CN104215598A - 航天器材料放气成分在线式红外吸收光谱检测系统 - Google Patents

航天器材料放气成分在线式红外吸收光谱检测系统 Download PDF

Info

Publication number
CN104215598A
CN104215598A CN201410522484.6A CN201410522484A CN104215598A CN 104215598 A CN104215598 A CN 104215598A CN 201410522484 A CN201410522484 A CN 201410522484A CN 104215598 A CN104215598 A CN 104215598A
Authority
CN
China
Prior art keywords
catoptron
sample chamber
infrared
absorption spectrum
infrared absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410522484.6A
Other languages
English (en)
Other versions
CN104215598B (zh
Inventor
焦子龙
刘国青
姜利祥
黄建国
张超
朱云飞
孙继鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Spacecraft Environment Engineering
Original Assignee
Beijing Institute of Spacecraft Environment Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Spacecraft Environment Engineering filed Critical Beijing Institute of Spacecraft Environment Engineering
Priority to CN201410522484.6A priority Critical patent/CN104215598B/zh
Publication of CN104215598A publication Critical patent/CN104215598A/zh
Application granted granted Critical
Publication of CN104215598B publication Critical patent/CN104215598B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种航天器材料放气成分在线式红外吸收光谱检测系统,该系统包括真空容器、光路系统和控制系统,真空容器内的样品舱通过真空容器外的温度控制器和样品舱内航天器材料放气成分下方设置的加热器来控制放气成分的蒸发,容器底部设置有石英晶体微量天平和反射镜,通过光路系统在线检测真空容器内反射镜上沉积的放气成分,并通过红外光谱检测器将检测到红外光谱信号反馈给控制系统并处理得到包含污染物成分信息的红外吸收光谱图。相比现有技术,本发明避免了繁琐的材料放气产物成分分析前处理,能够对放气产物中的大分子成分进行有效识别,操作简便,便于自动化处理,具有较好的应用前景。

Description

航天器材料放气成分在线式红外吸收光谱检测系统
技术领域
本发明属于航天器材料测试技术领域,主要应用于航天器材料空间环境适应性评价等中。
背景技术
目前,航天器上大量采用非金属材料,如胶、漆、涂层等。当航天器暴露于轨道的真空热环境时,材料会大量放气,即其内部或表面的挥发性物质散发至周围的环境中。材料放气主要对航天器敏感表面的光学特性、热特性等产生不利影响,造成光学透过率下降,太阳吸收率增大等。因此有必要对材料放气进行有效控制,这离不开材料放气特性,特别是材料放气成分的准确了解。
目前一般采用质谱或气相色谱-质谱法检测材料放气成分。将材料样品置于真空容器样品架上,正对材料放置有放气产物收集装置,开始抽真空。待真空度达到7x10-3Pa后,开始加热材料。材料温度达到125℃后,开启质谱仪器,对放气产物进行检测。材料加热时间为24小时。达到规定时间,待材料冷却后,取出收集板,利用丙酮等溶剂浸泡收集装置,获得放气产物溶液,送入气相色谱-质谱仪器中进行检测,获得材料放气产物成分。气相色谱-质谱检测法在航天行业标准QJ20014-2011《航天器污染物成分检测方法》中进行了规定。
现有的测试方法具有一定缺陷。首先,质谱仪器由于自身性能局限,难以对放气产物中较大分子量的成分进行有效识别。其次,收集装置收集得到的污染物送入气相色谱-质谱仪器分析之前需要较为繁琐的前处理操作,容易引入新的杂质,影响检测结果的准确性。因此,提供一种新的红外吸收光谱检测系统在线测试航天器材料放气组分是非常重要的。
发明内容
本发明的目的在于提供一种利用红外吸收光谱对航天器材料放气成分进行在线式检测分析的系统,该系统中利用的红外光谱是指分子吸收红外光的能量,使分子中键的振动从低能态向高能态跃迁过程发射出的光谱。化合物中的官能团可以吸收特定波长的红外光,因此,红外吸收光谱可以用来鉴别化合物中存在的官能团。在材料放气过程中获得其污染物红外吸收光谱,可实时在线对航天器材料放气特性进行分析,能够快速准确获得放气污染物成分及定量组成。
为达到以上目的,本发明采用的技术方案是:
航天器材料放气成分在线式红外吸收光谱检测系统,该系统包括真空容器、光路系统和控制系统,真空容器连接有真空系统,真空容器内的顶部设置有容纳航天器材料放气成分的样品舱,样品舱底部开设有放气孔,样品舱通过真空容器外的温度控制器和样品舱内航天器材料放气成分下方设置的加热器来控制放气成分的蒸发,真空容器内的底部设置有支撑平台,支撑平台上设置有石英晶体微量天平和第四反射镜,第四反射镜的几何中点与样品舱的放气孔同轴并垂直镜面,支撑平台连接有冷却系统来控制其温度,光路系统包括傅里叶红外分光光度计、第一反射镜、第二反射镜、第三反射镜和两个窗口镜,真空容器两相对侧壁上对称设置有供光路通过的倾斜圆筒,倾斜圆筒中分别设置有窗口镜,傅里叶红外分光光度计发射出的光线经第一反射镜反射到第二反射镜,第二反射镜反射的光线通过一侧的倾斜圆筒并透过窗口镜入射到真空容器中的第四反射镜上,第四反射镜反射后通过另一侧的倾斜圆筒并透过另一窗口镜入射到第三反射镜上,经第三反射镜反射后入射到第三反射镜附近设置的红外光谱检测器上,红外光谱检测器检测到红外光谱信号反馈给傅里叶红外分光光度计,控制系统与所述光度计、真空系统、石英晶体微量天平、控制样品舱温度的温度控制器、支撑平台所用的冷却系统分别进行电连接,控制系统根据预先设置的参数控制电连接的所有部件,以实现试验的控制,同时控制系统从所有部件读取试验数据并处理显示,其中,检测器信号由傅里叶红外分光光度计反馈给控制系统后,处理得到包含污染物成分信息的红外吸收光谱图。
其中,石英晶体微量天平质量灵敏度应优于1.1x10-9g/cm2/Hz。
其中,冷却系统为制冷机或气氮调温系统。
其中,检测器为红外光谱检测器。
其中,反射镜为镀铝石英镜或整体切割合金反射镜。
其中,窗口镜采用K9石英玻璃。
其中,检测器测量光谱范围应至少包括4000cm-1–600cm-1,为碲镉汞检测器。
其中,样品舱为圆柱型,材料为铝。
进一步地,样品舱内有放置样品的金属托盘,上部有金属盖。
其中,样品舱用加热带加热,温度控制由温度控制器完成。
相比现有方法,本发明避免了繁琐的材料放气产物成分分析前处理,能够对放气产物中的大分子成分进行有效识别,操作简便,便于自动化处理,具有较好的应用前景。航天器材料放气成分在线式红外吸收光谱检测系统是基于傅里叶变换红外吸收光谱法对航天器材料真空环境下放气产生的成分进行定性、定量分析。
附图说明
图1为本发明的航天器材料放气成分在线式红外吸收光谱检测系统示意图;
具体实施方式
以下介绍的是作为本发明内容的具体实施方式,下面通过具体实施方式对本发明内容作进一步的阐明。当然,描述下列具体实施方式只为示例本发明的不同方面的内容,而不应理解为限制本发明范围。
本发明的基本工作过程如下:
待测材料样品在真空容器建立的真空环境下放气,放气产物沉积于取样镜上。傅里叶红外分光光度计引出的干涉光由光路系统引入真空容器,经过取样镜反射,引出真空容器达到检测器,检测器信号经控制系统计算机处理得到包含污染物成分信息的红外吸收光谱图。
本发明的航天器材料放气成分在线式红外吸收光谱检测系统的结构如图1所示。
本发明的航天器材料放气成分在线式红外吸收光谱检测系统,该系统包括真空容器、光路系统和控制系统,真空容器连接有真空系统,真空容器内的顶部设置有容纳航天器材料放气成分的样品舱,样品舱底部开设有放气孔,样品舱通过真空容器外的温度控制器和样品舱内航天器材料放气成分下方设置的加热器来控制放气成分的蒸发,真空容器内的底部设置有支撑平台,支撑平台上设置有石英晶体微量天平和第四反射镜,第四反射镜的几何中点与样品舱的放气孔同轴并垂直镜面,支撑平台连接有冷却系统来控制其温度,光路系统包括傅里叶红外分光光度计、第一反射镜、第二反射镜、第三反射镜和两个窗口镜,真空容器两相对侧壁上对称设置有供光路通过的倾斜圆筒,倾斜圆筒中分别设置有窗口镜,傅里叶红外分光光度计发射出的光线经第一反射镜反射到第二反射镜,第二反射镜反射的光线通过一侧的倾斜圆筒并透过窗口镜入射到真空容器中的第四反射镜上,第四反射镜反射后通过另一侧的倾斜圆筒并透过另一窗口镜入射到第三反射镜上,经第三反射镜反射后入射到第三反射镜附近设置的红外光谱检测器上,红外光谱检测器检测到红外光谱信号反馈给傅里叶红外分光光度计,傅里叶红外分光光度计电连接有控制系统。控制系统与所述光度计、真空系统、石英晶体微量天平、控制样品舱温度的温度控制器、支撑平台所用的冷却系统分别进行电连接,控制系统根据预先设置的参数控制电连接的所有部件,以实现试验的控制,同时控制系统从所有部件读取试验数据并处理显示,其中,检测器信号由傅里叶红外分光光度计反馈给控制系统后,处理得到包含污染物成分信息的红外吸收光谱图。
在一具体实施方式中,傅里叶红外分光光度计测量光谱范围应至少包括4000cm-1–600cm-1,分辨率优于4cm-1。应具有外引光束窗口。
在一具体实施方式中,光路系统包括真空容器外的三个反射镜、真空容器内的窗口镜、检测器和辅助工装组成。反射镜可以是镀铝石英镜或整体切割合金反射镜。窗口镜可采用K9石英玻璃。检测器测量光谱范围应至少包括4000cm-1–600cm-1,可以是碲镉汞检测器。
在又一具体实施方式中,冷却系统为制冷机或气氮调温系统,检测器为红外光谱检测器。
在再一具体实施方式中,反射镜为镀铝石英镜或整体切割合金反射镜。
在一具体实施方式中,样品舱为圆柱型,材料为铝。内径20mm,长度40mm。样品舱底部开有小孔。开孔直径为3.0mm±0.1mm。样品舱内有放置样品的金属托盘,上部有金属盖。样品舱用加热带加热,温度控制由温度控制器完成。温控范围0℃~125℃,精度±0.5℃。
在本文中,石英晶体微量天平质量灵敏度应优于1.1x10-9g/cm2/Hz,为此可采用20MHz的天平。反射镜可采用镀金平面镜。石英晶体微量天平和反射镜的敏感表面中心距样品舱开孔距离相同,其敏感表面法线之间的夹角不大于30度。
本发明中使用的真空系统包括由分子泵构成的高真空抽气系统、机械泵构成的预抽真空系统、真空规和真空计组成的真空测量系统、复压系统及配套阀门等。有载真空度优于7x10-3Pa,空载真空度优于1x10-4Pa。
在测试过程中,将待测材料样品放入样品舱中的样品室。开启FT-IR仪器,获得放气成分检测单元反射镜的背景光谱信息。启动真空抽气装置,待真空度达到7x10-3Pa后,开启冷却系统,将放气成分检测单元冷却至预定温度(-10℃或更低)。开启材料加热,材料温度达到125℃后,开始记录反射镜光谱。每隔30分钟记录一次。光谱测试范围(4000cm-1~500cm-1)。持续24小时后(达到所要求的时间后),关闭材料加热。试验结束。对数据进行处理。由此可得到放气成分信息,以及随时间的变化。
材料放气成分定量分析。试验之前,需要利用标准物质对系统进行标定。标准物质建议选用石蜡、邻苯二甲酸二辛酯、DC200硅油、DC710硅油,特征谱峰分别为2920cm-1,1735cm-1,1260cm-1,1120cm-1。标定的基本过程与上述系统工作过程相同。仅在数据处理时,将石英晶体微量天平测量得到的污染量和特定波长的反射镜光谱吸收率作为横、纵坐标做出拟合直线,作为标定曲线。利用这种标定方法,污染物成分的检测限可达10-8g。
尽管上文对本发明的具体实施方式给予了详细描述和说明,但是应该指明的是,我们可以根据本发明的构想对上述实施方式进行各种等效改变和修改,其所产生的功能作用仍未超出说明书及附图所涵盖的精神时,均应在本发明的保护范围之内。

Claims (10)

1.航天器材料放气成分在线式红外吸收光谱检测系统,该系统包括真空容器、光路系统和控制系统,真空容器连接有真空系统,真空容器内的顶部设置有容纳航天器材料放气成分的样品舱,样品舱底部开设有放气孔,样品舱通过真空容器外的温度控制器和样品舱内航天器材料放气成分下方设置的加热器来控制放气成分的蒸发,真空容器内的底部设置有支撑平台,支撑平台上设置有石英晶体微量天平和第四反射镜,第四反射镜的几何中点与样品舱的放气孔同轴并垂直镜面,支撑平台连接有冷却系统来控制其温度,光路系统包括傅里叶红外分光光度计、第一反射镜、第二反射镜、第三反射镜和两个窗口镜,真空容器两相对侧壁上对称设置有供光路通过的倾斜圆筒,倾斜圆筒中分别设置有窗口镜,傅里叶红外分光光度计发射出的光线经第一反射镜反射到第二反射镜,第二反射镜反射的光线通过一侧的倾斜圆筒并透过窗口镜入射到真空容器中的第四反射镜上,第四反射镜反射后通过另一侧的倾斜圆筒并透过另一窗口镜入射到第三反射镜上,经第三反射镜反射后入射到第三反射镜附近设置的红外光谱检测器上,红外光谱检测器检测到红外光谱信号反馈给傅里叶红外分光光度计,控制系统与所述光度计、真空系统、石英晶体微量天平、控制样品舱温度的温度控制器、支撑平台所用的冷却系统分别进行电连接,控制系统根据预先设置的参数控制电连接的所有部件,以实现试验的控制,同时控制系统从所有部件读取试验数据并处理显示,其中,检测器信号由傅里叶红外分光光度计反馈给控制系统后,处理得到包含污染物成分信息的红外吸收光谱图。
2.如权利要求1所述的系统,其中,石英晶体微量天平质量灵敏度应优于1.1x10-9g/cm2/Hz。
3.如权利要求1所述的系统,其中,冷却系统为制冷机或气氮调温系统。
4.如权利要求1所述的系统,其中,检测器为红外光谱检测器。
5.如权利要求1所述的系统,其中,反射镜为镀铝石英镜或整体切割合金反射镜。
6.如权利要求1所述的系统,其中,窗口镜采用K9石英玻璃。
7.如权利要求1所述的系统,其中,检测器测量光谱范围应至少包括4000cm-1–600cm-1,为碲镉汞检测器。
8.如权利要求7所述的系统,其中,样品舱为圆柱型,材料为铝。
9.如权利要求8所述的系统,样品舱内有放置样品的金属托盘,上部有金属盖。
10.如权利要求1-9任一项所述的系统,其中,样品舱用加热带加热,温度控制由温度控制器完成。
CN201410522484.6A 2014-09-30 2014-09-30 航天器材料放气成分在线式红外吸收光谱检测系统 Expired - Fee Related CN104215598B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410522484.6A CN104215598B (zh) 2014-09-30 2014-09-30 航天器材料放气成分在线式红外吸收光谱检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410522484.6A CN104215598B (zh) 2014-09-30 2014-09-30 航天器材料放气成分在线式红外吸收光谱检测系统

Publications (2)

Publication Number Publication Date
CN104215598A true CN104215598A (zh) 2014-12-17
CN104215598B CN104215598B (zh) 2016-09-14

Family

ID=52097318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410522484.6A Expired - Fee Related CN104215598B (zh) 2014-09-30 2014-09-30 航天器材料放气成分在线式红外吸收光谱检测系统

Country Status (1)

Country Link
CN (1) CN104215598B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106352457A (zh) * 2015-07-17 2017-01-25 乐金电子研发中心(上海)有限公司 一种空气净化设备及空气净化方法
RU180097U1 (ru) * 2017-12-25 2018-06-04 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" Ячейка для лабораторной ик- и рентгеноспектральной диагностики
CN108918323A (zh) * 2018-07-24 2018-11-30 山西中谱能源科技有限公司 物理化学场下固、液两相物质质量和光谱同时测量的系统
CN110954477A (zh) * 2018-09-21 2020-04-03 中国科学院宁波材料技术与工程研究所 红外光谱仪附件
CN112525847A (zh) * 2020-12-03 2021-03-19 中国科学院上海技术物理研究所 一种宽温区可凝挥发物实时光谱测试装置和测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125687A (en) * 1998-08-20 2000-10-03 International Business Machines Corporation Apparatus for measuring outgassing of volatile materials from an object
CN101271074A (zh) * 2007-03-20 2008-09-24 中国航天科技集团公司第五研究院第五一○研究所 星用非金属材料出气污染成分的检测方法
CN101876612A (zh) * 2009-12-17 2010-11-03 中国航天科技集团公司第五研究院第五一○研究所 一种航天器光学表面的非金属材料出气污染的原位监测方法
US7872756B2 (en) * 2008-01-24 2011-01-18 Nec Corporation Gas measuring apparatus and gas measuring method
CN102980832A (zh) * 2012-11-20 2013-03-20 中国航天科技集团公司第五研究院第五一〇研究所 一种真空中非金属材料质量损失的原位监测系统及方法
CN103543121A (zh) * 2013-10-11 2014-01-29 皖江新兴产业技术发展中心 一种高温烟气红外光谱测量系统在线校准装置和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125687A (en) * 1998-08-20 2000-10-03 International Business Machines Corporation Apparatus for measuring outgassing of volatile materials from an object
CN101271074A (zh) * 2007-03-20 2008-09-24 中国航天科技集团公司第五研究院第五一○研究所 星用非金属材料出气污染成分的检测方法
US7872756B2 (en) * 2008-01-24 2011-01-18 Nec Corporation Gas measuring apparatus and gas measuring method
CN101876612A (zh) * 2009-12-17 2010-11-03 中国航天科技集团公司第五研究院第五一○研究所 一种航天器光学表面的非金属材料出气污染的原位监测方法
CN102980832A (zh) * 2012-11-20 2013-03-20 中国航天科技集团公司第五研究院第五一〇研究所 一种真空中非金属材料质量损失的原位监测系统及方法
CN103543121A (zh) * 2013-10-11 2014-01-29 皖江新兴产业技术发展中心 一种高温烟气红外光谱测量系统在线校准装置和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RANDY M. VILLAHERMOSA AND PAUL L. JOSEPH: "Characterization of outgassed contaminants from polymeric spacecraft materials", 《PROC. SPIE》 *
赵建萍等: "空间材料放气污染特性研究技术", 《航天器环境工程》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106352457A (zh) * 2015-07-17 2017-01-25 乐金电子研发中心(上海)有限公司 一种空气净化设备及空气净化方法
RU180097U1 (ru) * 2017-12-25 2018-06-04 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" Ячейка для лабораторной ик- и рентгеноспектральной диагностики
CN108918323A (zh) * 2018-07-24 2018-11-30 山西中谱能源科技有限公司 物理化学场下固、液两相物质质量和光谱同时测量的系统
CN110954477A (zh) * 2018-09-21 2020-04-03 中国科学院宁波材料技术与工程研究所 红外光谱仪附件
CN110954477B (zh) * 2018-09-21 2021-12-21 中国科学院宁波材料技术与工程研究所 红外光谱仪附件
CN112525847A (zh) * 2020-12-03 2021-03-19 中国科学院上海技术物理研究所 一种宽温区可凝挥发物实时光谱测试装置和测试方法
WO2022116224A1 (zh) * 2020-12-03 2022-06-09 中国科学院上海技术物理研究所 一种宽温区可凝挥发物实时光谱测试装置和测试方法

Also Published As

Publication number Publication date
CN104215598B (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
CN104215598A (zh) 航天器材料放气成分在线式红外吸收光谱检测系统
EP2627989B1 (en) Non-contact surface chemistry measurement apparatus and method
CN102213682B (zh) 一种干涉不敏感太赫兹波透射测量方法
CN103743703A (zh) 一种采用近红外光谱快速检测茶叶中主要成分的方法
DE102010038329A1 (de) IR-Spektrometer mit berührungsloser Temperaturmessung
Sheng et al. Quantitative analysis of Fe content in iron ore via external calibration in conjunction with internal standardization method coupled with LIBS
CN110455739B (zh) 一种基于太赫兹光谱技术的热障涂层中cmas的检测方法
CN104237142B (zh) 材料放气对光学透过率影响分析试验系统
CN104792686A (zh) 近红外光谱法检测半固体制剂中微生物数量和药物含量
US20060043300A1 (en) Water activity determination using near-infrared spectroscopy
JP5732869B2 (ja) 分光分析方法および分光分析用サンプリングユニット
CN109030410B (zh) 蜂王浆近红外定量校正模型的构建方法及蜂王浆的检测方法
CN105486625A (zh) 基于太赫兹时域光谱技术进行细胞计数的装置及方法
Nah et al. A new quantitative Raman measurement scheme using Teflon as a novel intensity correction standard as well as the sample container
CN204269534U (zh) 太赫兹光谱测量中用于放置温度可控液体样品的装置
CN207610984U (zh) 一种样品杯旋转分析型分光光度计
CN108072628A (zh) 一种判别药包材材质的近红外光谱法
CN102323284A (zh) 一种x射线荧光光谱定量分析的装置及方法
CN107238595B (zh) 封闭容器的酒精浓度测量装置及测量方法
CN205861546U (zh) 一种傅里叶红外光谱仪、样品池、加热器
Singh et al. Two-channel impedance spectroscopy for the simultaneous measurement of two samples
CN109239000A (zh) 一种汽车内饰材料中冷凝组分定性定量测试方法
EP3187857B1 (en) Analysis method, analysis device, and computer program
US11099201B2 (en) Device for the automated analysis of solids or fluids
NL2031837B1 (en) Method to combine optical imaging spectroscopy and analytical spectrometry

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160914

Termination date: 20210930