CN104250428B - 一种用于干式变压器高强度高绝缘性材料及其制备方法 - Google Patents

一种用于干式变压器高强度高绝缘性材料及其制备方法 Download PDF

Info

Publication number
CN104250428B
CN104250428B CN201410432950.1A CN201410432950A CN104250428B CN 104250428 B CN104250428 B CN 104250428B CN 201410432950 A CN201410432950 A CN 201410432950A CN 104250428 B CN104250428 B CN 104250428B
Authority
CN
China
Prior art keywords
parts
dry
weight
type transformer
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410432950.1A
Other languages
English (en)
Other versions
CN104250428A (zh
Inventor
王全辉
涂桂朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUANGDONG LION ELEC CO Ltd
Original Assignee
GUANGDONG LION ELEC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GUANGDONG LION ELEC CO Ltd filed Critical GUANGDONG LION ELEC CO Ltd
Priority to CN201410432950.1A priority Critical patent/CN104250428B/zh
Publication of CN104250428A publication Critical patent/CN104250428A/zh
Application granted granted Critical
Publication of CN104250428B publication Critical patent/CN104250428B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明专利公开一种用于干式变压器高强度高绝缘性材料及其制备方法,所述材料的原料包括纳米级氮化硅、微米级氮化铝、环氧树脂、硅烷偶联剂、乙醇、活性稀释剂、固化剂;其中纳米级氮化硅的重量份为1‑3份、微米级氮化铝的重量份为15‑25份、环氧树脂的重量份为69‑83份、硅烷偶联剂的重量份为1‑3份,硅烷偶联剂与乙醇的重量份比例为1:4,活性稀释剂与环氧树脂的重两份比例为1:5。

Description

一种用于干式变压器高强度高绝缘性材料及其制备方法
技术领域
本发明涉及电气材料技术领域,尤其涉及一种用于干式变压器高强度高绝缘性材料及其制备方法。
背景技术
在电气工业的技术领域中,具有导热和绝缘功能的材料往往发挥着重要作用,随着电气工业的发展对于材料的导热性和绝缘功能呢个也越来越高,通常采用高分子绝缘材料作为主体并通过添加一些导热物质作为填料使材料兼具导热性和绝缘性。
中国专利2012.04.11公开了公开号为102408663A,主题为《掺杂氮化铝的绝缘导热ABS复合材料及其制备》的发明专利,该专利以ABS材料为主体并加入氮化铝粉末作为填料使材料具有绝缘导热功能。氮化铝填料能搞提高环氧树脂材料的导热和绝缘效果,但由于氮化铝的机械强度和韧性较低,限制了它的广泛运用。
发明内容
本发明的目的在于针对以上问题,提供一种用于干式变压器高强度高绝缘性材料及其制备方法。
为了实现以上目的,本发明采用的技术方案是:一种用于干式变压器高强度高绝缘性材料,所述材料的原料包括纳米级氮化硅、微米级氮化铝、环氧树脂、硅烷偶联剂、乙醇、活性稀释剂、固化剂;其中纳米级氮化硅的重量份为1-3份、微米级氮化铝的重量份为15-25份、环氧树脂的重量份为69-83份、硅烷偶联剂的重量份为1-3份,硅烷偶联剂与乙醇的重量份比例为1:4,活性稀释剂与环氧树脂的重两份比例为1:5。
进一步,所述微米级氮化铝的平均粒度在5-20微米,所述纳米级氮化硅平均粒度在20-50纳米。
一种用于干式变压器高强度高绝缘性材料的制备方法,所述方法包括以下步骤:a.把硅烷偶联剂与乙醇以1:4的重量比进行混合稀释然后加入纳米级氮化硅和微米级氮化铝搅拌5小时以上,再进行超声波分散30分钟,随后过滤并以100℃烘干备用;b.将活性稀释剂和环氧树脂以1:5的重量比搅拌稀释;c.加入步骤a中最终获得的混合物进行稀释搅拌后进行超声波分散30分钟;d.加入固化剂并在室温中预固化1-2小时,再在100℃固化2-4小时,固化完毕后即可获得所述的一种用于干式变压器高强度高绝缘性材料。
进一步,在步骤d中可将固化前的材料放入模具中进行固化,固化完毕后可获得成形的一种具有高强度的干式变压器材料。
本发明的有益效果是:本发明提供的一种用于干式变压器高强度高绝缘性材料,采用纳米级氮化硅以及微米级氮化铝作为环氧树脂的填料制作干式变压器材料,所制得的材料不仅保持了原有仅含微米级氮化铝填料的导热性能,同时由于纳米微粒的存在,改善了混合液的均匀性,固化后的复合材料的空隙率降低,因此复合材料的力学性能明显提高,此外由于纳米颗粒的存在,复合材料的击穿强度和耐电树枝生长的能力有明显提高,从而改善了变压器的可靠性。
具体实施方式
现结合具体实施例对本发明所要求保护的技术方案作进一步详细说明。
实施例一
本实施例的一种用于干式变压器高强度高绝缘性材料,由包括以下原料加工而成纳米级氮化硅、微米级氮化铝、环氧树脂、硅烷偶联剂、乙醇、活性稀释剂、固化剂;其中纳米级氮化硅、微米级氮化铝、环氧树脂、硅烷偶联剂的重量百分比为:纳米级氮化硅3份、微米级氮化铝20份、环氧树脂75份、硅烷偶联剂2份。
其制备方法为:先把硅烷偶联剂与乙醇以1:4的重量比进行混合稀释然后加入微米级氮化硅搅拌5小时以上,再进行超声波分散30分钟,随后过滤并以100℃烘干备用;然后将活性稀释剂和环氧树脂以1:5的重量比搅拌稀释;接着往稀释后的环氧树脂中加入之前处理好的的微米级氮化硅与硅烷偶联剂混合物,进行30分钟的超声波分散;最后加入固化剂并在室温中预固化1小时,再在100℃固化3小时,固化完毕后即可获得所述的一种具有高强度的干式变压器材料,其中固化剂的作用是用来固化材料,其用量只要能让材料固化即可,还可以把固化前的材料加入模具中进行固化获得已成形的一种具有高强度的干式变压器材料。
为本实施例的材料设置一组对照组,其不同之处在于把本实施例中的20份微米级氮化铝和3份纳米级氮化硅换成20份微米级氮化硅和3份纳米级氮化铝,其余原料以及生产方法均相同,对两组材料以及纯环氧树脂进行测试。
本实施例材料的测试结果为:拉伸强度为48MPa ,弯曲强度为185MPa ,冲击强度为21KJ/m2 ,击穿强度在直流电压下约为120KV/mm,击穿强度在交流电压下约为88KV/mm。
对照组材料的测试结果为:拉伸强度为35MPa ,弯曲强度为140MPa ,冲击强度为14KJ/m2,击穿强度在直流电压下约为54KV/mm,击穿强度在交流电压下约为54KV/mm。
纯环氧树脂材料的测试结果为:拉伸强度为18.8Mpa ,弯曲强度为53Mpa ,冲击强度为6.2KJ/m2 ,击穿强度在直流电压下约为32.2KV/mm,击穿强度在交流电压下约为25KV/mm。
实施例二
本实施例的一种用于干式变压器高强度高绝缘性材料,由包括以下原料加工而成纳米级氮化硅、微米级氮化铝、环氧树脂、硅烷偶联剂、乙醇、活性稀释剂、固化剂;其中纳米级氮化硅、微米级氮化铝、环氧树脂、硅烷偶联剂的重量百分比为:纳米级氮化硅3份、微米级氮化铝17份、环氧树脂79份、硅烷偶联剂1份。
其制备方法为:先把硅烷偶联剂与乙醇以1:4的重量比进行混合稀释然后加入微米级氮化硅搅拌5小时以上,再进行超声波分散30分钟,随后过滤并以100℃烘干备用;然后将活性稀释剂和环氧树脂以1:5的重量比搅拌稀释;接着往稀释后的环氧树脂中加入之前处理好的的微米级氮化硅与硅烷偶联剂混合物,进行30分钟的超声波分散;最后加入固化剂并在室温中预固化1小时,再在100℃固化3小时,固化完毕后即可获得所述的一种具有高强度的干式变压器材料,其中固化剂的作用是用来固化材料,其用量只要能让材料固化即可,还可以把固化前的材料加入模具中进行固化获得已成形的一种具有高强度的干式变压器材料。
为本实施例的材料设置一组对照组,其不同之处在于把本实施例中的17份微米级氮化铝和3份纳米级氮化硅换成17份微米级氮化硅和3份纳米级氮化铝,其余原料以及生产方法均相同,对两组材料以及纯环氧树脂进行测试。
本实施例材料的测试结果为:拉伸强度为42MPa ,弯曲强度为174MPa ,冲击强度为18KJ/m2 ,击穿强度在直流电压下约为111KV/mm,击穿强度在交流电压下约为82KV/mm。
对照组材料的测试结果为:拉伸强度为30MPa ,弯曲强度为128MPa ,冲击强度为9.8KJ/m2,击穿强度在直流电压下约为47KV/mm,击穿强度在交流电压下约为48KV/mm。
纯环氧树脂材料的测试结果为:拉伸强度为18.8Mpa ,弯曲强度为53Mpa ,冲击强度为6.2KJ/m2 ,击穿强度在直流电压下约为32.2KV/mm,击穿强度在交流电压下约为25KV/mm。
从以上两个实施例可知,由纳米级氮化硅与微米级氮化铝组合作为填料其效果比起纳米级氮化铝与微米级氮化硅组合作为填料的效果更佳,说明本发明所提供的复合填料为复合填料中的较佳方案。本发明提供的一种用于干式变压器高强度高绝缘性材料不仅保持了原有仅含微米级氮化铝填料的导热性能,同时由于纳米微粒的存在,改善了混合液的均匀性,固化后的复合材料的空隙率降低,因此复合材料的力学性能明显提高,此外由于纳米颗粒的存在,复合材料的击穿强度和耐电树枝生长的能力有明显提高,从而改善了变压器的可靠性。
以上实施例仅是本发明的一些优选实施方式,但本发明的保护范围并不仅限于此。本领域技术人员应该理解,所有未背离本发明精神和范围的任何修改或局部替换都在本发明保护范围之内。

Claims (4)

1.一种用于干式变压器高强度高绝缘性材料,其特征在于;所述材料的原料包括纳米级氮化硅、微米级氮化铝、环氧树脂、硅烷偶联剂、乙醇、活性稀释剂、固化剂;其中纳米级氮化硅的重量份为1-3份、微米级氮化铝的重量份为15-25份、环氧树脂的重量份为69-83份、硅烷偶联剂的重量份为1-3份,硅烷偶联剂与乙醇的重量份比例为1:4,活性稀释剂与环氧树脂的重量份比例为1:5。
2.根据权利要求1所述的一种用于干式变压器高强度高绝缘性材料,其特征在于;所述微米级氮化铝的平均粒度在5-20微米,所述纳米级氮化硅平均粒度在20-50纳米。
3.一种权利要求1所述的用于干式变压器高强度高绝缘性材料的制备方法,其特征在于;所述方法包括以下步骤:a.把硅烷偶联剂与乙醇以1:4的重量比进行混合稀释然后加入纳米级氮化硅和微米级氮化铝搅拌5小时以上,再进行超声波分散30分钟,随后过滤并以100℃烘干备用;b.将活性稀释剂和环氧树脂以1:5的重量比搅拌稀释;c.加入步骤a中最终获得的混合物进行稀释搅拌后进行超声波分散30分钟;d.加入固化剂并在室温中预固化1-2小时,再在100℃固化2-4小时,固化完毕后即可获得所述的一种用于干式变压器高强度高绝缘性材料。
4.根据权利要求3所述的用于干式变压器高强度高绝缘性材料的制备方法,其特征在于;在步骤d中将固化前的材料放入模具中进行固化,固化完毕后可获得成形的一种具有高强度的干式变压器材料。
CN201410432950.1A 2014-08-28 2014-08-28 一种用于干式变压器高强度高绝缘性材料及其制备方法 Expired - Fee Related CN104250428B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410432950.1A CN104250428B (zh) 2014-08-28 2014-08-28 一种用于干式变压器高强度高绝缘性材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410432950.1A CN104250428B (zh) 2014-08-28 2014-08-28 一种用于干式变压器高强度高绝缘性材料及其制备方法

Publications (2)

Publication Number Publication Date
CN104250428A CN104250428A (zh) 2014-12-31
CN104250428B true CN104250428B (zh) 2017-08-22

Family

ID=52185695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410432950.1A Expired - Fee Related CN104250428B (zh) 2014-08-28 2014-08-28 一种用于干式变压器高强度高绝缘性材料及其制备方法

Country Status (1)

Country Link
CN (1) CN104250428B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104693686B (zh) * 2015-03-19 2017-03-08 西安交通大学 一种gis用微纳米结构环氧复合绝缘材料的制备方法
CN105086364A (zh) * 2015-08-05 2015-11-25 苏州赛斯德工程设备有限公司 一种环氧树脂基导热绝缘材料的制备方法
CN108395674A (zh) * 2018-03-15 2018-08-14 苏州甫众塑胶有限公司 一种高分子导热材料及其制备方法
CN111777840B (zh) * 2020-07-14 2021-06-18 浙江大学 一种电力电子大功率器件封装用环氧树脂微纳米共混复合材料及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339555A (ja) * 1992-06-08 1993-12-21 Sumitomo Bakelite Co Ltd 接着剤組成物
JP2000345007A (ja) * 1999-06-07 2000-12-12 Nippon Kayaku Co Ltd 電気・電子部品被覆用エポキシ樹脂組成物
WO2012043751A1 (ja) * 2010-10-01 2012-04-05 富士電機株式会社 樹脂組成物
CN102719099B (zh) * 2012-06-08 2014-08-20 金发科技股份有限公司 一种导热模塑组合物及其制备方法
CN103694636B (zh) * 2013-12-10 2015-12-09 中国科学院过程工程研究所 一种电气绝缘环氧树脂组合物、制备方法及其用途

Also Published As

Publication number Publication date
CN104250428A (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
Muratov et al. Thermal conductivity of polypropylene composites filled with silane-modified hexagonal BN
CN104250428B (zh) 一种用于干式变压器高强度高绝缘性材料及其制备方法
Omrani et al. The effects of alumina nanoparticle on the properties of an epoxy resin system
Fernandes et al. Replacement of commercial silica by rice husk ash in epoxy composites: a comparative analysis
CN104479291A (zh) 一种导热绝缘环氧树脂组合物、制备方法及其用途
CN104479294B (zh) 一种电气绝缘环氧树脂组合物及其制备方法
CN104262901A (zh) 一种添加纳米氮化铝填料的环氧树脂材料及其制作方法
CN101481494A (zh) 一种热塑性聚酯合金纳米复合材料及其制备方法
CN103374207B (zh) 一种环氧复合材料及其制备方法
CN112480477B (zh) 高强度环氧模塑料用球形氧化铝的表面改性方法
Nguyen et al. The effect of resin stoichiometry and nanoparticle addition on epoxy/silica nanodielectrics
CN104031418B (zh) 一种分散度高的改性碳酸钙及其制备方法
Zhuo et al. Preparation and properties of hollow silica tubes/cyanate ester hybrids for high-frequency copper-clad laminates
Hsu et al. Physical study of room‐temperature‐cured epoxy/thermally reduced graphene oxides with various contents of oxygen‐containing groups
CN105295651B (zh) 一种高耐蚀性防腐涂料及其制备方法
Guo et al. Effects of surface-modified alkyl chain length of silica fillers on the rheological and thermal mechanical properties of underfill
Ali et al. Novel CNC/silica hybrid as potential reinforcing filler for natural rubber compounds
CN101982487B (zh) 一种专用于聚乙烯轮胎包装膜的耐热新材料及其制备方法
CN112375255B (zh) 一种纳米填料和环氧复合绝缘材料及其制备方法和环氧复合绝缘部件
Kaveh et al. Introducing a new approach for designing advanced epoxy film adhesives with high mechanical, adhesion, and thermal properties by adding hybrid additives for structural bonding
CN105273363A (zh) 一种led封装用含纳米金刚石的马来酸酐接枝聚苯醚改性环氧树脂复合材料及其制备方法
CN106349653A (zh) 一种基于纳米氧化铝颗粒改性环氧树脂的方法
Lu et al. Investigation on the preparation and properties of low-dielectric ethylene-vinyl acetate rubber/mesoporous silica composites
Zhang et al. Study on structural and functional properties of porous SiO2 core‐shell construction/polyethylene nanocomposites with enhanced interfacial interaction
KR102282500B1 (ko) 무기나노입자 분산을 통해 열전도도가 향상된 나노복합절연소재 및 그 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170822

Termination date: 20180828