发射端R再通过天线发射与接收端C建立通信链路的请求,当接收端C接收到发射端R的请求后即与D2D发射端R建立蜂窝网的第二跳中继通信链路;
基站B向D2D发射端R发送数据中继请求后发射端R作为蜂窝通信链路的中继节点需要通过公式:γR,C<min{γB,RB,C}判断,当公式γR,C<min{γB,RB,C}为真时,则D2D发射发射端R作为蜂窝通信链路的中继节点,将处于深度衰落甚至无法保证通信质量的基站B到接收端C单跳蜂窝通信链路分裂为两跳数据链路;当公式γR,C<min{γB,RB,C}为假时,则D2D发射端R无法提高蜂窝通信链路的信道质量,发射端R不对基站B到接收端C单跳蜂窝通信链路进行中继;
c.基站B通过蜂窝网专用控制信道(SDCCH)获得基站B到发射端R处的信道功率增益gB,R,从接收端C处得到基站B到接收端C的信道功率增益gB,C和发射端R到接收端C的信道功率增益gR,C,从接收端E处得到基站B到接收端E的信道功率增益gB,E和发射端R到接收端E的信道功率增益gR,E
d.基站B通过公式: γ B , R = g B , R σ 2 , γ B , C = g B , C σ 2 , γ B , E = g B , E σ 2 分别计算基站B与发射端R、基站B与接收端C、基站B与接收端E之间的信道噪声比γB,R、γB,C、γB,E,通过公式: 分别计算发射端R与接收端C、发射端R与接收端E之间的信道噪声比γR,C、γR,E,式中:发射端R、接收端C、接收端E的噪声功率均为σ2
e.D2D发射端R作为蜂窝通信链路的中继节点,将处于深度衰落的单跳蜂窝通信链路:从基站B至蜂窝用户C分解为两跳数据链路,分别为:从基站B至发射端R的单跳链路,其信噪比为从发射端R至接收端C的单跳链路,其信干噪比为本发明采用了解码再中继协议,需要对蜂窝通信第一跳链路的信噪比,即以及第二跳链路信干噪比,即的数值大小做出判断,指示蜂窝用户根据较小的信噪比或者信干噪比计算数据吞吐量;基站B预判并在总发射功率受限的条件下,建立基站B和D2D发射发射端R的联合功率控制数学模型为:
( p B opt , p R opt , α opt ) arg max ( p B , p R , α ) T E ,
约束条件: T C = T C min ,
pB+pR=P,pB≥0,pR≥0,
0≤α<1,
其中,TE和TC分别表示D2D用户E和蜂窝用户C的数据吞吐量:
T E = W log 2 ( 1 + γ ‾ R , E ) , T C = W log 2 ( 1 + p B γ B , R ) , γ ‾ R , E = ( 1 - α ) p R γ R , E αp R γ R , E + 1 ,
α表示发射端R为中继蜂窝用户C的信息码元所分配的功率比例;
基站B通过公式: p B opt = G γ B , R , p R opt = max ( 0 , P - G γ B , R ) 分别求取基站B和发射端R的最优发射功率并通过公式:
α opt = max ( 0 , min ( 1 , γ B , R γ R , C - ( p R opt ) 2 γ R , C + p R opt ( Pγ R , C - 1 ) + P - ( p R opt ) 2 γ B , R + p R opt ( Pγ B , R + 1 ) ) ) , 且0≤αopt<1,求取发射端R为中继蜂窝用户C的信息码元所分配的最优发射功率比例αopt,式中:pB为基站B的发射功率,pR为发射端R的发射功率,基站B和发射端R的联合功率约束为P,即pB+pR=P,G为常数,且为蜂窝网接收端C的最小数据吞吐量约束,W为蜂窝通信和D2D通信共享的信道带宽;
f.基站B通过公式:得到基站B与发射端R之间的最优信号噪声比通过公式:计算出发射端R与接收端C之间的最优信干噪比并通过公式:计算出发射端R与接收端E之间的最优信干噪比
g.当时,基站B将步骤e中得到的发射端R的最优发射功率和最优功率比例αopt,通过专用控制信道传输给发射端R,控制发射端R使用最优发射功率和最优发射功率比例αopt分别向接收端C和接收端E发射数据信息;
h.由于步骤2中得到的最优功率控制策略不满足那么唯一可能出现的情况就是此时基站B需要在的条件下,重新计算最优的功率控制策略;在以及总发射功率受限的条件下,建立基站B和发射端R的联合功率控制数学模型:
( p B opt , p R opt , α opt ) arg max ( p B , p R , α ) T E ,
约束条件: T C = T C min ,
pB+pR=P,pB≥0,pR≥0,
0≤α<1,
其中, T C = W log 2 ( 1 + γ ‾ R , C ) , γ ‾ R , C = αp R γ R , C ( 1 - α ) p R γ R , C + 1 ; 通过求解上述的数学模型,更新最优功率控制策略为:
基站B通过公式: α opt = max ( 0 , min ( 0 , - Y + Y 2 - 4 XZ 2 X ) ) , 重新计算最优功率比例αopt,并通过公式: p B opt = max ( 0 , P - 1 γ R , C G α opt ( G + 1 ) - G ) p R opt = max ( 0 , 1 γ R , C G α opt ( G + 1 ) - G ) , 重新计算基站B和发射端R的最优发射功率式中:参数
X=(G+1)(γR,C)2(PγB,R-G),
参数Y=-PG(γR,C)2ηB,R+(GγR,C)2-G2γR,CγB,R,参数Z=-2P(GγR,C)2γB,R
根据重新获得的最优功率比例αopt、基站B和发射端R的最优发射功率基站B通过公式:重新得到发射端R与接收端C之间的最优信号干扰噪声比基站B通过公式:重新得到发射端R与接收端E之间的最优信号干扰噪声比基站B将重新计算得到的发射端R最优发射功率和最优功率比例αopt通过专用控制信道传输给发射端R,控制发射端R使用最优发射功率和最优发射功率比例αopt分别向接收端C和接收端E发射数据信息;
i.传输数据信息时,在半双工中继传输的第一个时隙,基站B使用功率向蜂窝接收端C发射能量归一化信息码元xC,此时D2D发射端R的天线为接收状态,对基站B发射的码元xC进行接收、解码处理,解码后的信息码元为
j.在半双工中继传输的第二个时隙,基站B停止传输信息,D2D发射端R将发射功率加载到信息码元中,将发射功率加载到信息码元xE中,发射端R的天线同时向处于接收状态的接收端C和接收端E广播信息码元信息
k.接收端C在接收到的发射端R中继的集成码元信息xR后,将码元xR中的xE部分当作干扰,仅对 x ~ C 部分进行解码,从而获得数据吞吐量 T C = 1 2 W log 2 ( 1 + min ( γ ‾ B , R opt , γ ‾ R , C opt ) ) ;
接收端E在接收到发射端R中继的集成码元信息xR后,将码元xR中的部分当作干扰,仅对xE部分进行解码,从而获得数据吞吐量
本发明已经进行了多次仿真实施试验,下面具体介绍实施例及其性能分析。仿真实施例是图1所示的D2D蜂窝网络系统。接收端C处于蜂窝小区边缘,采用蜂窝通信模式;用户发射端R和接收端E采用D2D模式通信。假设蜂窝接C执行语音通信业务,最小数据吞吐量需求为20Kbit/s,其他实施例的仿真参数预设如下表所示:
参数 数值
信道带宽W 0.1MHz
基站B和发射端R的发射用总功率P 2W
基站B与发射端R之间的信噪比γB,R 5dB
基站B与接收端C之间的信噪比γB,C -5dB
基站B与接收端E之间的信噪比γB,E -5dB
在仿真实施中,蜂窝接收端C的吞吐量始终被保持在20Kbit/s,不再以图形示出。为了体现本发明的优越性,接收端E在蜂窝通信模式中所能获得的吞吐量为性能比较基准。在上述参数设置下,如果接收端E采用蜂窝通信模式,所能获得的数据吞吐量也为20Kbit/s。
如图3所示,将发射端R与接收端C之间的信噪比γR,C固定为5dB,介绍采用本发明提供的功率控制方案,接收端E所获得吞吐量增益(用户采用D2D通信模式所获得的吞吐量增益与接收端E采用蜂窝通信模式所能获得的吞吐量之差)随中继链路的信道噪声比(即γB,R)以及D2D链路的信道噪声比(即γR,E)变化的关系示意图。当D2D链路的信道噪声比(即γB,R)大于7dB时,本发明基于时域半双工中继的D2D通信模式可以获得比传统蜂窝通信模式更高的数据吞吐量。这是因为D2D发射发射端R作为中继节点,能将处于深度衰落的单跳蜂窝通信链路(从基站B至接收端C)分解为两跳数据链路。因此,尽管半双工中继理论上只能获得1/2的频谱资源利用率,但是通过对D2D通信和蜂窝通信进行有效的功率控制,就能在相同的功耗条件下,既满足蜂窝通信最小数据吞吐量需求,又可以优化D2D通信的数据吞吐量。
将发射端R与接收端E之间的信道噪声比(即γR,E)固定为5dB,如图4所示,介绍采用本发明提供的功率控制方案,接收端E所获得吞吐量增益随蜂窝用户两跳中继链路的信道噪声比(即γB,R和γR,C)变化的关系示意图。当第一跳中继链路的信道噪声比(即γR,C)大于7dB时,本发明基于时域半双工中继的D2D通信模式可以获得比传统蜂窝通信模式更高的数据吞吐量。本发明方法实施例的试验是成功的,实现了发明目的。

Claims (5)

1.一种D2D蜂窝网络中基于时域半双工中继的功率控制方法,包括采用点对多点拓扑结构蜂窝网发射的基站B和蜂窝网接收端C、作为蜂窝通信中继的D2D发射端R和D2D接收接收端E,构成一个由接收端C、发射端R和接收接收端E受基站B控制的嵌入D2D通信的蜂窝通信网络,所述发射端R、接收端C、接收端E均为配置一支天线的时域半双工移动终端,其特征在于步骤如下:
a.基站B通过蜂窝网控制信道向接收端C发送建立通信链路的请求后,当接收端C接收到基站B的信号强度大于等于预设值时,则向基站B反馈信息,基站B与接收端C建立通信链路,此时D2D发射端R和接收接收端E仅进行D2D通信;
b.当接收端C接收到基站B的信号强度小于预设值时,则不与基站B组建通信链路,此时基站B向D2D发射端R发送数据中继请求并与发射端R的天线建立第一跳蜂窝中继通信链路,D2D发射端R再通过天线发射与接收端C建立通信链路的请求,当接收端C接收到发射端R的请求后即与D2D发射端R建立蜂窝网的第二跳中继通信链路;
c.基站B通过蜂窝网专用控制信道(SDCCH)获得基站B到发射端R处的信道功率增益gB,R,从接收端C处得到基站B到接收端C的信道功率增益gB,C和发射端R到接收端C的信道功率增益gR,C,从接收端E处得到基站B到接收端E的信道功率增益gB,E和发射端R到接收端E的信道功率增益gR,E
d.基站B通过公式:分别计算基站B与发射端R、基站B与接收端C、基站B与接收端E之间的信道噪声比γB,R、γB,C、γB,E,通过公式: 分别计算发射端R与接收端C、发射端R与接收端E之间的信道噪声比γR,C、γR,E,式中:发射端R、接收端C、接收端E的噪声功率均为σ2
e.基站B通过公式:分别求取基站B和发射端R的最优发射功率并通过公式:
α opt = max ( 0 , min ( 1 , γ B , R γ R , C - ( p R opt ) 2 γ R , C + p R opt ( P γ R , C - 1 ) + P - ( p R opt ) 2 γ B , R + p R opt ( P γ B , R + 1 ) ) ) , 且0≤αopt<1,求取发射端R为中继蜂窝用户C的信息码元所分配的最优发射功率比例αopt,式中:pB为基站B的发射功率,pR为发射端R的发射功率,基站B和发射端R的联合功率约束为P,即pB+pR=P,G为常数,且 为蜂窝网接收端C的最小数据吞吐量约束,W为蜂窝通信和D2D通信共享的信道带宽;
f.基站B通过公式:得到基站B与发射端R之间的最优信号噪声比通过公式:计算出发射端R与接收端C之间的最优信干噪比并通过公式:计算出发射端R与接收端E之间的最优信干噪比
g.当时,基站B将步骤e中得到的发射端R的最优发射功率和最优功率比例αopt,通过专用控制信道传输给发射端R,控制发射端R使用最优发射功率和最优发射功率比例αopt分别向接收端C和接收端E发射数据信息;
h.当 γ ‾ B , R opt ≥ γ ‾ R , C opt , 则基站B通过公式: α opt = max ( 0 , min ( 0 , - Y + Y 2 - 4 XZ 2 X ) ) , 重新计算最优功率比例αopt,并通过公式: p B opt = max ( 0 , P - 1 γ R , C G α opt ( G + 1 ) - G ) p R opt = max ( 0 , 1 γ R , C G α opt ( G + 1 ) - G ) , 重新计算基站B和发射端R的最优发射功率式中:参数X=(G+1)(γR,C)2(PγB,R-G),参数参数Z=-2P(GγR,C)2γB,R
根据重新获得的最优功率比例αopt、基站B和发射端R的最优发射功率基站B通过公式:重新得到发射端R与接收端C之间的最优信号干扰噪声比基站B通过公式:重新得到发射端R与接收端E之间的最优信号干扰噪声比基站B将重新计算得到的发射端R最优发射功率和最优功率比例αopt通过专用控制信道传输给发射端R,控制发射端R使用最优发射功率和最优发射功率比例αopt分别向接收端C和接收端E发射数据信息;
i.传输数据信息时,在半双工中继传输的第一个时隙,基站B使用功率向蜂窝接收端C发射能量归一化信息码元xC,此时D2D发射端R的天线为接收状态,对基站B发射的码元xC进行接收、解码处理,解码后的信息码元为
j.在半双工中继传输的第二个时隙,基站B停止传输信息,D2D发射端R将发射功率加载到信息码元中,将发射功率加载到信息码元xE中,发射端R的天线同时向处于接收状态的接收端C和接收端E广播信息码元信息
k.接收端C在接收到的发射端R中继的集成码元信息xR后,将码元xR中的xE部分当作干扰,仅对部分进行解码,从而获得数据吞吐量TC
接收端E在接收到发射端R中继的集成码元信息xR后,将码元xR中的部分当作干扰,仅对xE部分进行解码,从而获得数据吞吐量TE
2.根据权利要求1所述的嵌入D2D的蜂窝网络中基于全双工中继的功率控制方法,其特征在于:所述步骤b中基站B向D2D发射端R发送数据中继请求后发射端R作为蜂窝通信链路的中继节点需要通过公式:γR,C<min{γB,RB,C}判断,当公式γR,C<min{γB,RB,C}为真时,则D2D发射发射端R作为蜂窝通信链路的中继节点,将处于深度衰落甚至无法保证通信质量的基站B到接收端C单跳蜂窝通信链路分裂为两跳数据链路;当公式γR,C<min{γB,RB,C}为假时,则D2D发射端R无法提高蜂窝通信链路的信道质量,发射端R不对基站B到接收端C单跳蜂窝通信链路进行中继。
3.根据权利要求1所述的嵌入D2D的蜂窝网络中基于全双工中继的功率控制方法,其特征在于:所述步骤e中在总发射功率受限的条件下,建立基站B和D2D发射端R的联合功率控制满足的条件为:
( p B opt , p R opt , α opt ) = arg max ( p B , p R , α ) T E ,
约束条件: T C = T C min ,
pB+pR=P,pB≥0,pR≥0,
0≤α<1,
其中,TE和TC分别表示D2D用户E和蜂窝用户C的数据吞吐量:
T E = W log 2 ( 1 + γ ‾ R , E ) , TC=Wlog2(1+pBγB,R), γ ‾ R , E = ( 1 - α ) p R γ R , E α p R γ R , E + 1 ,
α表示发射端R为中继蜂窝用户C的信息码元所分配的功率比例;
通过上述计算从而得到最优功率控制
4.根据权利要求1所述的嵌入D2D的蜂窝网络中基于全双工中继的功率控制方法,其特征在于:所述步骤h中在总发射功率受限的条件下,建立基站B和D2D发射端R的联合功率控制满足的条件为:
在总发射功率受限的条件下,建立基站B和D2D发射端R的联合功率控制数学模型:
( p B opt , p R opt , α opt ) = arg max ( p B , p R , α ) T E ,
约束条件: T C = T C min ,
pB+pR=P,pB≥0,pR≥0,
0≤α<1,
其中, T C = W log 2 ( 1 + γ ‾ R , C ) , γ ‾ R , C = α p R γ R , C ( 1 - α ) p R γ R , C + 1 .
5.根据权利要求1所述的D2D蜂窝网络中基于时域半双工中继的功率控制方法,其特征在于:所述步骤k中,码元的数据吞吐量为 T C = 1 2 W log 2 ( 1 + min ( γ ‾ B , R opt , γ ‾ R , C opt ) ) , 码元xE的数据吞吐量为 T E = 1 2 W log 2 ( 1 + γ ‾ R , E opt ) .
CN201410588547.8A 2014-10-28 2014-10-28 D2d蜂窝网络中基于时域半双工中继的功率控制方法 Expired - Fee Related CN104301984B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410588547.8A CN104301984B (zh) 2014-10-28 2014-10-28 D2d蜂窝网络中基于时域半双工中继的功率控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410588547.8A CN104301984B (zh) 2014-10-28 2014-10-28 D2d蜂窝网络中基于时域半双工中继的功率控制方法

Publications (2)

Publication Number Publication Date
CN104301984A true CN104301984A (zh) 2015-01-21
CN104301984B CN104301984B (zh) 2018-02-09

Family

ID=52321491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410588547.8A Expired - Fee Related CN104301984B (zh) 2014-10-28 2014-10-28 D2d蜂窝网络中基于时域半双工中继的功率控制方法

Country Status (1)

Country Link
CN (1) CN104301984B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104735744A (zh) * 2015-03-23 2015-06-24 南京邮电大学 一种基于终端直通通信的多跳中继路由的设计方法
CN105142208A (zh) * 2015-09-25 2015-12-09 中国矿业大学 嵌入m2m的蜂窝网络中高能效的功率和时隙分配方法
CN105722016A (zh) * 2016-02-05 2016-06-29 中国矿业大学 分层m2m网络中网关和终端发射功率的协同控制方法
CN105813189A (zh) * 2016-03-07 2016-07-27 东南大学 一种蜂窝网中的d2d分布式功率优化方法
CN106304165A (zh) * 2016-08-12 2017-01-04 辛建芳 基于排队理论的d2d蜂窝异构网络的性能分析方法
CN108770034A (zh) * 2018-05-17 2018-11-06 浙江工业大学 一种无线蜂窝网中用于多播簇的低能耗多播方法
US10148370B2 (en) 2015-05-29 2018-12-04 Beijing Zhigu Rui Tuo Tech Co., Ltd Interference measuring method and interference measuring apparatus
CN109219026A (zh) * 2018-11-13 2019-01-15 西安交通大学 上行中继网络中基于能量捕获和干扰消除的d2d传输方法
US10206234B2 (en) 2015-05-29 2019-02-12 Beijing Zhigu Rui Tuo Tech Co., Ltd D2D communication control method, D2D communication method, and apparatuses thereof
CN109661026A (zh) * 2018-12-06 2019-04-19 南京邮电大学 一种基于noma的d2d辅助中继系统功率分配方法
US10291373B2 (en) 2015-05-29 2019-05-14 Beijing Zhigu Rui Tuo Tech Co., Ltd D2D communication control method and control apparatus
US10454639B2 (en) 2015-05-29 2019-10-22 Beijing Zhigu Rui Tuo Tech Co., Ltd D2D communication method and D2D communication apparatus
US11012205B2 (en) 2015-05-29 2021-05-18 Beijing Zhigu Rui Tuo Tech Co., Ltd D2D communication control method and control apparatus
CN113365251A (zh) * 2021-05-31 2021-09-07 浙江大华技术股份有限公司 监控数据的传输方法及装置、存储介质、电子装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103476140A (zh) * 2013-09-05 2013-12-25 北京邮电大学 蜂窝系统中d2d和固定中继两种协作多播模式的选择方法
US20140056230A1 (en) * 2012-08-22 2014-02-27 Telefonaktiebolaget L M Ericsson (Publ) Dynamic spectrum band selection for d2d communications
CN103716853A (zh) * 2013-10-22 2014-04-09 南京邮电大学 一种终端直通通信系统中的自适应多中继选择方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140056230A1 (en) * 2012-08-22 2014-02-27 Telefonaktiebolaget L M Ericsson (Publ) Dynamic spectrum band selection for d2d communications
CN103476140A (zh) * 2013-09-05 2013-12-25 北京邮电大学 蜂窝系统中d2d和固定中继两种协作多播模式的选择方法
CN103716853A (zh) * 2013-10-22 2014-04-09 南京邮电大学 一种终端直通通信系统中的自适应多中继选择方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHIA-HAO YU,KLAUS DOPPLER等: "Resource Sharing Optimization for Device-to-Device Communication Underlaying Cellular Networks", 《IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS》 *
YIYANG PEI,YING-CHANG LIANG: "Resource Allocation for Device-to-Device Communication Overlaying Two-Way Cellular Networks", 《IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104735744A (zh) * 2015-03-23 2015-06-24 南京邮电大学 一种基于终端直通通信的多跳中继路由的设计方法
CN104735744B (zh) * 2015-03-23 2019-03-05 南京邮电大学 一种基于终端直通通信的多跳中继路由的设计方法
US10148370B2 (en) 2015-05-29 2018-12-04 Beijing Zhigu Rui Tuo Tech Co., Ltd Interference measuring method and interference measuring apparatus
US11012205B2 (en) 2015-05-29 2021-05-18 Beijing Zhigu Rui Tuo Tech Co., Ltd D2D communication control method and control apparatus
US10454639B2 (en) 2015-05-29 2019-10-22 Beijing Zhigu Rui Tuo Tech Co., Ltd D2D communication method and D2D communication apparatus
US10291373B2 (en) 2015-05-29 2019-05-14 Beijing Zhigu Rui Tuo Tech Co., Ltd D2D communication control method and control apparatus
US10206234B2 (en) 2015-05-29 2019-02-12 Beijing Zhigu Rui Tuo Tech Co., Ltd D2D communication control method, D2D communication method, and apparatuses thereof
CN105142208B (zh) * 2015-09-25 2019-01-11 中国矿业大学 嵌入m2m的蜂窝网络中高能效的功率和时隙分配方法
CN105142208A (zh) * 2015-09-25 2015-12-09 中国矿业大学 嵌入m2m的蜂窝网络中高能效的功率和时隙分配方法
CN105722016A (zh) * 2016-02-05 2016-06-29 中国矿业大学 分层m2m网络中网关和终端发射功率的协同控制方法
CN105722016B (zh) * 2016-02-05 2019-05-17 中国矿业大学 分层m2m网络中网关和终端发射功率的协同控制方法
CN105813189A (zh) * 2016-03-07 2016-07-27 东南大学 一种蜂窝网中的d2d分布式功率优化方法
CN105813189B (zh) * 2016-03-07 2018-12-14 东南大学 一种蜂窝网中的d2d分布式功率优化方法
CN106304165B (zh) * 2016-08-12 2019-09-06 正链科技(深圳)有限公司 基于排队理论的d2d蜂窝异构网络的性能分析方法
CN106304165A (zh) * 2016-08-12 2017-01-04 辛建芳 基于排队理论的d2d蜂窝异构网络的性能分析方法
CN108770034A (zh) * 2018-05-17 2018-11-06 浙江工业大学 一种无线蜂窝网中用于多播簇的低能耗多播方法
CN108770034B (zh) * 2018-05-17 2020-06-02 浙江工业大学 一种无线蜂窝网中用于设备到设备多播簇的低能耗多播方法
CN109219026A (zh) * 2018-11-13 2019-01-15 西安交通大学 上行中继网络中基于能量捕获和干扰消除的d2d传输方法
CN109219026B (zh) * 2018-11-13 2020-11-10 西安交通大学 上行中继网络中基于能量捕获和干扰消除的d2d传输方法
CN109661026A (zh) * 2018-12-06 2019-04-19 南京邮电大学 一种基于noma的d2d辅助中继系统功率分配方法
CN113365251A (zh) * 2021-05-31 2021-09-07 浙江大华技术股份有限公司 监控数据的传输方法及装置、存储介质、电子装置

Also Published As

Publication number Publication date
CN104301984B (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
CN104301984A (zh) D2d蜂窝网络中基于时域半双工中继的功率控制方法
CN104284407B (zh) 嵌入d2d的蜂窝网络中基于全双工中继的功率控制方法
CN106535284B (zh) 一种基于全双工中继的d2d通信中的功率控制方法
CN103491634B (zh) 多用户协作中继系统中基于功率最小化的资源分配方法
CN101013912B (zh) 集中式无线多跳接入网的功率控制方法
CN105610485A (zh) 一种无线中继通信系统携能传输方法
Ojo et al. Throughput analysis of a hybridized power-time splitting based relaying protocol for wireless information and power transfer in cooperative networks
CN102065518B (zh) 迭代增强型放大转发协作通信方法
CN102740303B (zh) 改进型中继系统的联合功率分配和子载波匹配方法
Khosravirad et al. Exploiting diversity for ultra-reliable and low-latency wireless control
CN101951645B (zh) 一种蜂窝中继网络中的下行自适应传输方法
CN105007631A (zh) 一种协作认知网络中保证QoS要求的联合资源分配方法
CN104702395A (zh) 一种协作认知网络中公平且能效高的联合资源分配方法
CN105554805A (zh) 用于蜂窝网络的带内全双工d2d通信链路干扰消除方法
CN104967472A (zh) 全双工双向译码转发中继的最优功率分配和中继部署方法
CN103369646A (zh) 一种功率分配方法、系统及装置
Zhang et al. Optimizing network sustainability and efficiency in green cellular networks
CN112242897B (zh) 一种传输信号的方法和装置
CN106170140A (zh) 一种最小化系统功耗的d2d协作传输方法
CN102802241B (zh) 一种高能效无线中继选择方法
Raziah et al. An adaptive best relay selection for energy efficient cooperative D2D communications
Shi et al. Power control for relay-assisted device-to-device communication underlaying cellular networks
CN102202413B (zh) 一种联合网络编码和用户配对的资源调度方法
CN106973428A (zh) 一种提升系统吞吐量的d2d协作传输方法
CN111787545B (zh) 基于能量收集的全双工认知中继功率分配方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 221116 Jiangsu province Xuzhou City University Road Copper Mountain China University of Mining and Technology Research Institute

Applicant after: China University of Mining & Technology

Address before: 221116 Research Institute, China University of Mining and Technology, Xuzhou University, Jiangsu, China,

Applicant before: China University of Mining & Technology

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180209

Termination date: 20201028

CF01 Termination of patent right due to non-payment of annual fee