CN104246562A - 使用液晶的光纤到芯片的有效对准 - Google Patents

使用液晶的光纤到芯片的有效对准 Download PDF

Info

Publication number
CN104246562A
CN104246562A CN201380007957.2A CN201380007957A CN104246562A CN 104246562 A CN104246562 A CN 104246562A CN 201380007957 A CN201380007957 A CN 201380007957A CN 104246562 A CN104246562 A CN 104246562A
Authority
CN
China
Prior art keywords
wave plate
liquid crystal
optical fiber
waveguide
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380007957.2A
Other languages
English (en)
Other versions
CN104246562B (zh
Inventor
罗伊·米迪
古尔特杰·桑胡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of CN104246562A publication Critical patent/CN104246562A/zh
Application granted granted Critical
Publication of CN104246562B publication Critical patent/CN104246562B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements
    • G02B6/4221Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements involving a visual detection of the position of the elements, e.g. by using a microscope or a camera
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/24Function characteristic beam steering

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Liquid Crystal (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本发明揭示通过使用一或多个液晶层来将光束从光纤有效地导引到集成于芯片上的光学波导而执行光学对准的装置及系统。芯片上反馈机构可在所述光纤与基于光栅的波导之间导引所述光束以最小化所述系统的插入损耗。

Description

使用液晶的光纤到芯片的有效对准
技术领域
本发明的实施例涉及用于芯片间及芯片内通信的光学互连,且具体来说涉及用于将光纤有效地耦合到基于硅的光子集成芯片上的光学波导的装置及系统。
背景技术
光学透射可用作用于单独集成电路芯片之间的通信(芯片间连接)及同一芯片上的组件内的通信(芯片内连接)的方式。在经由光学互连的芯片间通信中,电路板上的每一芯片与发射器-接收器光电子芯片介接,且两个光电子芯片经由平面电介质波导连接。同样地,光学波导可用于连接芯片内的组件,例如集成光源与检测器之间的连接。集成光学波导为使用光刻处理形成于半导体(例如,硅衬底)上的光学路径。波导可由具有比芯片衬底高的折射率以将光学信号从输入光纤引导到输出光纤或芯片上的其它光学电路的无机晶体或半导体材料制成。
光可以一种、两种或许多模式透射穿过光学波导。每一模式以不同传播常数及群组速度沿波导的轴行进。模式描述为大约针对大于全反射的临界角的所有角度在光射线的方向上在芯内反射的横向电磁(TEM)波的多个反射的和,其中全反射的条件为:
其中θc=临界角,η2=包层的折射率,且η1=芯的折射率。
当光纤的芯直径较小时,仅支持单个模式,且据信,光纤为单模式光纤。单模式光纤到集成光学波导的对准(且反之亦然)为半导体封装光子学中的最昂贵且最耗时制造工艺中的一者。此外,单模式光纤(例如,5μm到9μm直径芯)与芯片上的波导的横截面(例如,2μm到小于200nm)之间的大的尺寸差异导致高插入损耗及高封装成本。
图1A及1B分别展示基于光栅的垂直耦合器系统的透视图及部分横截面图,如弗雷德里克·凡·莱尔(Frederik Van Laere)等人的“光纤与纳米光子波导之间的紧凑且高效光栅耦合器(Compact and Highly Efficient Grating Couplers Between Optical Fiber andNanophotonic Waveguides)”,光波技术期刊,第25卷,第1期,2007年1月中所描述。基于光栅的垂直耦合器可用于单模式光纤110与光子集成芯片120的波导170之间的平面外耦合。如图1A中所展示,基于光栅的垂直耦合器包含光栅100、绝热锥形物130及光子波导140(下文所论述)。参考图1B,波导170可为在硅衬底190上的埋藏氧化物层180的顶部上由220nm厚硅芯制成的绝缘体上硅(SOI)波导。光栅100蚀刻到具有在x方向上不变的多个光栅凹槽101(例如,二十(20)个凹槽)的波导170中。折射率匹配材料160接合到波导170。图1A中未展示折射率匹配材料160以便展示折射率匹配材料160下面的光学组件。折射率匹配材料160的折射率为1.46以匹配光纤110的包层的折射率。光纤110的端面接近于光栅100而定位。光纤110以约8度的角度θ稍微倾斜以避免在光栅100处反射。波导170具有约10μm的有限宽度,而光子波导140为约0.56μm宽。绝热锥形物130用于耦合宽波导170与窄光子波导140,窄光子波导140将光束发送到集成芯片150或其它光学电路。图1A及1B的基于光栅的垂直耦合器需要光纤110到蚀刻于波导170中的光栅100的精确定位。在现场操作期间,温度变化、振动及其它环境扰动可导致可不利地影响光纤110与光栅100的对准的接合后移位,此导致插入损耗。
用于将光纤耦合到芯片波导的其它方法包含使用微机电系统(MEMS)来将光纤对准到芯片。这些技术具有需要有源MEMS对准组件的添加的成本以及制作及封装系统中的添加的困难。因此,需要一种用于将光纤有效地对准到集成于光子芯片上的光学波导的简化装置及系统。
附图说明
图1A及1B分别展示基于光栅的垂直耦合器系统的透视图及部分横截面图;
图2A及2B分别展示液晶偏振光栅的俯视图及侧视图;
图2C展示图2B的处于高电压状态中的液晶偏振光栅的侧视图;
图2D及2E分别展示透射穿过图2B的液晶偏振光栅的经圆偏振入射光的衍射行为;
图2F展示图2C的液晶偏振光栅的零级衍射方向;
图3A展示根据第一实施例的用于有效光纤到芯片对准的液晶导引装置的侧视图;
图3B展示图3A的导引装置上的入射光的衍射及透射行为;
图4展示并入图3A的导引装置的光纤到芯片导引系统;及
图5展示根据另一实例性实施例的另一液晶导引装置的侧视图。
具体实施方式
在以下实施方式中,参考形成本发明的一部分且其中以图解说明方式展示可实践的特定实施例的所附图式。应理解,遍及图式,相同元件符号表示相同元件。充分详细地描述这些实施例使得所属领域的技术人员能够对其进行制作及使用,且应理解,可对所揭示的特定实施例做出结构、材料、电及程序改变,下文仅详细地论述所述特定实施例中的一些特定实施例。
本文中描述用以通过使用一或多个液晶层来将光束从光纤有效地导引到集成于光子芯片上的光学波导(下文中,“集成光学波导”)(且反之亦然)而执行光学对准的装置及系统的实施例。芯片上反馈机构可在光纤与基于光栅的波导之间导引光束以最小化系统的插入损耗。基于液晶的导引装置接合于集成光子芯片上以实现芯片间通信及芯片内通信。
2010年7月30日提出申请的金焕·吉姆(Jihwan Kim)等人的“使用薄液晶偏振光栅的宽角度、非机械光束导引(Wide-angle,nonmechanical beam steering using thin liquidcrystal polarization gratings)”,国际光学工程学会学报,第7093卷(2008)且国际申请案号为PCT/US2010/043861(公开案号为WO 2011/014743A2)中描述用于LIDAR(光检测与测距)及SLM(空间光调制器)应用的液晶宽角度导引系统。如图2D到2F中所展示,液晶偏振光栅(LCPG)200可在两个维度上有效地导引光束。偏振光栅(PG)(还称作各向异性光栅)分类为具有连续周期性图案的向列液晶(LC)膜。其通过调制通过的光的偏振状态而操作,且体现为空间变化的双折射性。LCPG导引模块200为随位置而变化的平面中、单轴双折射性,
n(x)=[sin(πx/Λ),cos(πx/Λ),0],
其中Λ为光栅周期。LCPG 200是通过以下操作制作的:干涉其间以小角度叠加的两个经正交圆偏振紫外激光束,从而形成具有恒定强度及以周期Λ=λR/2sinθ遵循图2A的周期性变化的线性偏振状态的干涉图案,其中λR为记录波长且θ为所述光束之间的角度的一半。用光对准材料230涂覆具有铟锡氧化物(ITO)220电极的两个玻璃衬底240,且将其层压在一起使得通过胶的边缘密封而维持均匀厚度。接着,通过偏振全息图暴露此结构,从而捕获光对准材料230中的图案。向列液晶210通过毛细作用填充间隙,且形成所要LCPG 200。
向列液晶210的双折射性是通过液晶分子在所施加电压(举例来说,1V到2V)下的旋转产生的。图2A及2B分别展示处于关断状态中(即,在不施加电压的情况下)的向列液晶210的俯视图及侧视图。当不施加电场时,在两个玻璃衬底240之间形成向列液晶210的经扭曲配置。光对准材料230形成在不存在电场的情况下将液晶210精确地扭曲90度的力。电场可致使液晶使自身随所述场重新定向,借此减小双折射性。图2C展示在施加电压的情况下的向列液晶210的侧视图。所施加电压使液晶210中的扭曲断裂。在接近阈值电压的电压处,仅液晶中的一些液晶将重新对准。当所施加电压增加时,液晶中的较多液晶将重新对准直到其变得完全“切换”。因此,可能借助所施加电压改变液晶对给定偏振的光的折射率。
参考图2D到2F,入射光250可根据所述入射光的旋向及施加到LCPG 200的电压被导引或偏向成三个衍射级(零(第0)及第一(第±1)衍射级)中的一者。在光250通过LCPG200之后,经圆偏振光的旋向将改变为相反状态,这是因为光经历由于液晶层导致的相对相移。当入射光250被右旋圆偏振(RCP)时,通过LCPG 200的所有光改变为左旋圆偏振(LCP)且经衍射为正第一级,如图2D中所展示。当入射光250被左旋圆偏振时,通过LCPG 200的所有光改变为右旋圆偏振且经衍射为负第一级,如图2E中所展示。大于阈值电压的所施加电压(V>Vth)(举例来说,1.65V)可有效地擦除偏振光栅,从而致使光直接通过LCPG 200,如图2C及2F中所展示。通过以下方程式确定通过LCPG 200的光的衍射角θm
sin θ m = mλ Λ + sin θ in ,
其中θin为入射角且m为衍射级(第-1、第0、第+1)。举例来说,在1550nm的波长处,LCPG 200的光栅周期Λ需要为8.93μm以执行10度衍射角。
图3A展示根据本发明的实施例的用于将光纤110有效对准到集成到芯片120中的波导170的液晶导引装置300的侧视图。z方向为沿波导170的长度,y方向垂直于液晶导引装置300(横向方向),且x方向向上指向页面外(侧向方向)。光纤110可为偏振维持光纤(例如,Panda、3M Tiger、Bow-Tie等)。图3B展示入射光在液晶导引装置300上的衍射及透射行为。液晶导引装置300使用(举例来说)双面胶带粘合接合于折射率匹配层160与波导170之间。应了解,实施例不仅限于双面胶带,且可使用任何适合粘合技术。
如图3A中所展示,液晶导引装置300包含:可切换LCPG 200,其布置于具有波导170的光学路径中;半波片320,其位于LCPG 200上方且与LCPG 200对齐地布置;及四分之一波片310,其位于半波片320上方且与半波片320对齐地布置。参考图3B,四分之一波片310操作以将来自光纤110的经线性偏振光390转换成经圆偏振光330、350、370。半波片320操作以切换传入经圆偏振光330、350、370的旋向。可切换LCPG 200操作以将经圆偏振光340、360、380导引为零及/或第一级衍射级,如上文所描述。
由于直接来自激光器的光通常为经线性偏振的,因此可在偏振维持光纤110(例如,Panda、3M Tiger、Bow-Tie等)与半波片320之间插入具有与输入偏振成±45度的轴的四分之一波片310或四分之三波片(例如,λ/4或3λ/4液晶波片)以将经线性偏振光390转换成经圆偏振光330、350、370。为了方便,假设四分之一波片310将经线性偏振光390转换成经右旋圆偏振光330、350、370,如图3B中所展示。应了解,四分之一波片310还可将经线性偏振光390转换成经左旋圆偏振光。可用抗反射涂层涂覆四分之一波片310的面对光纤110的小面。
使用由(举例来说)双折射性液晶制成的半波片320来更改行进穿过其的光的偏振状态。半波片320使用双面胶带粘合接合到LCPG 200,但可使用任何适合粘合技术。如果传入经圆偏振光为经右旋圆偏振330的,那么半波片320将使其状态改变为左旋圆偏振340,且反之亦然。然而,在来自电压供应器301的外部所施加电压V(t)下,半波片320允许来自四分之一波片310的传入光350、370通过半波片320而不改变其偏振状态。半波片320的切换性质主要依赖于液晶分子的重新定向,如上文结合图2A到2C所描述。
参考图3B,经圆偏振光340、360、380可根据经圆偏振光340、360、380的旋向及施加到LCPG 200的电压V(t)被导引或偏向为三个衍射级(零(第0)及第一(第±1)衍射级)中的一者。举例来说,当液晶导引装置300由控制器(下文所解释)引导而以角度θ在正第一(第+1)级中导引来自光纤110的光390时,向半波片320施加来自电压供应器301的电压V(t)(例如,2V)使得光370通过半波片320而不改变其偏振状态且不向LCPG 200施加电压以在第+1级中导引光380。当液晶导引装置300由控制器引导而以角度θ在第-1级中导引光时,不向半波片320施加电压使得光330切换其旋向(例如,将右旋圆偏振(RCP)切换到左旋圆偏振(LCP))且不向LCPG 200施加电压以在第-1级中导引光340。当液晶导引装置300由控制器引导以停止导引时,向半波片320施加来自电压供应器301的电压V(t)(例如,2V)使得光390通过半波片320而不改变其偏振状态且向LCPG 200施加电压V(t)以在第0级中导引光360。因此,可使用液晶导引装置300来通过简单地切换半波片320及LCPG 200而将导引方向选择为零及第一级中的一者。
图4展示并入用于将光纤110耦合到集成光学波导170的液晶导引装置300的光纤到芯片导引系统400。导引系统400包含光检测器410、比例积分微分(PID)控制器420及在长度中的一些长度上平行于输入波导170达透射距离(L)的第二波导430。两个波导170、430的芯在瞬逝耦合的大约耦合距离(d)内。光信号通过瞬逝耦合在波导430、170之间传送。
参考图4,可使用电极440将电压Vm施加到波导430以改变波导430的折射率且借此调整波导170与波导430之间的光学耦合的强度。波导430由其折射率可通过所施加电场调整的电光材料(例如,晶体)(举例来说,磷酸二氢钾(通常称作KDP))形成。应了解,波导430可由其中其折射率为可调整的其它各种材料(例如其折射率可通过所施加磁场调整的磁光材料)形成。当(举例来说)使用电极440将电压Vm施加到波导430时,所得电场更改波导430的折射率,此又准许输入波导170中的光学功率中的一些光学功率留在波导170中。为了充分高的电压,输入波导170中的所有光学功率将理想地保持于波导170中。从全瞬逝耦合变为零耦合所需的电压称作切换电压Vs。因此,应了解,可使用所施加电压Vm来更改波导430的折射率以调整传送功率的量,或可针对给定波长确定切换电压Vs以接通/关断波导170与430之间的功率传送。
可使用光检测器410在LCPG 200的各种衍射角处感测光纤110与输入波导170之间的光学功率。如上文所解释,在1550nm的波长及8.93μm的光栅周期Λ下,LCPG 200可执行10度衍射角。可在介于从0度到10度之间的每一衍射角处测量耦合于光纤110与输入波导170之间的光学功率以确定最大经感测光学功率。当光纤110与输入波导170之间的光学功率最大时,在LCPG 200的衍射角处确定最大经感测光学功率。应了解,可针对任何数目个度数(例如,举例来说,从0度到10度每隔半度)测量光学功率以确定最大经感测光学功率。将对应衍射角、波长及光栅周期的最大经感测光学功率存储为导引系统400的操作参数。
使用第二波导430来有效地监视光纤110与输入波导170之间的经耦合光学功率的强度。监视耦合到第二波导430的光学功率,且其充当用以使用导引装置300将光纤110有效地对准到波导170的反馈。光检测器410感测经由瞬逝耦合耦合到第二波导430中的光学功率且将经感测光学功率转换成检测器信号。光检测器410可为锗光电检测器,但可使用其它检测器。将了解,还可使用其它波导传感器(例如耦合到波导170的光学换能器)来检测光纤110与波导170之间的耦合功率。由光检测器410转换的检测器信号作为过程变量输入到比例积分微分(PID)控制器420中,但可使用其它闭合环路控制系统。响应于由光检测器410转换的检测器信号,反馈环路产生指示如由检测器信号表示的当前经感测光学功率与所存储最大经感测光学功率之间的差的误差信号。
当PID控制器420确定所述误差信号低于所要误差阈值时,液晶导引装置300经引导以将衍射角导引为零(第0)衍射角。如上文所解释,为了实现此,将来自电压供应器301的所施加电压V(t)施加到半波片320使得来自光纤110的光390通过半波片320而不改变其偏振状态。还将来自电压供应器301的所施加电压V(t)施加到LCPG 200以将光导引为零级。
当PID控制器420确定所述误差信号等于或高于所要误差阈值时,PID控制器420使用液晶导引装置300导引来自光纤110的光以将由PID控制器420计算的所述误差信号最小化到低于所要误差阈值。举例来说,PID控制器420可通过向半波片320施加电压使得光390通过半波片320而不改变其偏振状态而引导液晶导引装置300来以角度θ在正第一(第+1)级中导引光。如上文所解释,不向LCPG 200施加电压以在第+1级中导引光380。在液晶导引装置300以角度θ在第+1级中导引光之后,光检测器410感测波导430中的耦合功率。如果误差增加,那么PID控制器420可通过不向半波片320及LCPG 200施加电压而引导液晶导引装置300来以角度θ在第-1级中衍射来自光纤110的光。
图5展示根据另一实施例的液晶导引装置500的侧视图。液晶导引装置500包含布置于光纤110与光学集成波导170之间的液晶波片510。液晶导引装置500可使用(举例来说)双面胶带粘合接合于光纤110与波导170之间。应了解,实施例不仅限于双面胶带,且可使用任何适合粘合技术,例如UV固化环氧树脂或热固化环氧树脂。
液晶波片510包含一或多个液晶层,其可为针对近红外红光具有在1.414到2的范围内的折射率的向列液晶层。液晶波片510具有大约1.5μm的厚度或大于光纤110的波长的任何厚度。液晶波片510中的液晶分子的大小应为至少光栅100的宽度,且优选地两倍于光栅100的宽度。举例来说,如果光栅100为约10μm宽,那么液晶波片510的液晶应为20μm。可用抗反射涂层涂覆面向上的液晶小面520,除非在光纤110与液晶波片510之间存在折射率匹配层,例如图3A的折射率匹配层160。
来自光纤110的光发送到液晶波片510,其中光偏振与液晶的定向平行。当来自光纤110的经线性偏振光照射在与液晶波片510的界面处时,其被部分地反射且部分地折射,如图5中所展示。此现象通过斯奈尔(Snell)定律解释:
n1*sinθ1=n2*sinθ2
其中n1为光纤110的折射率,θ1为来自光纤110的传入光的入射角,n2为液晶波片510的折射率,且θ2为光穿过液晶波片510的透射角。当将来自场产生装置530的电场或磁场施加到液晶波片510时,液晶分子的定向经对准以平行于所述场且因此借助液晶分子的经旋转角改变液晶波片510的折射率。通过使液晶波片510的折射率变化,来自光纤110的光束将改变其折射角。可如下确定最小及最大折射角:
θ 2 , min = sin - 1 n 1 n 2 , min sin θ 1 , θ 2 , max = sin - 1 n 1 n 2 , max sin θ 1
其中n2,min及n2,max分别为液晶波片510的最小及最大折射率。举例来说,如果光纤110的折射率n1=l且来自光纤110的光以16.7度的角度θ1进入液晶波片510,那么液晶波片510可以8.26度到11.73度或在3.47度的范围内的最小角度导引光束。
将了解,可在用于将光纤110耦合到集成光学波导170的光纤到芯片导引系统400中用液晶导引系统500替代液晶导引装置400。可使用光检测器410在液晶波片510的各种衍射角处感测光纤110与输入波导170之间的光学功率以确定最大经感测光学功率。将对应衍射角、波长及光栅周期的最大经感测光学功率存储为导引系统500的操作参数。响应于由光检测器410转换的检测器信号,反馈环路产生指示如由检测器信号表示的当前经感测光学功率与所存储最大经感测光学功率之间的差的误差信号。当PID控制器420确定所述误差信号等于或高于所要误差阈值时,PID控制器420使用液晶波片510导引来自光纤110的光以通过调整从场产生装置530施加到液晶波片510的电场来将由PID控制器420计算的所述误差信号最小化到低于所要误差阈值。
尽管已详细地描述了所揭示实施例,但应容易地理解,本发明不限于所揭示实施例。而是,所揭示实施例可经修改以并入直到此时未描述的任何数目个变化、更改、替代或等效布置。

Claims (21)

1.一种用于将光纤与集成于光学芯片上的光学波导对准的装置,所述装置包括:
可切换液晶偏振光栅,其布置于具有所述光学波导的光学路径中,所述偏振光栅经配置以将光束导引到所述光学波导中;及
第一波片,其与所述偏振光栅对准,所述第一波片经配置以改变传入光束的偏振状态。
2.根据权利要求1所述的导引装置,其中所述可切换液晶偏振光栅经配置以将经圆偏振光束导引为三个衍射级中的一者。
3.根据权利要求2所述的导引装置,其进一步包括布置于所述光纤与所述第一波片之间的第二波片,所述第二波片经配置以将所述光纤的经线性偏振光束改变为所述经圆偏振光束。
4.根据权利要求1所述的导引装置,其中所述第一波片为由双折射性液晶制成的半波片。
5.根据权利要求3所述的导引装置,其中所述第二波片为经配置以将所述光纤的所述经线性偏振光束改变为所述经圆偏振光束的四分之一波片。
6.根据权利要求3所述的导引装置,其中所述第二波片为经配置以将所述光纤的所述经线性偏振光束改变为所述经圆偏振光束的四分之三波片。
7.根据权利要求5所述的导引装置,其进一步包括经配置以将大于阈值电压的电压施加到所述偏振光栅以选择零衍射级的电压源。
8.根据权利要求5所述的导引装置,其进一步包括经配置以将电压施加到所述第一波片以允许所述经圆偏振光束通过而不改变所述经圆偏振光束的所述偏振状态的电压源。
9.根据权利要求3所述的导引装置,其中所述第二波片的面对所述光纤的小面涂覆有抗反射涂层。
10.根据权利要求1所述的导引装置,其中所述偏振光栅使用双面胶带接合到所述光学芯片。
11.一种集成光学芯片,其包括:
液晶导引装置,其适于将光纤有效地对准到所述集成光学芯片上的第一光学波导,所述导引装置包括附接到所述第一光学波导的可切换液晶偏振光栅及位于所述光纤与所述偏振光栅之间的半波片;
波导传感器,其用于检测所述光纤与所述第一光学波导之间的耦合功率;及
控制器,其经配置以响应于由所述波导传感器检测的所述耦合功率而控制所述导引装置。
12.根据权利要求11所述的集成光学芯片,其进一步包括接近于所述第一光学波导以耦合来自所述第一光学波导的光学信号的第二光学波导。
13.根据权利要求12所述的集成光学芯片,其中所述第一与第二光学波导之间的所述耦合是通过瞬逝波进行的。
14.根据权利要求12所述的集成光学芯片,其中所述波导传感器为耦合到所述第二光学波导的光电检测器。
15.根据权利要求11所述的集成光学芯片,其中所述波导传感器为耦合到所述第一光学波导的光学换能器。
16.根据权利要求11所述的集成光学芯片,其中所述控制器为比例积分微分控制器。
17.一种用于将具有带有第一折射率的芯的光纤对准到集成光学芯片的液晶导引装置,所述导引装置包括:
液晶波片,其具有不同于所述第一折射率的第二折射率,所述波片附接到所述集成光学芯片在所述光纤与所述集成光学芯片的光栅耦合器之间;及
电场源,其经配置以将电场施加到所述波片以改变所述第二折射率。
18.根据权利要求17所述的导引装置,其中所述波片包括一或多个液晶层。
19.根据权利要求18所述的导引装置,其中所述液晶层为向列的。
20.根据权利要求17所述的导引装置,其中所述波片具有大于所述光纤的波长的厚度。
21.根据权利要求17所述的导引装置,其中所述波片的邻近于所述光纤的小面具有抗反射涂层。
CN201380007957.2A 2012-02-03 2013-01-17 使用液晶的光纤到芯片的有效对准 Active CN104246562B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/365,856 2012-02-03
US13/365,856 US9235097B2 (en) 2012-02-03 2012-02-03 Active alignment of optical fiber to chip using liquid crystals
PCT/US2013/021821 WO2013115995A1 (en) 2012-02-03 2013-01-17 Active alignment of optical fiber to chip using liquid crystals

Publications (2)

Publication Number Publication Date
CN104246562A true CN104246562A (zh) 2014-12-24
CN104246562B CN104246562B (zh) 2017-10-03

Family

ID=47750016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380007957.2A Active CN104246562B (zh) 2012-02-03 2013-01-17 使用液晶的光纤到芯片的有效对准

Country Status (6)

Country Link
US (3) US9235097B2 (zh)
EP (1) EP2823343B1 (zh)
JP (1) JP6072082B2 (zh)
KR (1) KR101699598B1 (zh)
CN (1) CN104246562B (zh)
WO (1) WO2013115995A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110927695A (zh) * 2018-09-04 2020-03-27 通用汽车环球科技运作有限责任公司 具有多光谱深度成像和离散扫描机构的汽车激光雷达
CN111856431A (zh) * 2020-09-21 2020-10-30 中国电子科技集团公司信息科学研究院 一种多传输通道激光雷达光学耦合系统的封装工艺
CN116819689A (zh) * 2023-08-30 2023-09-29 之江实验室 光栅耦合器、光栅耦合反馈控制系统及其控制方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11366254B2 (en) 2010-01-29 2022-06-21 Beam Engineering For Advanced Measurements Co. High-efficiency wide-angle beam steering system
US9557456B2 (en) 2010-01-29 2017-01-31 The United States Of America As Represented By The Secretary Of The Army Broadband optics for manipulating light beams and images
US10114239B2 (en) 2010-04-21 2018-10-30 Beam Engineering For Advanced Measurements Co. Waveplate lenses and methods for their fabrication
US10197715B1 (en) 2013-03-15 2019-02-05 Beam Engineering For Advanced Measurements Co. Methods of diffractive lens and mirror fabrication
US9235097B2 (en) 2012-02-03 2016-01-12 Micron Technology, Inc. Active alignment of optical fiber to chip using liquid crystals
US10107945B2 (en) 2013-03-01 2018-10-23 Beam Engineering For Advanced Measurements Co. Vector vortex waveplates
US10185182B2 (en) * 2013-03-03 2019-01-22 Beam Engineering For Advanced Measurements Co. Mechanical rubbing method for fabricating cycloidal diffractive waveplates
US9432750B1 (en) * 2013-04-19 2016-08-30 Wavexing, Inc. Contentionless N×M wavelength cross connect
US9171779B2 (en) * 2013-08-29 2015-10-27 Industrial Technology Research Institute Semiconductor laser structure
CA2946693A1 (en) 2014-04-16 2015-10-22 David E. Roberts Methods and apparatus for human vision correction using diffractive waveplate lenses
CN107111085B (zh) * 2014-11-13 2019-07-26 康宁光电通信有限责任公司 绝热光学耦合系统
US9703046B2 (en) 2015-01-13 2017-07-11 Institut National D'optique Active optical coupling system and photonic integrated circuit
EP3668107B1 (en) * 2015-03-23 2021-10-06 Aeponyx Inc. Photonic switches, photonic switching fabrics and methods for data centers
US10613412B2 (en) 2015-04-27 2020-04-07 National Institute Of Advanced Industrial Science Light beam deflecting element, wavelength-selective cross-connect device using same, and optical cross-connect device
US10191296B1 (en) 2015-06-30 2019-01-29 Beam Engineering For Advanced Measurements Co. Laser pointer with reduced risk of eye injury
US9976911B1 (en) 2015-06-30 2018-05-22 Beam Engineering For Advanced Measurements Co. Full characterization wavefront sensor
WO2017006425A1 (ja) * 2015-07-07 2017-01-12 富士通株式会社 光デバイス
US20170045203A1 (en) * 2015-08-13 2017-02-16 Abl Ip Holding Llc Configurable lighting device using a light source and optical modulator
US10436957B2 (en) 2015-10-27 2019-10-08 Beam Engineering For Advanced Measurements Co. Broadband imaging with diffractive waveplate coated mirrors and diffractive waveplate objective lens
US9885870B2 (en) 2016-04-25 2018-02-06 Microsoft Technology Licensing, Llc Diffractive optical elements with analog modulations and switching
US10720712B2 (en) * 2016-09-22 2020-07-21 Huawei Technologies Co., Ltd. Liquid-crystal tunable metasurface for beam steering antennas
US10423045B2 (en) 2016-11-14 2019-09-24 Beam Engineering For Advanced Measurements Co. Electro-optical diffractive waveplate beam shaping system
US10274805B2 (en) 2017-06-13 2019-04-30 Beam Engineering For Advanced Measurements Co. Polarization-independent switchable lens system
US11982906B1 (en) 2018-03-05 2024-05-14 Beam Engineering For Advanced Measurements Co. Polarization-independent diffractive optical structures
US11175441B1 (en) 2018-03-05 2021-11-16 Beam Engineering For Advanced Measurements Co. Polarization-independent diffractive optical structures
WO2020123164A1 (en) * 2018-12-11 2020-06-18 Silc Technologies, Inc. Image distance in lidar systems
FR3098710B1 (fr) * 2019-07-19 2021-12-31 Keranova Appareil de decoupe a coupleur optique incluant un correcteur de polarisation
US11294240B2 (en) 2019-08-10 2022-04-05 Beam Engineering For Advanced Measurements Co. Diffractive waveplate devices that operate over a wide temperature range
GB202104223D0 (en) 2021-03-25 2021-05-12 Ams Ag Monolithically integrated optical assembly
CN113176554B (zh) * 2021-04-29 2024-05-17 中国科学院长春光学精密机械与物理研究所 一种光点阵生成结构及激光雷达结构
CN117434777B (zh) * 2023-12-20 2024-03-19 中国工程物理研究院流体物理研究所 光子集成光学相控阵、单波长二维角度扫描装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886691A (zh) * 2003-11-27 2006-12-27 旭硝子株式会社 使用具有光学上各向同性的液晶的光学元件
US7162124B1 (en) * 2003-03-14 2007-01-09 Luxtera, Inc. Fiber to chip coupler
CN1896779A (zh) * 2005-08-05 2007-01-17 中国科学院长春光学精密机械与物理研究所 一种低电压驱动的液晶折射率光栅的制备方法
US20100329603A1 (en) * 2009-06-26 2010-12-30 Commissariat a L'Energie Atomique et Aux Energies Alternatives Batiment Le Ponant D Structure and method for aligning an optical fiber and a submicronic waveguide

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157860A (en) * 1977-10-11 1979-06-12 Bell Telephone Laboratories, Incorporated Dual polarization electromagnetic switch and modulator
DE3138074A1 (de) * 1981-09-24 1983-04-14 Siemens AG, 1000 Berlin und 8000 München Anordnung zur uebertragung von messwerten zu einer entfernten stelle
DE3673630D1 (de) * 1985-07-24 1990-09-27 British Telecomm Dielektrische lichtwellenleitervorrichtung.
US4707137A (en) * 1985-10-25 1987-11-17 Laser Magnetic Storage International Company Device and method for testing the wave front quality of optical components
DE59208158D1 (de) * 1991-06-25 1997-04-17 Hoffmann La Roche Optisches Element zur effizienten Erzeugung kurzwelligen Laserlichtes
US5216729A (en) 1991-11-18 1993-06-01 Harmonic Lightwaves, Inc. Active alignment system for laser to fiber coupling
JP3501235B2 (ja) 1993-05-07 2004-03-02 日本電信電話株式会社 導波型光デバイス
US6264111B1 (en) * 1993-06-16 2001-07-24 Siemens Building Technologies, Inc. Proportional-integral-derivative controller having adaptive control capability
US6821457B1 (en) * 1998-07-29 2004-11-23 Science Applications International Corporation Electrically switchable polymer-dispersed liquid crystal materials including switchable optical couplers and reconfigurable optical interconnects
US5937115A (en) * 1997-02-12 1999-08-10 Foster-Miller, Inc. Switchable optical components/structures and methods for the fabrication thereof
US6567573B1 (en) * 1997-02-12 2003-05-20 Digilens, Inc. Switchable optical components
US7003181B2 (en) * 1997-02-12 2006-02-21 Domash Lawrence H Switchable optical components
US20020075783A1 (en) * 1998-02-20 2002-06-20 Amir Alon Switchable liquid crystal diffractive element
US7324286B1 (en) * 2000-01-04 2008-01-29 University Of Central Florida Research Foundation Optical beam steering and switching by optically controlled liquid crystal spatial light modulator with angular magnification by high efficiency PTR Bragg gratings
JP2002139624A (ja) * 2000-11-06 2002-05-17 Nitto Denko Corp 光学素子、照明装置及び液晶表示装置
TW571165B (en) * 2000-12-15 2004-01-11 Nec Lcd Technologies Ltd Liquid crystal display device
US6587618B2 (en) * 2001-03-16 2003-07-01 Corning Incorporated Collimator array and method and system for aligning optical fibers to a lens array
US6625346B2 (en) * 2001-03-19 2003-09-23 Capella Photonics, Inc. Reconfigurable optical add-drop multiplexers with servo control and dynamic spectral power management capabilities
US6744948B1 (en) * 2001-06-20 2004-06-01 Oluma, Inc. Fiber tap monitor based on evanescent coupling
US6870978B2 (en) * 2001-10-16 2005-03-22 Ken Purchase Waveplate and optical circuit formed from mesogen-containing polymer
US7460298B2 (en) * 2002-01-30 2008-12-02 Oplink Communications, Inc. Integrated optical dual amplifier
EP1345297A1 (en) * 2002-03-16 2003-09-17 Agilent Technologies, Inc. (a Delaware corporation) An arrangement for monitoring the emission wavelength and power of an optical source
US6832028B2 (en) * 2002-10-08 2004-12-14 Innovative Technology Licensing, Llc Liquid crystal adaptive coupler for steering a light beam relative to a light-receiving end of an optical waveguide
JP3905819B2 (ja) * 2002-11-01 2007-04-18 日本電信電話株式会社 光モジュール
US20050018732A1 (en) * 2002-12-19 2005-01-27 Aaron Bond Uncooled and high temperature long reach transmitters, and high power short reach transmitters
JP2004242166A (ja) * 2003-02-07 2004-08-26 Seiko Epson Corp 光モジュール及びその製造方法並びに電子機器
US7184625B2 (en) * 2003-02-11 2007-02-27 Luxtera, Inc Optical waveguide grating coupler incorporating reflective optical elements and anti-reflection elements
US7245803B2 (en) * 2003-02-11 2007-07-17 Luxtera, Inc. Optical waveguide grating coupler
US7006732B2 (en) * 2003-03-21 2006-02-28 Luxtera, Inc. Polarization splitting grating couplers
ITTO20030530A1 (it) * 2003-07-09 2005-01-10 Infm Istituto Naz Per La Fisi Ca Della Mater Reticolo olografico di diffrazione, procedimento per la
US20070071061A1 (en) * 2003-12-24 2007-03-29 Giulia Pietra Tunable resonant grating filters
JP2007127674A (ja) * 2004-01-19 2007-05-24 Murata Mfg Co Ltd 電気光学デバイス及びその製造方法
KR20070110882A (ko) 2005-02-16 2007-11-20 어플라이드 머티어리얼스, 인코포레이티드 Ic 칩에 대한 광 결합
TWI312414B (en) * 2005-12-16 2009-07-21 Ind Tech Res Inst Optic waveguide biiosensing device
EP2009416A1 (en) * 2007-06-29 2008-12-31 Interuniversitair Microelektronica Centrum Vzw Optical probe
JP2009128694A (ja) * 2007-11-26 2009-06-11 Sharp Corp 光スイッチ素子
US8238759B2 (en) * 2008-02-14 2012-08-07 Infinera Corporation High capacity transmitter implemented on a photonic integrated circuit
JP2011520152A (ja) * 2008-05-07 2011-07-14 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. ポイントツーポイント通信のための光学エンジン
FR2937426B1 (fr) * 2008-10-20 2012-12-07 Commissariat Energie Atomique Structure et procede d'alignement d'une fibre optique sur un guide d'ondes optique
KR101520143B1 (ko) * 2009-01-09 2015-05-13 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 점대점 통신을 위한 광학 엔진
FR2942047B1 (fr) * 2009-02-09 2011-06-17 Commissariat Energie Atomique Structure et procede d'alignement d'une fibre optique et d'un guide d'ondes submicronique
WO2011014743A2 (en) 2009-07-31 2011-02-03 North Carolina State University Beam steering devices including stacked liquid crystal polarization gratings and related methods of operation
US20110188120A1 (en) * 2010-01-29 2011-08-04 Beam Engineering For Advanced Measurement Co. Broadband optics for manipulating light beams and images
US20110262844A1 (en) * 2010-04-21 2011-10-27 Beam Engineering For Advanced Measurement Co. Fabrication of high efficiency, high quality, large area diffractive waveplates and arrays
US9983479B2 (en) * 2010-04-21 2018-05-29 Beam Engineering For Advanced Measurements Co. Fabrication of high efficiency, high quality, large area diffractive waveplates and arrays
DE102010029612B4 (de) * 2010-06-02 2017-12-21 Laser-Laboratorium Göttingen eV Einkoppelvorrichtung zum Einkoppeln von Licht in einen planaren Wellenleiter
US9235097B2 (en) 2012-02-03 2016-01-12 Micron Technology, Inc. Active alignment of optical fiber to chip using liquid crystals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7162124B1 (en) * 2003-03-14 2007-01-09 Luxtera, Inc. Fiber to chip coupler
CN1886691A (zh) * 2003-11-27 2006-12-27 旭硝子株式会社 使用具有光学上各向同性的液晶的光学元件
CN1896779A (zh) * 2005-08-05 2007-01-17 中国科学院长春光学精密机械与物理研究所 一种低电压驱动的液晶折射率光栅的制备方法
US20100329603A1 (en) * 2009-06-26 2010-12-30 Commissariat a L'Energie Atomique et Aux Energies Alternatives Batiment Le Ponant D Structure and method for aligning an optical fiber and a submicronic waveguide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIHWAN KIM ET AL.: "Wide-angle, nonmechanical beam steering using thin liquid crystal polarization gratings", 《PROCEEDINGS OR SPIE》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110927695A (zh) * 2018-09-04 2020-03-27 通用汽车环球科技运作有限责任公司 具有多光谱深度成像和离散扫描机构的汽车激光雷达
CN111856431A (zh) * 2020-09-21 2020-10-30 中国电子科技集团公司信息科学研究院 一种多传输通道激光雷达光学耦合系统的封装工艺
CN116819689A (zh) * 2023-08-30 2023-09-29 之江实验室 光栅耦合器、光栅耦合反馈控制系统及其控制方法
CN116819689B (zh) * 2023-08-30 2024-01-09 之江实验室 光栅耦合器、光栅耦合反馈控制系统及其控制方法

Also Published As

Publication number Publication date
US11002914B2 (en) 2021-05-11
US20180011252A1 (en) 2018-01-11
JP2015509216A (ja) 2015-03-26
US20160103283A1 (en) 2016-04-14
US9235097B2 (en) 2016-01-12
US20130202246A1 (en) 2013-08-08
EP2823343B1 (en) 2018-05-09
JP6072082B2 (ja) 2017-02-01
US9791629B2 (en) 2017-10-17
KR20140129077A (ko) 2014-11-06
KR101699598B1 (ko) 2017-01-24
EP2823343A1 (en) 2015-01-14
WO2013115995A1 (en) 2013-08-08
CN104246562B (zh) 2017-10-03

Similar Documents

Publication Publication Date Title
US11002914B2 (en) Active alignment of optical fiber to chip using liquid crystals
US20240019640A1 (en) Waveguide Grating Device
CN102449491B (zh) 聚合物光波导电流传感器
US20200174188A1 (en) Polarization Independent Processing in Integrated Photonics
US6798960B2 (en) Optical device
US8254732B2 (en) Phase modulator and optical modulation device
US20110255147A1 (en) Optical modulator
KR100966632B1 (ko) 폴리머 광도파로 전류 센서
KR101056275B1 (ko) 출력광 분기형 폴리머 광도파로 전류 센서
JP4108564B2 (ja) 偏波状態測定器
Lv et al. Efficient coupling interface for hybrid integration of DFB lasers on 3μm SOI waveguide platform
He et al. 40‐2: Distinguished Student Paper: Compact, Fast‐Response, Continuous and Wide‐Angle Laser Beam Steerers
JPS58189507A (ja) 光フアイバジヤイロ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant