CN104295476B - 电动泵控制装置 - Google Patents

电动泵控制装置 Download PDF

Info

Publication number
CN104295476B
CN104295476B CN201410314783.0A CN201410314783A CN104295476B CN 104295476 B CN104295476 B CN 104295476B CN 201410314783 A CN201410314783 A CN 201410314783A CN 104295476 B CN104295476 B CN 104295476B
Authority
CN
China
Prior art keywords
mentioned
drive system
cooling medium
control portion
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410314783.0A
Other languages
English (en)
Other versions
CN104295476A (zh
Inventor
滨井笃司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Publication of CN104295476A publication Critical patent/CN104295476A/zh
Application granted granted Critical
Publication of CN104295476B publication Critical patent/CN104295476B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/24Hybrid vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

提供能够确保电驱动系统的冷却性能并且抑制电动泵的功耗的电动泵控制装置。具备:电驱动系统,其包括多个部件,上述多个部件包括驱动电动机、驱动驱动电动机的驱动电路以及充电式电池;电动泵,其使冷却介质在循环通路中循环,该循环通路形成为经过多个部件;以及ECU,其控制由电动泵循环的冷却介质的流量。ECU根据冷却温度传感器检测出的冷却介质的温度和各部件的电驱动系统控制部所请求的驱动状态(步骤S3、S5),控制冷却介质的流量(步骤S4、S8、S9)。

Description

电动泵控制装置
技术领域
本发明涉及电动泵控制装置,具体地说,涉及对使调节车辆的电驱动系统的温度的冷却介质循环的电动泵进行控制的电动泵控制装置。
背景技术
以往,作为调节车辆的电驱动系统的温度的装置,已知根据用于冷却电动机等的电驱动系统的冷却水的温度对使冷却水循环的电动泵进行开启/关闭控制从而调整冷却水的温度的装置。
但是,在对电动泵进行开启/关闭控制的装置开启电动泵时,冷却水会以最大的流量循环,因此,存在电动泵的功耗变大的问题。
作为解决这种问题的装置,例如在专利文献1中提出了一种装置,其以根据在与电驱动系统连接的循环通路中循环的冷却介质的温度来切换冷却介质以层流形式流过热交换器的第1流量和冷却介质以湍流形式流过热交换器的第2流量的方式控制电动泵的驱动。
另外,在专利文献2中提出了一种冷却系统,在该冷却系统中形成有使冷却介质在包括内燃机的第1驱动系统中循环的循环流路和使冷却介质绕过该循环流路而在包括电动机和电动机用驱动电路的第2驱动系统中循环的第2驱动系统用流路,控制在循环流路中循环的冷却介质的流量与在循环流路及第2驱动系统用流路中循环的冷却介质的流量的分配,以使根据内燃机的转速和转矩的流量的冷却介质在循环流路中循环而根据冷却介质的温度和流过电动机用驱动电路的电流值的流量的冷却介质在第2驱动系统用流路中循环。
现有技术文献
专利文献
专利文献1:特许第4052256号公报
专利文献2:特许第4631652号公报
发明内容
发明要解决的问题
然而,专利文献1所记载的装置根据冷却介质的温度来控制电动泵的驱动,因此,有如下问题:有时会以比与电驱动系统所需要的冷却性能相应的流量大的流量使冷却介质循环,有可能消耗本来电动泵不需要消耗的电力。
另外,在专利文献2所记载的冷却系统中,冷却第1驱动系统的冷却介质和冷却第2驱动系统的冷却介质是共用的,因此,在包括内燃机的第1驱动系统成为高温的情况下,冷却介质的温度也会上升,从而存在如下问题:有可能无法确保包括电动机和电动机用驱动电路的第2驱动系统即电驱动系统的冷却性能。
因此,本发明是为了解决这种问题而完成的,其目的在于,提供能够确保电驱动系统的冷却性能,并且抑制电动泵的功耗的电动泵控制装置。
用于解决问题的方案
本发明的第1方式是车辆的电动泵控制装置,上述车辆具备:电驱动系统,其包括多个部件,上述多个部件包括驱动电动机、驱动驱动电动机的驱动电路以及充电式电池;电动泵,其使冷却介质在循环通路中循环,该循环通路形成为经过多个部件;以及热交换器,其设置于循环通路,与冷却介质进行热交换,上述车辆至少以驱动电动机为驱动源,上述电动泵控制装置的特征在于,具备:电动泵控制部,其控制由电动泵循环的冷却介质的流量;以及冷却温度传感器,其检测冷却介质的温度,上述车辆还具备:车速传感器,其检测上述车辆的车速;以及冷却风扇,其设置于上述热交换器,在预先设定的驱动条件成立的情况下驱动,在上述电动泵控制装置中,具备多个电驱动系统控制部,其分别设置于多个部件,控制部件的驱动,并且向电动泵控制部请求电动泵的驱动状态,电动泵控制部根据冷却温度传感器检测出的温度和电驱动系统控制部所请求的驱动状态,控制冷却介质的流量上述电动泵控制部在满足上述多个部件的上述电驱动系统控制部中的至少1个电驱动系统控制部请求了上述电动泵的驱动、上述车速传感器检测出的车速为规定值以上或者上述冷却风扇的驱动条件成立时,根据上述冷却温度传感器检测出的温度设定上述冷却介质的流量。
作为本发明的第2方式,可以是:多个电驱动系统控制部具有分别检测多个部件的内部温度的内部温度传感器,根据内部温度传感器检测出的内部温度,请求停止、驱动或者最大驱动中的任一种状态作为电动泵的驱动状态。
作为本发明的第3方式,可以是:车辆还具备检测车辆的车速的车速传感器和设置于热交换器而在预先设定的驱动条件成立的情况下驱动的冷却风扇,电动泵控制部在满足多个部件的电驱动系统控制部中的至少1个电驱动系统控制部请求了电动泵的驱动、车速传感器检测出的车速为规定值以上或者冷却风扇的驱动条件成立时,根据冷却温度传感器检测出的温度设定冷却介质的流量。
作为本发明的第4方式,可以是:电动泵控制部以冷却温度传感器检测出的温度为规定值以下时为条件,将冷却介质的流量设定为最小的流量。
作为本发明的第5方式,可以是:电动泵控制部以多个部件的电驱动系统控制部中的至少1个电驱动系统控制部请求了最大驱动时为条件,将冷却介质的流量设定为最大的流量。
作为本发明的第6方式,可以是:还具备判定充电式电池是否在充电中的充电中判定部,电动泵控制部以充电中判定部判定为在充电中时为条件,根据冷却温度传感器检测出的温度和电驱动系统控制部所请求的驱动状态,控制冷却介质的流量。
作为本发明的第7方式,是车辆的电动泵控制装置,上述车辆具备:电驱动系统,其包括多个部件,上述多个部件包括驱动电动机、驱动驱动电动机的驱动电路以及充电式电池;电动泵,其使冷却介质在循环通路中循环,该循环通路形成为经过多个部件;以及热交换器,其设置于循环通路,与冷却介质进行热交换,上述车辆至少以驱动电动机为驱动源,上述电动泵控制装置的特征在于,具备:电动泵控制部,其控制由电动泵循环的冷却介质的流量,上述车辆还具备:车速传感器,其检测上述车辆的车速;以及冷却风扇,其设置于上述热交换器,在预先设定的驱动条件成立的情况下驱动,在上述电动泵控制装置中,具备多个电驱动系统控制部,其分别设置于多个部件,控制部件的驱动,并且分别算出多个部件所需要的冷却介质的流量,电动泵控制部将冷却介质的流量设定为由电驱动系统控制部算出的流量中的最大的流量,上述电动泵控制部在 上述多个部件的上述电驱动系统控制部算出的流量中的最大的流量为规定值以下的状态下,以上述车速传感器检测出的车速小于规定值和上述冷却风扇的驱动条件不成立时为条件,将上述冷却介质的流量设定为零。
作为本发明的第8方式,可以是:多个电驱动系统控制部具有分别检测多个部件的内部温度的内部温度传感器,以内部温度传感器检测出的内部温度达到规定值以上时为条件,算出使内部温度小于规定值所需要的冷却介质的流量。
作为本发明的第9方式,也可以是:车辆还具备检测车辆的车速的车速传感器和设置于热交换器而在预先设定的驱动条件成立的情况下驱动的冷却风扇,电动泵控制部在多个部件的电驱动系统控制部算出的流量中的最大的流量为规定值以下的状态下,以车速传感器检测出的车速小于规定值和冷却风扇的驱动条件不成立时为条件,将冷却介质的流量设定为零。
发明效果
这样,在上述的第1方式中,根据冷却温度传感器检测出的温度和电驱动系统控制部所请求的驱动状态控制冷却介质的流量,从而以电驱动系统的各部件所需要的冷却性能驱动电动泵,因此,能够确保电驱动系统的冷却性能,并且抑制电动泵的功耗。
在上述的第2方式中,根据电驱动系统的各部件的内部温度,各电驱动系统控制部请求电动泵的驱动状态,因此,能够确保各部件所需要的冷却性能。
在上述的第3方式中,以至少1个部件的电驱动系统控制部请求了电动泵的驱动为条件,根据冷却介质的温度设定冷却介质的流量,因此,能够确保具有请求了电动泵的驱动的电驱动系统控制部的部件所需要的冷却性能,并且抑制电动泵的功耗。
另外,在上述的第3方式中,即使没有从电驱动系统控制部请求电动泵的驱动,也以车速为规定值以上为条件,根据冷却介质的温度设定冷却介质的流量,因此,在由热交换器进行的热交换量变多的高速行驶时,抑制冷却介质的温度使其不上升,由此,使从电驱动系统控制部请求电动泵的驱动的频率减少。其结果是,上述的第3方式能够抑制电动泵的功耗。
另外,在上述的第3方式中,即使没有从电驱动系统控制部请 求电动泵的驱动,也以冷却风扇的驱动条件成立为条件,根据冷却介质的温度设定冷却介质的流量,因此,在由热交换器进行的热交换量变多的冷却风扇的驱动时,抑制冷却介质的温度使其不上升,由此,使从电驱动系统控制部请求电动泵的驱动的频率减少。其结果是,上述的第3方式能够抑制电动泵的功耗。
在上述的第4方式中,以冷却介质的温度为规定值以下时为条件,将冷却介质的流量设定为最小的流量,由此,使循环通路中的冷却介质的温度分布均匀,防止因冷却介质局部成为高温而不必要地驱动电动泵,因此,能够抑制电动泵的功耗。
在上述的第5方式中,以至少1个部件的电驱动系统控制部请求了最大驱动时为条件,将冷却介质的流量设定为最大的流量,因此,能够将内部温度为最高的部件尽快冷却,并且抑制因该部件而成为高温的冷却介质使其它部件的内部温度上升。
在上述的第6方式中,以充电式电池是在充电中时为条件,根据冷却温度传感器检测出的温度和电驱动系统控制部所请求的驱动状态,控制冷却介质的流量,以电驱动系统的各部件所需要的冷却性能驱动电动泵,因此,能够确保充电式电池在充电中时的电驱动系统的冷却性能,并且抑制电动泵的功耗。
在上述的第7方式中,设定冷却介质的流量使其成为由各部件的电驱动系统控制部算出的冷却介质的流量中的最大的流量,由此,准确地设定电驱动系统所需要的冷却介质的流量,因此,能够确保电驱动系统的冷却性能,并且抑制电动泵的功耗。
另外,在上述的第7方式中,由于设定冷却介质的流量使其成为由各部件的电驱动系统控制部算出的流量中的最大的流量,因此,能够不检测冷却介质的温度地设定冷却介质的流量。
在上述的第8方式中,各部件的电驱动系统控制部算出使各部件的内部温度小于规定值所需要的最大的流量,因此,能够确保各部件所需要的冷却性能。
在上述的第9方式中,在多个部件的电驱动系统控制部算出的冷却介质的流量中的最大的流量为规定值以下的状态下,在电驱动系统的内部温度不太会上升的停车时、极低速行驶时,以冷却风扇没有驱动为条件,将冷却介质的流量设定为零,因此,能够抑制电动泵的功耗。
另外,在上述的第9方式中,即使多个部件的电驱动系统控制部算出的冷却介质的流量中的最大的流量为规定值以下,也以车速是规定值以上为条件,将冷却介质的流量设定为该最大的流量,因此,在由热交换器进行的热交换量变多的高速行驶时,抑制冷却介质的温度使其不上升,由此,抑制由电驱动系统控制部算出的冷却介质的流量。其结果是,上述的第9方式能够抑制电动泵的功耗。
另外,在上述的第9方式中,即使多个部件的电驱动系统控制部算出的冷却介质的流量中的最大的流量为规定值以下,也以冷却风扇的驱动条件成立为条件,将冷却介质的流量设定为该最大的流量,因此,在由热交换器进行的热交换量变多的冷却风扇的驱动时,抑制冷却介质的温度使其不上升,由此,抑制由电驱动系统控制部算出的冷却介质的流量。其结果是,上述的第9方式能够抑制电动泵的功耗。
附图说明
图1是示出搭载有本发明的第1实施方式的电动泵控制装置的车辆的主要部分的构成图。
图2是示出由本发明的第1实施方式的电动泵控制装置参照的映射的曲线图。
图3是示出由本发明的第1实施方式的电动泵控制装置进行的电动泵控制动作的流程图。
图4是示出搭载有本发明的第2实施方式的电动泵控制装置的车辆的主要部分的构成图。
图5是由本发明的第2实施方式的电动泵控制装置参照的映射的曲线图。
图6是示出由本发明的第2实施方式的电动泵控制装置进行的电动泵控制动作的流程图。
附图标记说明
1 车辆
2 电驱动系统
3 ECU
10 驱动电动机
11 驱动电路
12 充电式电池
13 充电电路
14 充电连接器
15 循环通路
16 电动泵
17 热交换器
18 冷却温度传感器
19 冷却风扇
20a~20d 电驱动系统控制部
21a~21d 内部温度传感器
30 车速传感器
100 电动泵控制部
101 充电中判定部
具体实施方式
以下,参照附图来详细说明本发明的实施方式。
(第1实施方式)
如图1所示,搭载有本发明的第1实施方式的电动泵控制装置的车辆1构成电动汽车,包括电驱动系统2和ECU(Electronic Control Unit:电子控制单元)3而构成。
电驱动系统2由包括成为车辆1的驱动源的驱动电动机10、驱动驱动电动机10的驱动电路11、充电式电池12以及充电电路13的多个部件构成。驱动电动机10将电力和旋转力相互变换。
驱动电动机10例如具备:定子,其形成旋转磁场;以及转子,其配置于定子的内部,埋入有多个永久磁铁。定子具备定子铁心和卷绕于定子铁心的三相线圈。
在这样构成的驱动电动机10中,当对定子的三相线圈供给三相 交流电力时,由定子形成旋转磁场,埋入转子的永久磁铁被该旋转磁场牵引,从而对转子进行旋转驱动。这样,驱动电动机10作为电动机发挥功能。
此外,在驱动电动机10中,当埋入转子的永久磁铁旋转时,形成旋转磁场,该旋转磁场使定子的三相线圈中产生感应电流,从而在三相线圈的两端产生电力。这样,驱动电动机10还作为发电机发挥功能。
驱动电路11具备逆变器和升压电路。驱动电路11根据ECU3进行的控制,在驱动电动机10和充电式电池12之间交换电力,使充电式电池12充放电。
充电电路13与充电连接器14连接,用从充电连接器14输入的电力对充电式电池12充电。充电电路13具有将从充电连接器14输入的交流电力变换为直流电力的变流器。
在电驱动系统2中,循环通路15形成为经过多个部件。在循环通路15中设置有使冷却水等冷却介质循环的电动泵16、与冷却介质进行热交换的热交换器17以及检测冷却介质的温度的冷却温度传感器18。
电动泵16是能够对循环通路15的冷却介质施加与ECU3的控制相应的压力来将其排出的排出能力可变的类型的电动泵,例如由圆周流泵构成。
电动泵16具有通过旋转来带动冷却介质的叶轮和以使叶轮旋转的方式驱动的内置电动机。电动泵16根据ECU3给出的负荷控制驱动内置电动机,由此,能够使在循环通路15中循环的冷却介质的流量在规定的最小流量至规定的最大流量之间变化。
热交换器17使从车辆1的外部流入的空气与冷却介质之间进行热交换,由此,将冷却介质冷却。在热交换器17中,为了促进冷却介质的冷却而设置有冷却风扇19。冷却风扇19根据ECU3的控制来驱动。
在本实施方式中,电驱动系统2的各部件具备控制该部件的驱动的电驱动系统控制部20a~20d,电驱动系统控制部20a~20d分别 具有检测该部件的内部温度的内部温度传感器21a~21d。
各电驱动系统控制部20a~20d根据各内部温度传感器21a~21d检测出的内部温度,向ECU3请求“停止”、“驱动”或者“最大驱动”中的任一种状态作为电动泵16的驱动状态。
具体地说,各电驱动系统控制部20a~20d在各内部温度传感器21a~21d检测出的内部温度T小于第1阈值T1的情况下,向ECU3请求“停止”作为电动泵16的驱动状态。
另外,各电驱动系统控制部20a~20d在各内部温度传感器21a~21d检测出的内部温度T为第1阈值T1以上且小于第2阈值T2的情况下,向ECU3请求“驱动”作为电动泵16的驱动状态。
另外,各电驱动系统控制部20a~20d在各内部温度传感器21a~21d检测出的内部温度T为第2阈值T2以上的情况下,向ECU3请求“最大驱动”作为电动泵16的驱动状态。
在此,第1阈值T1和第2阈值T2是按每个电驱动系统控制部20a~20d预先确定的。此外,为了使各电驱动系统控制部20a~20d具有滞后性,也可以使第1阈值T1和第2阈值T2在“停止”、“驱动”、“最大驱动”的方向请求的值与在“最大驱动”、“驱动”、“停止”的方向请求的值分别不同。
ECU3由具备CPU(Central Processing Unit:中央处理单元)、RAM(Random Access Memory:随机存取存储器)、ROM(Read Only Memory:只读存储器)、闪存、输入端口以及输出端口的计算机单元构成。在ECU3的ROM中,存储有各种控制常数、各种映射等以及用于使该计算机单元作为ECU3发挥功能的程序。
即,在ECU3中,CPU从ROM将程序读入RAM,将RAM的一部分的存储区域作为作业区域来执行读入的程序,从而该计算机单元作为ECU3发挥功能。
在本实施方式中,ECU3的输入端口除了连接有冷却温度传感器18和电驱动系统控制部20a~20d以外,还连接有检测车辆1的车速的车速传感器30。另一方面,ECU3的输出端口连接有电动泵16、冷却风扇19以及电驱动系统控制部20a~20d。
ECU3以车辆1为可行驶状态或者充电式电池12在充电中时为条件,根据冷却温度传感器18检测出的温度和电驱动系统控制部20a~20d所请求的驱动状态,控制冷却介质的流量。
即,ECU3构成对由电动泵16循环的冷却介质的流量进行控制的电动泵控制部100。另外,ECU3从电驱动系统控制部20d接收充电电路13是否在工作的信息,从而构成判定充电式电池12是否在充电中的充电中判定部101。
ECU3以电驱动系统控制部20a~20d中的至少1个电驱动系统控制部请求了“最大驱动”时为条件(以下,也称为“第1条件”),以100%的负荷比驱动电动泵16从而使得冷却介质的流量成为最大的流量。
另外,ECU3在第1条件不成立时,在满足电驱动系统控制部20a~20d中的至少1个电驱动系统控制部请求了“驱动”、车速传感器30检测出的车速为规定值THs以上或者冷却风扇19的驱动条件成立时(以下,也称为“第2条件”),根据冷却温度传感器18检测出的温度设定冷却介质的流量。
即,ECU3在第1条件不成立而第2条件成立的情况下,以根据冷却温度传感器18检测出的温度的负荷比驱动电动泵16。
在ECU3的ROM中,存储有规定值THs以及表示冷却介质的温度与驱动电动泵16的负荷比的关系的映射或者运算式。ECU3根据ROM所存储的映射或者运算式,以与冷却温度传感器18检测出的温度相应的负荷比驱动电动泵16。
例如,如图2所示,ECU3的ROM所存储的映射设定为随着冷却介质的温度上升而负荷比上升。在该映射中,冷却介质的温度为规定值THt以下的范围与电动泵16可使冷却介质循环的最少的负荷比Dmin相对应。
ECU3以第1条件和第2条件不成立为条件,将冷却介质的流量设定为“0(零)”,即停止电动泵16。
参照图3来说明由以上这样构成的本发明的第1实施方式的电动泵控制装置进行的电动泵控制动作。此外,以下说明的电动泵控 制动作在ECU3工作的期间反复执行。
首先,ECU3判断车辆1是否为可行驶状态(步骤S1)。在此,在判断为车辆1不是可行驶状态的情况下,ECU3判断充电式电池12是否在充电中(步骤S2)。
在步骤S1中判断为车辆1是可行驶状态的情况下或者在步骤S2中判断为充电式电池12在充电中的情况下,ECU3判断是否从电驱动系统控制部20a~20d中的至少1个电驱动系统控制部请求了“最大驱动”(步骤S3)。
在此,在判断为从电驱动系统控制部20a~20d中的至少1个电驱动系统控制部请求了“最大驱动”的情况下,ECU3以100%的负荷比驱动电动泵16(步骤S4),结束电动泵控制动作。
另一方面,在判断为没有从电驱动系统控制部20a~20d中的至少1个电驱动系统控制部请求“最大驱动”的情况下,ECU3判断是否从电驱动系统控制部20a~20d中的至少1个电驱动系统控制部请求了“驱动”(步骤S5)。
在此,在判断为没有从电驱动系统控制部20a~20d中的至少1个电驱动系统控制部请求“驱动”的情况下,ECU3判断车速传感器30检测出的车速是否为规定值THs以上(步骤S6)。
在此,在判断为车速传感器30检测出的车速不是规定值THs以上的情况下,ECU3判断冷却风扇19的驱动条件是否成立(步骤S7)。
在步骤S7中判断为冷却风扇19的驱动条件不成立的情况下或者在步骤S2中判断为充电式电池12不是在充电中的情况下,ECU3停止电动泵16(步骤S8),结束电动泵控制动作。
在步骤S5中判断为从电驱动系统控制部20a~20d中的至少1个电驱动系统控制部请求了“驱动”的情况下、在步骤S6中判断为车速传感器30检测出的车速为规定值THs以上的情况下或者在步骤S7中判断为冷却风扇19的驱动条件成立的情况下,ECU3以与由冷却温度传感器18检测出的冷却介质的温度相应的负荷比驱动电动泵16(步骤S9),结束电动泵控制动作。
如上所示,在本实施方式中,根据冷却温度传感器18检测出的 冷却介质的温度和电驱动系统控制部20a~20d所请求的驱动状态,控制冷却介质的流量,由此,以电驱动系统2的各部件所需要的冷却性能驱动电动泵16,因此,能够确保电驱动系统2的冷却性能,并且抑制电动泵16的功耗。
另外,在本实施方式中,根据电驱动系统2的各部件的内部温度,各电驱动系统控制部20a~20d请求电动泵16的驱动状态,因此,能够确保各部件所需要的冷却性能。
另外,在本实施方式中,以至少从1个部件的电驱动系统控制部20a~20d请求了电动泵16的驱动为条件,根据冷却介质的温度设定冷却介质的流量,因此,能够确保具有请求了电动泵16的驱动的电驱动系统控制部20a~20d的部件所需要的冷却性能,并且抑制电动泵16的功耗。
另外,在本实施方式中,以第1条件不成立(没有“最大驱动”请求),也没有“驱动”请求,车速小于规定值THs且冷却风扇19的驱动条件不成立,第2条件不成立为条件,将冷却介质的流量设定为“0(零)”(停止电动泵16),因此,能够抑制电动泵16的功耗。另外,这时,车辆1以极低速行驶或者为停止状态,冷却风扇19也已停止,能够避免电动泵16的驱动声音妨碍安静舒适的环境持续。
另外,在本实施方式中,即使没有从电驱动系统控制部20a~20d请求电动泵16的驱动,也以车速是规定值THs以上为条件,根据冷却介质的温度设定冷却介质的流量,因此,在由热交换器17进行的热交换量变多的高速行驶时,抑制冷却介质的温度使其不上升,由此,使从电驱动系统控制部20a~20d请求电动泵16的驱动的频率减少。其结果是,本实施方式能够抑制电动泵16的功耗。
另外,在本实施方式中,即使没有从电驱动系统控制部20a~20d请求电动泵16的驱动,也以冷却风扇19的驱动条件成立为条件,根据冷却介质的温度设定冷却介质的流量,因此,在由热交换器17进行的热交换量变多的冷却风扇19的驱动时,抑制冷却介质的温度使其不上升,由此,使从电驱动系统控制部20a~20d请求电动泵16的驱动的频率减少。其结果是,本实施方式能够抑制电动泵16的功 耗。
另外,在本实施方式中,以冷却介质的温度是规定值THt以下为条件,将冷却介质的流量设定为最小的流量,由此,使循环通路15中的冷却介质的温度分布均匀,防止因冷却介质局部成为高温而不必要地驱动电动泵16,因此,能够抑制电动泵16的功耗。
另外,在本实施方式中,以至少从1个部件的电驱动系统控制部20a~20d请求了“最大驱动”为条件,将冷却介质的流量设定为最大的流量,因此,能够将内部温度为最高的部件尽快冷却,并且能够抑制因该部件而成为高温的冷却介质使其它部件的内部温度上升。
另外,在本实施方式中,以充电式电池12在充电中为条件,根据冷却温度传感器18检测出的温度和电驱动系统控制部20a~20d所请求的驱动状态,控制冷却介质的流量,由此,以电驱动系统2的各部件所需要的冷却性能驱动电动泵16,因此,能够确保充电式电池12在充电中时的电驱动系统2的冷却性能,并且抑制电动泵16的功耗。
(第2实施方式)
本发明的第2实施方式与本发明的第1实施方式相比,电驱动系统控制部20a~20d的构成和ECU3执行的程序不同。因此,如图4所示,在本实施方式中,对与本发明的第1实施方式相同的构成附上相同的附图标记,省略详细的说明。另外,对电驱动系统控制部20a~20d和ECU3附上相同的附图标记,以下详细说明。
在本实施方式中,与本发明的第1实施方式相比,省去了冷却温度传感器18。另外,各电驱动系统控制部20a~20d控制各部件的驱动,并且分别算出各部件所需要的冷却介质的流量。
具体地说,各电驱动系统控制部20a~20d以由各内部温度传感器21a~21d检测出的内部温度Tn达到规定值THn以上为条件,算出使由各内部温度传感器21a~21d检测出的内部温度Tn小于规定值THn所需要的冷却介质的流量即驱动电动泵16的负荷比。
因此,各电驱动系统控制部20a~20d具有存储介质,在该存储 介质中,存储有规定值THn以及表示部件的内部温度与驱动电动泵16的负荷比的关系的映射或者运算式。
例如,如图5所示,各电驱动系统控制部20a~20d的存储介质所存储的映射设定为随着部件的内部温度上升而负荷比上升。
另外,在该映射中,部件的内部温度为规定值THi以下的范围与电动泵16可使冷却介质循环的最少的负荷比Dmin相对应。
ECU3以车辆1是可行驶状态或者充电式电池12在充电中为条件,控制冷却介质的流量使其成为由电驱动系统控制部20a~20d算出的流量中的最大的流量。具体地说,ECU3以由电驱动系统控制部20a~20d算出的负荷比中的最大的负荷比驱动电动泵16。
例如,在电驱动系统控制部20a算出负荷比为60%、电驱动系统控制部20b算出负荷比为70%、电驱动系统控制部20c算出负荷比为40%、电驱动系统控制部20d算出负荷比为10%的情况下,ECU3以这些负荷比中的最大的负荷比70%驱动电动泵16。
另外,ECU3在电驱动系统控制部20a~20d算出的流量中的最大的流量为规定值以下的状态下即在电驱动系统控制部20a~20d算出的负荷比中的最大的负荷比为规定值THr以下的状态下,以车速传感器30检测出的车速小于规定值THs和冷却风扇19的驱动条件不成立为条件,将冷却介质的流量设定为“0(零)”,即停止电动泵16。
参照图6来说明上述构成的本发明的第2实施方式的电动泵控制装置进行的电动泵控制动作。此外,以下说明的电动泵控制动作在ECU3工作的期间反复执行。
首先,ECU3判断车辆1是否为可行驶状态(步骤S11)。在此,在判断为车辆1不是可行驶状态的情况下,ECU3判断充电式电池12是否在充电中(步骤S12)。
在步骤S11中判断为车辆1是可行驶状态的情况下或者在步骤S12中判断为充电式电池12在充电中的情况下,ECU3决定由各电驱动系统控制部20a~20d算出的负荷比中最大的负荷比(步骤S13)。
然后,ECU3判断所决定的负荷比是否为规定值THr以下(步 骤S14)。在此,在判断为所决定的负荷比是规定值THr以下的情况下,ECU3判断车速传感器30检测出的车速是否为规定值THs以上(步骤S15)。
在此,在判断为车速传感器30检测出的车速不是规定值THs以上的情况下,ECU3判断冷却风扇19的驱动条件是否成立(步骤S16)。
在步骤S16中判断为冷却风扇19的驱动条件不成立的情况下或者在步骤S12中判断为充电式电池12不是在充电中的情况下,ECU3停止电动泵16(步骤S17),结束电动泵控制动作。
在步骤S14中判断为所决定的负荷比不是规定值THr以下的情况下、在步骤S15中判断为车速传感器30检测出的车速是规定值THs以上的情况下或者在步骤S16中判断为冷却风扇19的驱动条件成立的情况下,ECU3以步骤S13中所决定的负荷比驱动电动泵16(步骤S18),结束电动泵控制动作。
如上所示,在本实施方式中,设定冷却介质的流量使其成为由电驱动系统2的各部件的电驱动系统控制部20a~20d算出的冷却介质的流量中的最大的流量,由此,准确地设定电驱动系统2所需要的冷却介质的流量,因此,能够确保电驱动系统2的冷却性能,并且抑制电动泵16的功耗。
另外,在本实施方式中,设定冷却介质的流量使其成为由电驱动系统2的各部件的电驱动系统控制部20a~20d算出的流量中最大的流量,因此能够不检测冷却介质的温度地设定冷却介质的流量。
另外,在本实施方式中,电驱动系统2的各部件的电驱动系统控制部20a~20d算出使各部件的内部温度小于规定值THn所需要的最大的流量,因此,能够确保各部件所需要的冷却性能。
另外,在本实施方式中,在电驱动系统2的多个部件的电驱动系统控制部20a~20d算出的冷却介质的流量中的最大的流量为规定值以下的状态下,在电驱动系统2的内部温度不太会上升的停车时、极低速行驶时,以冷却风扇19没有驱动为条件,将冷却介质的流量设定为“0(零)”,因此,能够抑制电动泵16的功耗。另外, 能够停止电动泵16而持续安静的状态。
另外,在本实施方式中,即使电驱动系统2的多个部件的电驱动系统控制部20a~20d算出的冷却介质的流量中的最大的流量为规定值以下,也以车速是规定值THs以上为条件,将冷却介质的流量设定为该最大的流量,因此,在由热交换器17进行的热交换量变多的高速行驶时,抑制冷却介质的温度使其不上升,由此,抑制电驱动系统控制部20a~20d算出的冷却介质的流量。其结果是,本实施方式能够抑制电动泵16的功耗。
另外,在本实施方式中,即使电驱动系统2的多个部件的电驱动系统控制部20a~20d算出的冷却介质的流量中的最大的流量为规定值以下,也以冷却风扇19的驱动条件成立为条件,将冷却介质的流量设定为该最大的流量,因此,在由热交换器17进行的热交换量变多的冷却风扇19的驱动时,抑制冷却介质的温度使其不上升,由此,抑制由电驱动系统控制部20a~20d算出的冷却介质的流量。其结果是,本实施方式能够抑制电动泵16的功耗。
此外,在上述的本发明的实施方式中,说明了将本发明的电动泵控制装置搭载于电动汽车的例子,本发明的电动泵控制装置也能够搭载于混合动力车辆、插电式混合动力车辆等至少以驱动电动机为驱动源的车辆。
但是,在搭载有发动机的车辆中搭载本发明的电动泵控制装置的情况下,优选本发明的循环通路与冷却发动机的循环通路独立地形成。
另外,在上述的本发明的实施方式中,在从电驱动系统控制部20a~20d中的至少1个电驱动系统控制部总是有“最大驱动”的请求的情况下或者总是算出负荷比为100%的情况下,认为相应部件有异常,因此,ECU3也可以将相应部件有异常的情况显示于仪表板等显示装置等来报告异常。
虽然上面公开了本发明的实施方式,但对本领域技术人员来说,能不脱离本发明的范围地施加变更,这一点是明白的。所附的权利要求旨在包括所有的这种修正和等价物。

Claims (7)

1.一种电动泵控制装置,是车辆的电动泵控制装置,
上述车辆具备:电驱动系统,其包括多个部件,上述多个部件包括驱动电动机、驱动上述驱动电动机的驱动电路以及充电式电池;电动泵,其使冷却介质在循环通路中循环,该循环通路形成为经过上述多个部件;以及热交换器,其设置于上述循环通路,与上述冷却介质进行热交换,上述车辆至少以上述驱动电动机为驱动源,
上述电动泵控制装置的特征在于,具备:
电动泵控制部,其控制由上述电动泵循环的冷却介质的流量;以及
冷却温度传感器,其检测上述冷却介质的温度,
上述车辆还具备:
车速传感器,其检测上述车辆的车速;以及
冷却风扇,其设置于上述热交换器,在预先设定的驱动条件成立的情况下驱动,
在上述电动泵控制装置中,具备多个电驱动系统控制部,其分别设置于上述多个部件,控制上述部件的驱动,并且向上述电动泵控制部请求上述电动泵的驱动状态,
上述电动泵控制部根据上述冷却温度传感器检测出的温度和上述电驱动系统控制部所请求的驱动状态,控制上述冷却介质的流量,
上述电动泵控制部在满足上述多个部件的上述电驱动系统控制部中的至少1个电驱动系统控制部请求了上述电动泵的驱动、上述车速传感器检测出的车速为规定值以上或者上述冷却风扇的驱动条件成立时,根据上述冷却温度传感器检测出的温度设定上述冷却介质的流量。
2.根据权利要求1所述的电动泵控制装置,其特征在于,
上述多个电驱动系统控制部具有分别检测上述多个部件的内部温度的内部温度传感器,根据上述内部温度传感器检测出的内部温度,请求停止、驱动或者最大驱动中的任一种状态作为上述电动泵的驱动状态。
3.根据权利要求1所述的电动泵控制装置,其特征在于,
上述电动泵控制部以上述冷却温度传感器检测出的温度为规定值以下时为条件,将上述冷却介质的流量设定为最小的流量。
4.根据权利要求2所述的电动泵控制装置,其特征在于,
上述电动泵控制部以上述多个部件的上述电驱动系统控制部中的至少1个电驱动系统控制部请求了上述最大驱动时为条件,将上述冷却介质的流量设定为最大的流量。
5.根据权利要求1所述的电动泵控制装置,其特征在于,
还具备判定上述充电式电池是否在充电中的充电中判定部,
上述电动泵控制部以上述充电中判定部判定为在充电中时为条件,根据上述冷却温度传感器检测出的温度和上述电驱动系统控制部所请求的驱动状态,控制上述冷却介质的流量。
6.一种电动泵控制装置,是车辆的电动泵控制装置,
上述车辆具备:电驱动系统,其包括多个部件,上述多个部件包括驱动电动机、驱动上述驱动电动机的驱动电路以及充电式电池;电动泵,其使冷却介质在循环通路中循环,该循环通路形成为经过上述多个部件;以及热交换器,其设置于上述循环通路,与上述冷却介质进行热交换,上述车辆至少以上述驱动电动机为驱动源,
上述电动泵控制装置的特征在于,具备:
电动泵控制部,其控制由上述电动泵循环的冷却介质的流量,
上述车辆还具备:
车速传感器,其检测上述车辆的车速;以及
冷却风扇,其设置于上述热交换器,在预先设定的驱动条件成立的情况下驱动,
在上述电动泵控制装置中,具备多个电驱动系统控制部,其分别设置于上述多个部件,控制上述部件的驱动,并且分别算出上述多个部件所需要的上述冷却介质的流量,
上述电动泵控制部将上述冷却介质的流量设定为由上述电驱动系统控制部算出的流量中的最大的流量,
上述电动泵控制部在上述多个部件的上述电驱动系统控制部算出的流量中的最大的流量为规定值以下的状态下,以上述车速传感器检测出的车速小于规定值和上述冷却风扇的驱动条件不成立时为条件,将上述冷却介质的流量设定为零。
7.根据权利要求6所述的电动泵控制装置,其特征在于,
上述多个电驱动系统控制部具有分别检测上述多个部件的内部温度的内部温度传感器,以上述内部温度传感器检测出的内部温度达到规定值以上时为条件,算出使上述内部温度小于规定值所需要的上述冷却介质的流量。
CN201410314783.0A 2013-07-17 2014-07-03 电动泵控制装置 Active CN104295476B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013148889A JP6171655B2 (ja) 2013-07-17 2013-07-17 電動ポンプ制御装置
JP2013-148889 2013-07-17

Publications (2)

Publication Number Publication Date
CN104295476A CN104295476A (zh) 2015-01-21
CN104295476B true CN104295476B (zh) 2016-08-24

Family

ID=52131587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410314783.0A Active CN104295476B (zh) 2013-07-17 2014-07-03 电动泵控制装置

Country Status (3)

Country Link
JP (1) JP6171655B2 (zh)
CN (1) CN104295476B (zh)
DE (1) DE102014213609B4 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110198662B (zh) * 2017-01-31 2022-08-16 株式会社村田制作所 流体控制装置以及血压计
CN109962320A (zh) * 2017-12-22 2019-07-02 青岛市比亚迪汽车有限公司 一种动力电池加热系统及其控制方法
CN108365299B (zh) * 2018-01-10 2020-08-14 威马智慧出行科技(上海)有限公司 电动车热管理使能控制方法、存储介质及电子设备
CN108376810B (zh) * 2018-02-12 2021-02-05 威马智慧出行科技(上海)有限公司 动力电池热管理方法及系统
JP7107258B2 (ja) * 2019-03-13 2022-07-27 トヨタ自動車株式会社 車両用冷却装置の制御装置
DE102019111787A1 (de) * 2019-05-07 2020-11-12 Bayerische Motoren Werke Aktiengesellschaft Batterie mit Brandschutzmatte sowie Kraftfahrzeug
JPWO2021070808A1 (zh) * 2019-10-08 2021-04-15
DE102021120985A1 (de) 2021-08-12 2023-02-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektrische Maschine und Verfahren zur Überwachung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101186194A (zh) * 2006-11-17 2008-05-28 比亚迪股份有限公司 一种车载充电器的冷却系统及冷却方法
CN101574923A (zh) * 2008-05-09 2009-11-11 通用汽车环球科技运作公司 用于车辆的电池热系统
CN102449281A (zh) * 2009-04-09 2012-05-09 雷诺股份公司 用于机动车辆的冷却装置
CN102770293A (zh) * 2010-02-05 2012-11-07 株式会社日立制作所 车辆的电驱动系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3700383B2 (ja) * 1998-03-26 2005-09-28 日産自動車株式会社 ハイブリッド車両の冷却装置
JP2000027763A (ja) * 1998-07-14 2000-01-25 Nissan Motor Co Ltd 電動ポンプの回転数制御装置
US6607142B1 (en) * 2000-11-02 2003-08-19 Ford Motor Company Electric coolant pump control strategy for hybrid electric vehicles
JP4052256B2 (ja) 2004-02-06 2008-02-27 トヨタ自動車株式会社 温度調節装置
JP4631652B2 (ja) 2005-10-25 2011-02-16 トヨタ自動車株式会社 冷却システムおよびその制御方法並びに自動車
JP2007166804A (ja) 2005-12-14 2007-06-28 Toyota Motor Corp モータ駆動装置およびそれを備えた車両
JP2011091946A (ja) * 2009-10-22 2011-05-06 Mitsubishi Motors Corp 車両の冷却装置
JP5538247B2 (ja) * 2011-01-18 2014-07-02 日立オートモティブシステムズ株式会社 車載回転電機用電力変換装置の冷却システム
US8948946B2 (en) 2012-11-29 2015-02-03 GM Global Technology Operations LLC Hybrid thermal system with device-specific control logic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101186194A (zh) * 2006-11-17 2008-05-28 比亚迪股份有限公司 一种车载充电器的冷却系统及冷却方法
CN101574923A (zh) * 2008-05-09 2009-11-11 通用汽车环球科技运作公司 用于车辆的电池热系统
CN102449281A (zh) * 2009-04-09 2012-05-09 雷诺股份公司 用于机动车辆的冷却装置
CN102770293A (zh) * 2010-02-05 2012-11-07 株式会社日立制作所 车辆的电驱动系统

Also Published As

Publication number Publication date
JP2015021406A (ja) 2015-02-02
JP6171655B2 (ja) 2017-08-02
DE102014213609B4 (de) 2018-10-31
DE102014213609A1 (de) 2015-01-22
CN104295476A (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
CN104295476B (zh) 电动泵控制装置
RU2702299C1 (ru) Электрическое транспортное средство
KR100561962B1 (ko) 차량용 전동팬 시스템
JP5439149B2 (ja) モータの暖気制御
JP2013163494A (ja) ハイブリッド車両の制御装置
WO2019067589A1 (en) SYSTEMS AND METHODS FOR TEMPERATURE REGULATION FOR VEHICLES
JP6065397B2 (ja) 電動モータ
US9356551B2 (en) Method and apparatus for controlling an electric motor employed to power a fluidic pump
CN105493391A (zh) 传感器异常判定装置
US9762173B2 (en) Method and apparatus to control an inverter
US20180141438A1 (en) Power control system
JPWO2016013063A1 (ja) モータ制御装置及びモータ制御方法
WO2022163056A1 (ja) 温調装置
JP2015080284A (ja) 電池暖機システム
JP2020108221A (ja) 電動車両
WO2014178112A1 (ja) 冷却水制御装置
US9007034B2 (en) Electric power generation control system for vehicle
JP2015116872A (ja) ハイブリッド車両の暖機装置
JP7318794B2 (ja) 電動車両の制御方法および電動車両
JP2008236955A (ja) 冷却システムおよびその制御方法並びに車両
JP2016147577A (ja) 車両用回転電機の冷却装置
JP2016163399A (ja) 駆動装置
US9247678B2 (en) Method and apparatus for controlling a coolant circuit thermally coupled to a power electronics device
JP2013024204A (ja) ハイブリッド車両の制御装置
JP6224897B2 (ja) 車両の走行制御装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant