CN104246001B - 钝化合金的冷变形工件的固溶硬化方法,以及通过该方法固溶硬化的构件 - Google Patents

钝化合金的冷变形工件的固溶硬化方法,以及通过该方法固溶硬化的构件 Download PDF

Info

Publication number
CN104246001B
CN104246001B CN201380021884.2A CN201380021884A CN104246001B CN 104246001 B CN104246001 B CN 104246001B CN 201380021884 A CN201380021884 A CN 201380021884A CN 104246001 B CN104246001 B CN 104246001B
Authority
CN
China
Prior art keywords
temperature
nitrogen
dissolution
carbon
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380021884.2A
Other languages
English (en)
Chinese (zh)
Other versions
CN104246001A (zh
Inventor
T·L·克里斯琴森
T·S·胡梅尔肖
M·A·J·索默斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EXPANITE AS
Original Assignee
EXPANITE AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/DK2012/050139 external-priority patent/WO2012146254A1/en
Application filed by EXPANITE AS filed Critical EXPANITE AS
Publication of CN104246001A publication Critical patent/CN104246001A/zh
Application granted granted Critical
Publication of CN104246001B publication Critical patent/CN104246001B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)
CN201380021884.2A 2012-04-27 2013-04-25 钝化合金的冷变形工件的固溶硬化方法,以及通过该方法固溶硬化的构件 Active CN104246001B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPCT/DK2012/050139 2012-04-27
PCT/DK2012/050139 WO2012146254A1 (en) 2011-04-28 2012-04-27 Method for solution hardening of a cold deformed workpiece of a passive alloy, and a member solution hardened by the method
PCT/DK2013/050119 WO2013159781A1 (en) 2012-04-27 2013-04-25 Method for solution hardening of a cold deformed workpiece of a passive alloy, and a member solution hardened by the method

Publications (2)

Publication Number Publication Date
CN104246001A CN104246001A (zh) 2014-12-24
CN104246001B true CN104246001B (zh) 2017-07-25

Family

ID=48576167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380021884.2A Active CN104246001B (zh) 2012-04-27 2013-04-25 钝化合金的冷变形工件的固溶硬化方法,以及通过该方法固溶硬化的构件

Country Status (8)

Country Link
EP (1) EP2841617B1 (enExample)
JP (1) JP6241896B2 (enExample)
KR (1) KR101897321B1 (enExample)
CN (1) CN104246001B (enExample)
CA (1) CA2869018A1 (enExample)
DK (1) DK2841617T3 (enExample)
IN (1) IN2014DN09816A (enExample)
WO (1) WO2013159781A1 (enExample)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10605387B2 (en) 2013-12-10 2020-03-31 Parker-Hannifin Corporation Multiple layer hardness ferrule and method
US20150160416A1 (en) 2013-12-10 2015-06-11 Parker-Hannifin Corporation Multiple layer hardness ferrule
WO2015173380A1 (en) 2014-05-15 2015-11-19 Expanite Technology A/S Lock washer
DK3299487T4 (da) 2016-09-27 2023-01-30 Bodycote Plc Fremgangsmåde til overfladehærdning af en kolddeformeret artikel omfattende lavtemperatursudglødning
JP6979713B2 (ja) * 2017-04-26 2021-12-15 エクスパナイト テクノロジー アグシャセルスガーッブExpanite Technology A/S 組立部品
WO2019006554A1 (en) * 2017-07-07 2019-01-10 Industries Mailhot Inc. METHOD AND SYSTEM FOR COOLING METALLIC PARTS AFTER NITRURATION
AU2020228291A1 (en) * 2019-02-26 2021-10-07 Somnio Global Holdings, Llc High nitrogen steel powder and methods of making the same
JP2020147821A (ja) * 2019-03-15 2020-09-17 株式会社デンソー プラズマ窒化処理方法
DE102019125839A1 (de) * 2019-09-25 2021-04-08 Danfoss A/S Verfahren zum Herstellen einer wasserhydraulischen Maschine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008124239A1 (en) * 2007-04-06 2008-10-16 Swagelok Company Hybrid carburization with intermediate rapid quench
EP2278038A1 (en) * 2009-07-20 2011-01-26 Danmarks Tekniske Universitet (DTU) A method of activating an article of passive ferrous or non-ferrous metal prior to carburizing, nitriding and/or nitrocarburizing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4333917C2 (de) * 1993-10-05 1994-06-23 Hans Prof Dr Ing Berns Randaufsticken zur Erzeugung einer hochfesten austenitischen Randschicht in nichtrostenden Stählen
US6093303A (en) 1998-08-12 2000-07-25 Swagelok Company Low temperature case hardening processes
JP2001032048A (ja) * 1999-07-19 2001-02-06 Nsk Ltd 転がり軸受
WO2004007789A2 (en) * 2002-07-16 2004-01-22 Danmarks Tekniske Universitet-Dtu Case-hardening of stainless steel
US9382608B2 (en) * 2005-06-15 2016-07-05 Koninklijke Philips N.V. Method for manufacturing a stainless steel product
WO2006136166A1 (en) 2005-06-22 2006-12-28 Danmarks Tekniske Universitet - Dtu Carburizing in hydrocarbon gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008124239A1 (en) * 2007-04-06 2008-10-16 Swagelok Company Hybrid carburization with intermediate rapid quench
EP2278038A1 (en) * 2009-07-20 2011-01-26 Danmarks Tekniske Universitet (DTU) A method of activating an article of passive ferrous or non-ferrous metal prior to carburizing, nitriding and/or nitrocarburizing

Also Published As

Publication number Publication date
KR101897321B1 (ko) 2018-09-10
JP2015514874A (ja) 2015-05-21
EP2841617A1 (en) 2015-03-04
EP2841617B1 (en) 2017-12-13
DK2841617T3 (en) 2018-03-12
CN104246001A (zh) 2014-12-24
IN2014DN09816A (enExample) 2015-07-31
KR20150003900A (ko) 2015-01-09
JP6241896B2 (ja) 2017-12-06
CA2869018A1 (en) 2013-10-31
WO2013159781A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
CN103732783B (zh) 钝化合金的冷变形工件的固溶硬化方法,以及通过该方法固溶硬化的构件
CN104246001B (zh) 钝化合金的冷变形工件的固溶硬化方法,以及通过该方法固溶硬化的构件
JP2015514874A5 (enExample)
CN101139692B (zh) 马氏体不锈钢渗碳方法及其制品
JP3064907B2 (ja) 浸炭硬化締結用品およびその製法
JP3064938B2 (ja) オーステナイト系ステンレスに対する浸炭処理方法およびそれによって得られたオーステナイト系ステンレス製品
US20080277030A1 (en) Composition and Process for Enhanced Properties of Ferrous Components
JP3064937B2 (ja) オーステナイト系金属に対する浸炭処理方法およびそれによって得られたオーステナイト系金属製品
JP3005952B2 (ja) オーステナイト系金属に対する浸炭処理方法およびそれによって得られたオーステナイト系金属製品
JPH05331615A (ja) 非磁性鋼製転がり軸受部品
Kumar et al. Surface hardening of AISI 304, 316, 304L and 316L ss using cyanide free salt bath nitriding process
JP2005036279A (ja) 鋼の表面硬化方法およびそれによって得られた金属製品
Milella Surface Treatments and Temperature Effects
Park et al. Development of New Modified “Super Saturated NitroCarburizing” for Modern High Pressure Injector in Powertrain
Ghadeer et al. Study of the Structural Properties and Microscopic Hardness of a Carburized Stainless Steel Alloy AISI304
CN112469842A (zh) 表面硬化材料的制造方法
Mohd Khairul Munir B Kamaruzaman Improvement on Wear Resistance of 316 Austenitic Stainless Steel by High Temperature Nitriding Technique

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant