CN1042068C - 银-锶-钒-氧高温超导材料及制备方法 - Google Patents

银-锶-钒-氧高温超导材料及制备方法 Download PDF

Info

Publication number
CN1042068C
CN1042068C CN92103617A CN92103617A CN1042068C CN 1042068 C CN1042068 C CN 1042068C CN 92103617 A CN92103617 A CN 92103617A CN 92103617 A CN92103617 A CN 92103617A CN 1042068 C CN1042068 C CN 1042068C
Authority
CN
China
Prior art keywords
superconducting material
silver
temperature superconducting
vanadium
strontium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN92103617A
Other languages
English (en)
Other versions
CN1078824A (zh
Inventor
任玉芳
孟建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Applied Chemistry of CAS
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CN92103617A priority Critical patent/CN1042068C/zh
Publication of CN1078824A publication Critical patent/CN1078824A/zh
Application granted granted Critical
Publication of CN1042068C publication Critical patent/CN1042068C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

本发明属于一种新体系的高温超导材料。
本发明以SrVO3-y为基体,以银作为第四组分,并控制银的含量在0.05~0.30mol时,经过加温灼烧,在氢气下还原,加压成片后再次加温还原烧结,随炉冷却到室温可得到最高Tc=125K的高温超导材料。

Description

银-锶-钒-氧高温超导材料及制备方法
本发明属于一种新体系的高温超导材料及制备工艺
自1986年J.G.Bednorz and K.A.Muller发现La-Ba-Cu-O体系具有30K的超导迹象之后(Z.Phys.,B64,189,1986),全世界的许多研究团体在高温超导材料的研究方面作了大量的工作,相继发现了92K的钇-钡-铜-氧高温超导体(赵忠贤等,Chin.Sci,Bullin.,32,661,1987),110K的铋-锶-钙-铜-氧系高温超导体(J.M.Tarascon etal.,Phys.Rev.,B38,8885,1988)和125K的铊-钡-钙-铜-氧系高温超导体(H.Ihara et at.,Nature,334,511,1988).这使得众多的研究机构在探索新的高温超导材料的工作上作了许多的研究,发现了一些新的高温超导的迹象。Shin-Pei Matsuda发现铊-钡-钒-氧体系在130K出现零电阻(Nikkei Superconductor,Sept,20 1990),中国科学院物理所也对铊-钡-钒-氧体系进行了研究,也观察到弱的超导迹象(科学通报,36(7),504,1991)。他们都采用NH4VO3与SrO混合后再加入Tl2O3于H2和氩气的混合气氛下850~900℃烧5~8小时来制备样品,但铊化合物有剧毒性,使其生产和应用受到限制。
本发明的目的是提供一种银-锶-钒-氧高温超导材料的制备方法,该方法采用SrCO3,AgNO3及V2O5作原料。经灼烧、还原、压片。得到最高零电阻为125K的高温超导材料。
本发明从造成晶格的畸变而影响其电学性质出发,对银-锶-钒-氧体系进行了研究,在立方钙钛矿型的SrVO3-y中控制银含量在0.05~0.30mol之间进行掺杂,可以得到最高零电阻为125K的高温超导材料。
本发明的制备工艺采用固相氢还原烧结法,按下式反应:
    其中:x=0.05~0.30mol;0<y<0.1
以SrCO3∶V2O5∶AgNO3=0.95~1.1mol∶0.475~0.55mol∶0.05~0.30mol精确称重,混合研磨均匀,在茂福炉中800-950℃灼烧20~40小时,再研磨均匀,在800~1000℃在氢气下于管状炉中还原2~8小时,再研磨均匀后,于20~40MPa压力下压成Φ13mm的圆片,在800~1000℃在氢气下于管状炉中烧结2~8小时,随炉冷却后即得到高温超导材料。
本发明所得到的高温超导材料用中国科学院物理所制作的高Tc超导测试杆测量样品的电阻和交流磁化率,电压表的分辨率为10-7V。最高的Tc为125K,高于YBa2Cu3O7-y(90K)和Bi2Sr2Ca2Cu3Oy(110K),本发明制备的高温超导材料是一个无铜的新体系,所用原料无毒性,有利于生产和应用。
本发明附图的图面说明:图1是实施例1Ag0.05SrVO3-y样品的电阻与温度测量曲线和交流磁化率与温度的测量曲线。
本发明的实施例叙述如下:
实施例1:Ag0.05SrVO3-y超导材料的制备。
准确称量SrCO3 0.95mol,AgNO3 0.05mol,V2O5 0.55mol,在玛瑙研钵中研磨均匀,在茂福炉中800℃灼烧20小时,再研磨均匀,在850℃在氢气下于管状炉中还原2小时,再研磨均匀后,于20MPa压力下压成Φ13mm的圆片,在850℃在氢气下于管状炉中烧结2小时,随炉冷却到室温后即得到Tc=125K高温超导材料。
实施例2:Ag0.15SrVO3-y超导材料的制备。
准确称量SrCO3 1.10mol,AgNO3 0.15mol,V2O5 0.50mol,在玛瑙研钵中研磨均匀,在茂福炉中900℃灼烧28小时,再研磨均匀,在900℃在氢气下于管状炉中还原4小时,再研磨均匀后,于30MPa压力下压成Φ13mm的圆片,在900℃在氢气下于管状炉中烧结4小时,随炉冷却到室温后即得到Tc=112K的高温超导材料。
实施例3:Ag0.25SrVO3-y超导材料的制备。
准确称量SrCO3 1.00mol,AgNO3 0.30mol,V2O5 0.475mol,在玛瑙研钵中研磨均匀,在茂福炉中1000℃灼烧40小时,再研磨均匀,在1000℃在氢气下于管状炉中还原8小时,再研磨均匀后,于40MPa压力下压成Φ13mm的圆片,在1000℃在氢气下于管状炉中烧结8小时,随炉冷却到室温后即得到Tc=115K的高温超导材料。

Claims (2)

1.一种银-锶-钒-氧高温超导材料,其特征在于:该材料是以银作为第四组分,组成分子式为:AgxSrVO3-y,其中:x=0.05~0.30mol,0<y<0.1的银-锶-钒-氧高温超导材料,其Tc为125K。
2.如权利要求1所述的银-锶-钒-氧高温超导材料的制备方法,其制备工艺分以下几步进行:
1)称取原料;
2)混合研磨;
3)加温在800~950℃;
4)灼烧20~40小时;
5)于氢气和氩气下还原2~8小时;
6)压成圆片;
7)在800~1000℃在氢气下烧结2~8小时;
8)冷却后即得到高温超导材料;
其特征在于配方选择为:
SrCO3:0.95~1.10mol;
AgNO3:0.05 ~0.30mol;
V2O5:0.475~0.55mol。
CN92103617A 1992-05-09 1992-05-09 银-锶-钒-氧高温超导材料及制备方法 Expired - Fee Related CN1042068C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN92103617A CN1042068C (zh) 1992-05-09 1992-05-09 银-锶-钒-氧高温超导材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN92103617A CN1042068C (zh) 1992-05-09 1992-05-09 银-锶-钒-氧高温超导材料及制备方法

Publications (2)

Publication Number Publication Date
CN1078824A CN1078824A (zh) 1993-11-24
CN1042068C true CN1042068C (zh) 1999-02-10

Family

ID=4940322

Family Applications (1)

Application Number Title Priority Date Filing Date
CN92103617A Expired - Fee Related CN1042068C (zh) 1992-05-09 1992-05-09 银-锶-钒-氧高温超导材料及制备方法

Country Status (1)

Country Link
CN (1) CN1042068C (zh)

Also Published As

Publication number Publication date
CN1078824A (zh) 1993-11-24

Similar Documents

Publication Publication Date Title
CN1006666B (zh) 电超导体的组合物
EP0330305B1 (en) High-temperature oxide superconductor
CN1025900C (zh) 铋-锶-钙-铜-氧高Tc超导体及其制备方法
CN1027329C (zh) 超导陶瓷
Shamoto et al. Single crystal growth of high-Tc superconductors
CN1042068C (zh) 银-锶-钒-氧高温超导材料及制备方法
US5028585A (en) Superconducting oxide FCC oxide composite compositions and method of making such compositions
Shah et al. Growth and microstructure of Bi‐Sr‐Ca‐Cu‐O thin films
JP2767283B2 (ja) Bi―Pb―Sr―Ba―Ca―Cu―O系超電導物質
Chunlin et al. Directed reaction process producing single-phase superconducting compound YBa2Cu3O6. 5+ σ
CN88100338A (zh) 高温超导体及其制造工艺
JP2859516B2 (ja) 酸化物超電導体およびその製造方法
CN1027406C (zh) 氧化物超导体及其制造方法
JP2850310B2 (ja) 超伝導性金属酸化物組成物及びその製造方法
CN1029885C (zh) 一种含硼氧化物高温超导体及其制备方法
Matsuda et al. Synthesis of Ba2RCu4O8 (R= Y, Sm) Superconductors at Oxygen Pressure of 1 atm by Spray‐Frozen/Freeze‐Drying Method
CN1032601A (zh) 高温超导材料的制备方法
CN1017385B (zh) 混合稀土-钡-铜-氧超导体
CN1006339B (zh) 高温超导陶瓷材料厚膜工艺
JP2703227B2 (ja) 超電導体装置
Balchev et al. Superconductivity at 103 K in CdBa 2 (Ca 0.7 Y 0.3) Cu 2 O y
CN1226753C (zh) 一种第三类高温超导带材的制备方法
CN1020518C (zh) 铜氧化物超导陶瓷的制法
Green ZERO RESISTANCE AT ИЗ К IN THE (Bi,»^ PbJSb,) Sr2Ca2Cu30, SYSTEM (x= 0.1, 0.2, 0.3, 0.4)
Easterling et al. The microstructure and properties of high T c superconducting oxides

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee