CN104218909B - 一种快速低开销峰值检测电路 - Google Patents

一种快速低开销峰值检测电路 Download PDF

Info

Publication number
CN104218909B
CN104218909B CN201410439659.7A CN201410439659A CN104218909B CN 104218909 B CN104218909 B CN 104218909B CN 201410439659 A CN201410439659 A CN 201410439659A CN 104218909 B CN104218909 B CN 104218909B
Authority
CN
China
Prior art keywords
pmos
voltage
drain terminal
source
connects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410439659.7A
Other languages
English (en)
Other versions
CN104218909A (zh
Inventor
王志鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHANGSHA JINGJIA MICROELECTRONIC Co Ltd
Original Assignee
CHANGSHA JINGJIA MICROELECTRONIC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHANGSHA JINGJIA MICROELECTRONIC Co Ltd filed Critical CHANGSHA JINGJIA MICROELECTRONIC Co Ltd
Priority to CN201410439659.7A priority Critical patent/CN104218909B/zh
Publication of CN104218909A publication Critical patent/CN104218909A/zh
Application granted granted Critical
Publication of CN104218909B publication Critical patent/CN104218909B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)

Abstract

本发明公开了一种快速低开销峰值检测电路。相对于传统的峰值检测电路,本发明主要进行了以下改进:第一,去掉传统峰值检测电路中的充放电电容,使得峰值检测结果更加快速且大大降低了芯片面积开销;第二,巧妙采用了PMOS管作为四路正交信号输入管,并使输入管直流状态为亚导通,利用四路正交信号瞬时电压对PMOS管导通能力的不同得到比较电压并与阈值电压比较,最终得出检测结果。本发明具有快速获取检测结果,低开销,低功耗,便于集成的优点。

Description

一种快速低开销峰值检测电路
技术领域
本发明用于集成电路设计领域,具体涉及一种快速低开销峰值检测电路。
背景技术
在当前模拟CMOS集成电路设计领域,尤其在射频接收器中,射频(RF)信号被接收器所接收,然而RF信号强度会随着接收器距信号发射源的远近或者周围环境的变化而变化,如果该信号强度过弱,将会导致整个系统的信噪比降低,而信号过强将导致接收机饱和,从而在信号处理的过程中引入显著的非线性,因此,在接收通路上通常需要一个自动增益控制电路(AGC),来控制整个系统的增益,保证在弱信号输入时有较大的增益,而在强信号输入时有较小的增益,这样,AGC就需要一个检测机制,并将检测结果提供给控制电路进行反馈控制,这就是峰值检测电路。
在集成电路设计中,传统的峰值检测电路往往离不开充放电电容,如图1所示,其基本原理就是通过检测输入信号幅值的不同产生充放电电流,电流对电容充放电产生比较电压,比较电压与参考电压比较得出比较结果进而控制系统增益。然而,这种检测机制也存在一定的弊端:首先,为了得到一个稳定的参考电压,充放电电容的容值往往不能太小,而大的容值意味着大的面积开销,增加了设计的成本;其次,在对电容充电时,较大的电容会使得充电时间较慢,这直接导致峰值检测输出结果时间较长,影响系统的后续操作。
发明内容
本发明是针对传统峰值检测电路检测速度慢,面积开销大的问题,提出了一种快速低开销峰值检测电路,本发明的主要特征在于:
所述电路结构包括高低阈值电压产生电路,峰值比较电压产生电路以及峰值检测输出电路三个部分,电路由尾电流源IB提供偏置电流,通过PMOS管(P1)按照1:1:1:1:2的比例分别镜像到PMOS电流源管(P2),PMOS电流源管(P3),PMOS电流源管(P4),PMOS电流源管(P5),PMOS管(P2)的漏端接第一电阻(R1)的一端,第一电阻(R1)的另一端与可变电阻(Rs)串联,可变电阻(Rs)的另一端与第二电阻(R2)串联,第二电阻(R2)的另一端接地,PMOS管(P2)的漏端产生直流电压(VG),(VG)作为直流偏置电压分别接PMOS管(P7)的栅端,PMOS管(P8)的栅端,PMOS管(P10)的栅端,PMOS管(P11)的栅端,PMOS管(P12)的栅端,PMOS管(P13)的栅端为其提供直流偏置,串联可变电阻(Rs)的两端可以根据需要产生一个高电压(V1)和一个低电压(V2),高电压(V1)接到PMOS管(P9)的栅端,PMOS管(P9)的漏端接地,PMOS管(P9)的源端与PMOS电流源管(P4)的漏端相接,同时,还与PMOS管(P8)的源端相接,产生高阈值电压(VH)并连接到第一比较器(CMP1)的正端,PMOS管(P8)的漏端接地;低电压(V2)接到PMOS管(P6)的栅端,PMOS管(P6)的漏端接地,PMOS管(P6)的源端与PMOS电流源管(P3)的漏端相接,同时,还与PMOS管(P7)的源端相接,产生低阈值电压(VL)并连接到第二比较器(CMP2)的负端,PMOS管(P7)的漏端接地;调整直流偏置电压(VG),使得四路正交信号输入管PMOS管(P10)、PMOS管(P11)、PMOS管(P12)、PMOS管(P13)都工作在亚阈值区,也就是说PMOS管(P10)、PMOS管(P11)、PMOS管(P12)、PMOS管(P13)都工作在亚导通状态,第一路正交信号(VIP)通过第一电容(C1)耦合到PMOS管(P10)的栅端,第二路正交信号(VIN)通过第二电容(C2)耦合到PMOS管(P11)的栅端,第三路正交信号(VQP)通过第三电容(C3)耦合到PMOS管(P12)的栅端,第四路正交信号(VQN)通过第四电容(C4)耦合到PMOS管(P13)的栅端,PMOS管(P10)的漏端,PMOS管(P11)的漏端,PMOS管(P12)的漏端和PMOS管(P13)的漏端均接地,PMOS管(P10)的源端,PMOS管(P11)的源端,PMOS管(P12)的源端和PMOS管(P13)的源端相接并与PMOS电流源管(P5)的漏端相接产生峰值比较电压(VC),峰值比较电压(VC)分别接到第一比较器(CMP1)的负端和第二比较器(CMP2)的正端,第一比较器(CMP1)的输出与第一buffer(BUF1)的输入相接,第一buffer(BUF1)的输出接(SR触发器)的(S)端,第二比较器(CMP2)的输出与第二buffer(BUF2)的输入相接,第二buffer(BUF2)的输出接(SR触发器)的(R)端,(SR触发器)的输出端(Q)接输出端口(OUT)。
本发明的主要特点在于:
1.电路的比较电压由PMOS管作为输入管的源极跟随器产生,使输入管工作在亚阈值区,通过正交信号耦合到输入管栅端的瞬时电压对输入管导通能力的不同得到比较电压;
2.高低阈值电压的产生由一个可变电阻分压得到,可变电阻的大小可以根据峰值检测的需要灵活设置,并得到合适的高低阈值电压;
3.省去了传统峰值检测电路中的充放电电容,大大减小了芯片面积开销,提高了检测速度。
附图说明
图1传统应用中峰值检测电路结构示意图;
图2本发明提出的快速低开销峰值检测电路结构;
图3四路正交信号某一瞬时电压示意图。
具体实施方式
以下结合附图,详细说明发明公开的一种快速低开销峰值检测电路结构和工作过程。
在本发明的实施例中,如图2所示,整个峰值检测电路主要由高低阈值电压产生电路,峰值比较电压产生电路以及峰值检测输出电路三个部分组成。
电路由尾电流源IB提供偏置电流,通过PMOS管P1按照1:1:1:1:2的比例分别镜像到PMOS电流源管P2,PMOS电流源管P3,PMOS电流源管P4,PMOS电流源管P5,PMOS管P2的漏端接第一电阻R1的一端,第一电阻R1的另一端与可变电阻Rs串联,可变电阻Rs的另一端与第二电阻R2串联,第二电阻R2的另一端接地,PMOS管P2的漏端产生直流电压VG,VG作为直流偏置电压分别接PMOS管P7的栅端,PMOS管P8的栅端,PMOS管P10的栅端,PMOS管P11的栅端,PMOS管P12的栅端,PMOS管P13的栅端为其提供直流偏置,串联可变电阻Rs的两端可以根据需要产生一个高电压V1和一个低电压V2,高电压V1接到PMOS管P9的栅端,PMOS管P9的漏端接地,PMOS管P9的源端与PMOS电流源管P4的漏端相接,同时,还与PMOS管P8的源端相接,PMOS管(P8)的漏端接地,PMOS管P8、PMOS管P9以及PMOS管P4一起构成了一个源极跟随器,其输出产生高阈值电压VH并连接到第一比较器CMP1的正端;低电压V2接到PMOS管P6的栅端,PMOS管P6的漏端接地,PMOS管P6的源端与PMOS电流源管P3的漏端相接,同时,还与PMOS管P7的源端相接,PMOS管P7的漏端接地,PMOS管P6、PMOS管P7以及PMOS管P3一起构成了一个源极跟随器,其输出产生低阈值电压VL并连接到第二比较器CMP2的负端,高、低阈值电压将用于与峰值电压的比较得出检测结果。
在峰值比较电压产生电路中,调整直流偏置电压VG,使得四路正交信号输入管PMOS管P10、PMOS管P11、PMOS管P12、PMOS管P13都工作在亚阈值区,也就是说PMOS管P10、PMOS管P11、PMOS管P12、PMOS管P13都工作在亚导通状态,第一路正交信号VIP通过第一电容C1耦合到PMOS管P10的栅端,第二路正交信号VIN通过第二电容C2耦合到PMOS管P11的栅端,第三路正交信号VQP通过第三电容C3耦合到PMOS管P12的栅端,第四路正交信号VQN通过第四电容C4耦合到PMOS管P13的栅端,PMOS管P10的漏端,PMOS管P11的漏端,PMOS管P12的漏端和PMOS管P13的漏端均接地,PMOS管P10的源端,PMOS管P11的源端,PMOS管P12的源端和PMOS管P13的源端相接并与PMOS电流源管P5的漏端相接,同样构成了一个源极跟随器,这样做的主要目的是,当四路正交信号分别通过电容耦合到输入管的栅端时,四个输入管的直流工作状态都处于亚阈值区,但其工作状态还将受到耦合到栅端的四路正交交流信号的影响,为了更加直观的解释峰值比较电压的产生,可以选择某一瞬时时刻四路正交信号的状态进行分析,如图3所示,四路正交信号VIP、VIN、VQP、VQN,每路信号间相位相差90°,假设直流偏置电压VG处于四路正交信号以外,当四路正交信号经过耦合电容后,变成了以电压VG为共模电压的四路正交信号,这里分别用V10表示信号VIP经第一电容C1到PMOS管P10的栅端电压,用V11表示信号VIN经第二电容C2到PMOS管P11的栅端电压,用V12表示信号VQP经第三电容C3到PMOS管P12的栅端电压,用V13表示信号VQN经第四电容C4到PMOS管P13的栅端电压,在虚线所示的t时刻,电压V10和电压V12的瞬时电压刚好等于共模电压VG,由于每个信号之间相位相差90°,所以此时,电压V11处于正弦信号的波峰,电压V13处于正弦信号的波谷,处于共模电压的V10和V12将继续保持PMOS管P10和PMOS管P12处于亚导通状态,处于波峰的瞬时电压V11比共模电压VG还高,PMOS管P11将继续处于亚导通状态,理论上PMOS管P11的源端电压会提高,但由于PMOS管P11已工作在亚导通状态,所以电压提高的幅度非常有限,相反,处于波谷的瞬时电压V13比共模电压VG低,会使PMOS管P13导通能力加强甚至如果幅值过大会使其进入饱和区,PMOS管P13的源端电压会被拉低,其下拉能力明显要大于上拉能力,这样就产生了随正交输入信号电压幅值变化的峰值比较电压VC。瞬时时刻t的选择是一种比较典型的时刻,此瞬时时刻的分析原理适用于其它任何瞬时时刻的分析。
在峰值检测输出电路中,峰值比较电压VC分别接到第一比较器CMP1的负端和第二比较器CMP2的正端,第一比较器CMP1的输出与第一buffer BUF1的输入相接,第一bufferBUF1的输出接SR触发器的S端,第二比较器CMP2的输出与第二buffer BUF2的输入相接,第二buffer BUF2的输出接SR触发器的R端,SR触发器的输出端Q接输出端口OUT,峰值检测输出的结果如下表所示,
表1
通过以上说明,本电路可以有效的检测输入信号峰值并得出检测结果,相比传统峰值检测电路具有更加快速和节省面积开销的优点,非常适合于CMOS射频集成电路设计应用中。

Claims (1)

1.一种快速低开销峰值检测电路,其特征在于,所述电路包括高低阈值电压产生电路,峰值比较电压产生电路以及峰值检测输出电路三个部分,高低阈值电压产生电路由尾电流源IB提供偏置电流,通过PMOS管P1按照1:1:1:1:2的比例分别镜像到PMOS管P2,PMOS管P3,PMOS管P4,PMOS管P5,PMOS管P2的漏端接第一电阻R1的一端,第一电阻R1的另一端与可变电阻Rs串联,可变电阻Rs的另一端与第二电阻R2串联,第二电阻R2的另一端接地,PMOS管P2的漏端产生直流电压VG,直流电压VG分别接PMOS管P7的栅端,PMOS管P8的栅端,PMOS管P10的栅端,PMOS管P11的栅端,PMOS管P12的栅端,PMOS管P13的栅端为其提供直流偏置,可变电阻Rs的两端可以根据需要产生一个高电压V1和一个低电压V2,高电压V1接到PMOS管P9的栅端,PMOS管P9的漏端接地,PMOS管P9的源端与PMOS管P4的漏端相接,同时,还与PMOS管P8的源端相接,产生高阈值电压VH并连接到第一比较器CMP1的正端,PMOS管P8的漏端接地;低电压V2接到PMOS管P6的栅端,PMOS管P6的漏端接地,PMOS管P6的源端与PMOS管P3的漏端相接,同时,还与PMOS管P7的源端相接,产生低阈值电压VL并连接到第二比较器CMP2的负端,PMOS管P7的漏端接地;调整直流电压VG,使得四路正交信号输入管PMOS管P10、PMOS管P11、PMOS管P12、PMOS管P13都工作在亚阈值区,也就是说PMOS管P10、PMOS管P11、PMOS管P12、PMOS管P13都工作在亚导通状态,第一路正交信号VIP通过第一电容C1耦合到PMOS管P10的栅端,第二路正交信号VIN通过第二电容C2耦合到PMOS管P11的栅端,第三路正交信号VQP通过第三电容C3耦合到PMOS管P12的栅端,第四路正交信号VQN通过第四电容C4耦合到PMOS管P13的栅端,PMOS管P10的漏端,PMOS管P11的漏端,PMOS管P12的漏端和PMOS管P13的漏端均接地,PMOS管P10的源端,PMOS管P11的源端,PMOS管P12的源端和PMOS管P13的源端相接并与PMOS管P5的漏端相接产生峰值比较电压VC,峰值比较电压VC分别接到第一比较器CMP1的负端和第二比较器CMP2的正端,第一比较器CMP1的输出与第一缓冲器BUF1的输入相接,第一缓冲器BUF1的输出接SR触发器的S端,第二比较器CMP2的输出与第二缓冲器BUF2的输入相接,第二缓冲器BUF2的输出接SR触发器的R端,SR触发器的输出端Q接输出端口OUT。
CN201410439659.7A 2014-09-01 2014-09-01 一种快速低开销峰值检测电路 Active CN104218909B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410439659.7A CN104218909B (zh) 2014-09-01 2014-09-01 一种快速低开销峰值检测电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410439659.7A CN104218909B (zh) 2014-09-01 2014-09-01 一种快速低开销峰值检测电路

Publications (2)

Publication Number Publication Date
CN104218909A CN104218909A (zh) 2014-12-17
CN104218909B true CN104218909B (zh) 2016-12-28

Family

ID=52100104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410439659.7A Active CN104218909B (zh) 2014-09-01 2014-09-01 一种快速低开销峰值检测电路

Country Status (1)

Country Link
CN (1) CN104218909B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107505498B (zh) * 2017-08-31 2019-12-10 东南大学 一种峰值和谷值检测电路
CN110739979B (zh) * 2019-10-11 2021-07-02 中国电子科技集团公司第五十八研究所 一种百兆以太网自适应阈值电路
CN115173854B (zh) * 2022-09-06 2022-11-29 英彼森半导体(珠海)有限公司 一种自适应降低mos管阈值电压电路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1790926A (zh) * 2004-12-17 2006-06-21 株式会社东芝 接收机
CN101213742A (zh) * 2005-06-30 2008-07-02 硅实验室公司 具有数字自动增益控制的接收器
CN101512917A (zh) * 2006-08-31 2009-08-19 St无线公司 用于接收空间分集的复用接收到的信号的通信接收机
CN201429684Y (zh) * 2009-07-08 2010-03-24 无锡爱睿芯电子有限公司 Gps接收装置
CN102843111A (zh) * 2011-06-21 2012-12-26 日本电信电话株式会社 自动增益控制电路
CN102868369A (zh) * 2011-07-05 2013-01-09 杭州中科微电子有限公司 射频自动增益控制放大器
CN103001610A (zh) * 2012-11-02 2013-03-27 长沙景嘉微电子股份有限公司 一种阈值可调的峰值检测电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1790926A (zh) * 2004-12-17 2006-06-21 株式会社东芝 接收机
CN101213742A (zh) * 2005-06-30 2008-07-02 硅实验室公司 具有数字自动增益控制的接收器
CN101512917A (zh) * 2006-08-31 2009-08-19 St无线公司 用于接收空间分集的复用接收到的信号的通信接收机
CN201429684Y (zh) * 2009-07-08 2010-03-24 无锡爱睿芯电子有限公司 Gps接收装置
CN102843111A (zh) * 2011-06-21 2012-12-26 日本电信电话株式会社 自动增益控制电路
CN102868369A (zh) * 2011-07-05 2013-01-09 杭州中科微电子有限公司 射频自动增益控制放大器
CN103001610A (zh) * 2012-11-02 2013-03-27 长沙景嘉微电子股份有限公司 一种阈值可调的峰值检测电路

Also Published As

Publication number Publication date
CN104218909A (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
WO2014124906A3 (en) Efficient regulation of capacitance voltage(s) in a switched mode multilevel power converter
CN104218909B (zh) 一种快速低开销峰值检测电路
CN109067210B (zh) 一种自适应延时补偿有源整流器电路
US8872561B2 (en) Systems and methods for edge control based on detecting current direction in a switched output stage
CN102237792A (zh) 一种恒流系统的电压补偿电路
CN103795363B (zh) 具有用于在自动增益控制回路中衰减放大器的至少一个输入信号的单元的电子电路
CN107094333B (zh) 自适应快速响应电路、快速响应方法及led驱动电路
CN104300949A (zh) 物联网射频芯片用低电压复位电路
KR20160029724A (ko) 하이브리드 차동 포락선 검출기 및 전파 정류기를 위한 장치 및 방법
CN204392195U (zh) 可变增益带通放大电路
CN204376880U (zh) 高速高带宽采样保持电路
CN208890774U (zh) 一种提高负载开关稳定性的电路结构
CN202978864U (zh) 应用于宽频电路设计的差分双峰值检测电路
CN107888193B (zh) 一种信号采集电路及信号采集器
US11353505B2 (en) Differential clock cross point detection circuit and detection method
US9768630B2 (en) Real time compensating power output charging circuit
CN105049046B (zh) 一种时间交织流水级模数转换器
CN104682903B (zh) 可变增益带通放大电路及可增益带通放大电路的切换控制方法
CN104034934A (zh) 一种电流采样电路
CN203423670U (zh) 一种可变增益的模拟加法器
CN104038186A (zh) 一种迟滞比较器
CN108881749B (zh) 一种基于相关双采样的像素单元电路及其相关双采样方法
CN107204772B (zh) 高线性度高速信号缓冲电路
CN106353572A (zh) 输出端掉电检测装置及具有该装置的开关转换电源系统
CN104184306A (zh) 开关电源的ocp补偿电路及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant