CN104201196A - 表面无微裂纹的Si基III族氮化物外延片 - Google Patents

表面无微裂纹的Si基III族氮化物外延片 Download PDF

Info

Publication number
CN104201196A
CN104201196A CN201410394782.1A CN201410394782A CN104201196A CN 104201196 A CN104201196 A CN 104201196A CN 201410394782 A CN201410394782 A CN 201410394782A CN 104201196 A CN104201196 A CN 104201196A
Authority
CN
China
Prior art keywords
layer
growth
component
gan
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410394782.1A
Other languages
English (en)
Other versions
CN104201196B (zh
Inventor
倪金玉
潘磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 55 Research Institute
Original Assignee
CETC 55 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 55 Research Institute filed Critical CETC 55 Research Institute
Priority to CN201410394782.1A priority Critical patent/CN104201196B/zh
Publication of CN104201196A publication Critical patent/CN104201196A/zh
Application granted granted Critical
Publication of CN104201196B publication Critical patent/CN104201196B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/22Sandwich processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

本发明是表面无微裂纹的Si基III族氮化物外延片,其特征是包括Si衬底、二层AlN成核层、三层Al组分递减的AlxGa1 xN中间层、一层AlaGa1-aN/AlbGa1-bN超晶格中间层、二层GaN沟道层、和三层势垒层自下而上依次构成。优点:本发明生长的Si基III族氮化物异质结,与现有技术相比,表面质量高,无微裂纹。并且可以通过在本发明的外延层结构中采用平均Al组分较低的组分递减AlGaN中间层来达到表面形貌改善的目的,因此有助于降低金属有机物源和氨气之间预反应的影响,改善外延层的晶体质量,并提高外延层的生长速率。

Description

表面无微裂纹的Si基III族氮化物外延片
技术领域
本发明涉及的是一种表面无微裂纹的Si基III族氮化物外延片,特别涉及包含能够产生二维电子气性能的III族氮化物异质结的外延片。属于半导体技术领域。
背景技术
III族氮化物半导体材料构成的异质结,如GaN与Al(In)GaN,可以形成高浓度高电子迁移率的二维电子气,适合于研制微波功率场效应晶体管器件。由于缺乏大尺寸的同质衬底,目前氮化物半导体材料主要生长在碳化硅、蓝宝石或Si等衬底上。
Si与III族氮化物外延材料存在着非常严重的晶格失配和热失配,如(0001)面GaN与(111)面Si之间的热失配为54%,晶格失配为17%,在Si衬底上生长的III族氮化物外延薄膜因为应力大,很容易产生裂纹,这种裂纹可用肉眼或光学显微镜观察,在本发明中称为宏观裂纹。
Si基GaN外延生长一般采用AlN作为成核层,首先生长在Si衬底表面,之后在AlN层上生长应变缓解中间层(以下称为中间层),最后生长GaN层。中间层用于缓解AlN层和GaN层之间的晶格失配,防止GaN层过早发生张应变弛豫而出现宏观裂纹,并改善GaN层的晶体质量。中间层主要有Al组分递减的AlGaN中间层结构和AlaGa1-aN/AlbGa1-bN超晶格中间层结构等。
组分递减的AlGaN中间层其晶格常数和热膨胀系数由AlN递减过渡到GaN,有利于缓解大失配引起的应力,防止GaN层发生张应变弛豫而产生宏观裂纹。
在一些处于较大应变状态的GaN层上生长AlGaN势垒层,即使不会产生宏观裂纹,AlGaN势垒层也会由于受到过大的张应力而在表面出现微裂纹。
需要说明的是,这种出现在Si基AlGaN/GaN异质结材料表面的微裂纹和那些肉眼或光学显微镜可观测的宏观裂纹不同。首先微裂纹很短小,只能在放大倍数数万倍以上的电子显微镜图像或原子力显微镜下才能被观测到。微裂纹只出现在AlGaN势垒层的表面,并不是源自于GaN层,不会隔断AlGaN/GaN界面处二维电子气的电学连接,而宏观裂纹往往是GaN层的断裂,宏观裂纹处完全不会产生二维电子气。
微裂纹的存在不仅会降低AlGaN/GaN异质结材料的二维电子气性能,还可能增加AlGaN/GaN场效应晶体管的栅漏电,威胁晶体管的可靠性。
当组分递减AlGaN中间层厚度较小时,GaN层往往处于一定的张应变状态,这种情况下生长的AlGaN/GaN异质结材料表面存在严重的微裂纹。
单纯增加组分递减AlGaN中间层的平均Al组分,虽然能增加引入GaN层的压应力,但是仍不足以完全消除势垒层表面的微裂纹。
只有既增加组分递减AlGaN中间层的平均Al组分,又增加其厚度时,才可能完全消除势垒层表面的微裂纹,但是存在金属有机物源和氨气之间的预反应的影响加剧的问题,这会导致材料生长质量降低,反而不利于获得表面平整光滑的Si基GaN材料。
AlaGa1-aN/AlbGa1-bN超晶格中间层也有缓解晶格失配应力,抑制裂纹的作用,并且能够过滤位错,改善其上生长的GaN层的质量。单纯采用厚的AlaGa1-aN/AlbGa1-bN超晶格作为中间层,生长GaN材料,由于很难缓解晶格常数和热膨胀系数失配,无法抑制宏观裂纹的出现。
当超晶格中间层结构中两层材料的Al组分差a-b超过一定值,可能在超晶格界面和内部产生失配位错,导致应变弛豫,无法抑制宏观裂纹的出现。
另一方面,当超晶格中间层结构中采用高的Al组分时,也存在金属有机物源和氨气之间的预反应加剧,材料生长质量降低的问题。
此外,即使在将组分递减AlGaN中间层与Al(Ga)N/GaN超晶格中间层结合使用的情况下,也存在如何组合搭配和采用何种生长条件而获得性能改善的问题。
发明内容
本发明提出的是一种表面无微裂纹的Si基III族氮化物外延片,其目的是改善GaN基异质结材料表面形貌和晶体质量。
本发明的技术解决方案:表面无微裂纹的Si基III族氮化物外延片,其包括Si衬底、二层AlN成核层、三层Al组分递减的AlxGa1?xN中间层、一层AlaGa1-aN/AlbGa1-bN超晶格中间层、二层GaN沟道层、和三层势垒层自下而上依次构成。
本发明的优点:由本发明生长的Si基III族氮化物异质结,与目前的使用Al组分递减的AlGaN中间层结构或AlaGa1-aN/AlbGa1-bN超晶格中间层结构生长的Si基III族氮化物异质结相比,表面质量高,无微裂纹。并且可以通过在本发明的外延层结构中采用平均Al组分较低的组分递减AlGaN中间层来达到表面形貌改善的目的,因此有助于降低金属有机物源和氨气之间预反应的影响,改善外延层的晶体质量,并提高外延层的生长速率。
附图说明
图1是表面无微裂纹的Si基III族氮化物外延片结构示意图。
图2是采用Al组分递减的AlGaN中间层结构生长的Si基AlGaN/GaN异质结表面出现微裂纹的原子力显微镜(AFM)图像。
图3是单纯采用厚的AlaGa1-aN/AlbGa1-bN超晶格中间层结构生长的Si基GaN材料表面出现宏观裂纹的光学显微镜照片示意图。
图4是采用本发明的表面无微裂纹的Si基III族氮化物外延片结构生长的Si基AlGaN/GaN异质结表面AFM图像示意图。
图5是单纯采用厚的Al组分递减AlGaN中间层生长的Si基GaN材料出现岛状表面形貌的光学显微镜照片示意图。
图中的1是Si衬底、2是第一AlN成核层、3是第二AlN成核层、4是第一AlxGa1?xN中间层、5是第二AlxGa1?xN中间层、6是第三AlxGa1?xN中间层、7是AlaGa1-aN/AlbGa1-bN超晶格中间层、8是第一GaN沟道层、9是第二GaN沟道层、10是第一势垒层、11是第二势垒层、12是第三势垒层。
具体实施方式
下面结合附图进一步说明本发明的技术解决方案:
如图1所示,表面无微裂纹的Si基III族氮化物外延片,其结构包含Si衬底1、二层AlN成核层(2、3)、三层Al组分递减的AlxGa1?xN中间层(4、5、6)、一层AlaGa1-aN/AlbGa1-bN超晶格中间层7、二层GaN沟道层(8、9)、和三层势垒层(10、11、12)自下而上依次构成。
所述的第三AlxGa1?xN中间层6的Al组分在0.1≤ x ≤ 0.5的范围内,构成超晶格中间层的两种AlGaN材料的单层厚度Ta和Tb在1 nm ≤Ta, Tb≤ 100 nm的范围内,两种材料Al组分在0 ≤ a,b ≤ 0.5的范围内,且两种材料Al组分之差的绝对值在0.05 ≤ ∣a?b∣ ≤ 0.2的范围内。
所述的二层AlN成核层中,为降低Si衬底表面寄生导电层的导电性,第一AlN成核层2采用650?950oC的生长温度条件进行生长,在该工艺条件下,减小了扩散进入硅衬底的III族金属原子的剂量,有助于提高寄生导电层的电阻;另一方面,为提高材料晶体质量,第二AlN成核层3采用高于950oC的生长温度进行生长,在该工艺条件下,Al原子的表面迁徙能力增强,有助于生长出高质量的AlN材料,二层AlN成核层由两种生长方法形成。
如图2所示,原子力显微镜(AFM)图像展示了采用Al组分递减的AlGaN中间层结构生长的总厚度为3.1μm的Si基GaN异质结表面形貌,由该图可以看到,表面存在一定数量的微裂纹。
如图3所示,光学显微镜照片展示了单纯采用厚的AlaGa1-aN/AlbGa1-bN超晶格作为中间层生长的总厚度为3μm的Si基GaN材料的表面情况,由图可见,表面出现了宏观裂纹。
根据本发明,通过在组分递减的AlxGa1?xN中间层之上再生长AlaGa1-aN/AlbGa1-bN超晶格中间层构成复合中间层,能够在这种复合中间层上生长出表面无宏观裂纹和微裂纹的Si基AlGaN/GaN异质结材料,而且表面平整度和GaN沟道层的晶体质量得到改善。
如图4所示,AFM图像展示了本发明的无微裂纹的Si基III族氮化物外延片的表面情况。
所述的AlaGa1-aN/AlbGa1-bN超晶格中间层7结构中,两种AlGaN材料的Al组分在0 ≤ a,b ≤ 0.5的范围内,且Al组分之差的绝对值在0.05≤ ∣a?b∣ ≤ 0.2的范围内。如果AlaGa1-aN/AlbGa1-bN超晶格中间层7中两种AlGaN材料的Al组分差过大,可能在超晶格界面和内部产生失配位错,导致应变弛豫,无法抑制宏观裂纹和微裂纹的出现。
本发明中采用复合中间层结构来消除势垒层表面的微裂纹,可以允许其中的组分递减AlGaN中间层使用较低的Al组分。这对单纯采用Al组分递减AlGaN中间层的情况是不可想象的,为了尽可能地消除势垒层表面的微裂纹,必须既增加组分递减AlGaN中间层的平均Al组分,又增加其厚度,但是这将加剧金属有机物源和氨气之间的预反应的影响,导致材料生长质量降低,反而不利于获得表面平整光滑的Si基GaN材料。
如图5所示,光学显微镜照片展示了单纯采用Al组分递减的AlxGa1?xN中间层生长的总厚度为2.7μm的Si基GaN材料的表面情况。由图可见,为严重的岛状表面形貌。
所述的二层GaN沟道层中,为改善AlGaN/GaN场效应晶体管高频下的电流输出性能,必须采用高阻、低杂质含量的GaN沟道层。另一方面,为了改善AlGaN/GaN场效应晶体管的击穿性能,又需要给GaN层中掺入C杂质等,因此GaN沟道层可以由两种生长方法形成;第一GaN沟道层8采用不高于13.3kPa的生长压力条件获得,在该工艺条件下,GaN层会掺入高浓度的C杂质,有助于提高GaN层的耐压能力;第二GaN沟道层9采用不低于26.6kPa的生长压力条件获得,在该工艺条件下,C杂质掺入GaN层的难度增加,易于获得低杂质含量的高纯GaN层,有助于改善AlGaN/GaN场效应晶体管的高频输出性能。
所述的三层势垒层中,第一势垒层10为AlN插入层、第二势垒层11为有源层、第三势垒层12为GaN盖帽层,为了能够产生所需浓度的二维电子气,有源层可以是AlGaN、AlInN、AlN或AlInGaN材料。
实施例
参照图1,无微裂纹的Si基III族氮化物外延片结构的生长,以金属有机物化学气相淀积(MOCVD)方法为例,
1)采用直径101.6mm的111面单晶Si为衬底1,在进行氮化物外延层的生长之前,通过氢氟酸基的腐蚀液去除Si衬底表面的氧化膜。然后,将它置于MOCVD设备的反应室中。
2)在反应室压力为6.65kPa的氢气气氛下加热Si衬底1到1000oC,进行10min的热退火。
3)维持反应室压力不变,将衬底温度降低到900oC,通入流速为10L/min的氨气和流速为86μmol/min的三甲基铝(TMA),生长厚度为100nm的AlN成核层2,生长时间为1800s。接着将衬底温度提高到1030oC,在源流速不变的条件下,生长厚度为100nm的AlN成核层3,生长时间为1800s。
4)然后,向反应室中通入流速为86μmol/min的TMA,23μmol/min的三甲基镓(TMG)和6L/min的氨气,生长Al组分为0.75的Al0.75Ga0.25N中间层4,生长厚度为350nm,生长时间为3000s。接着,通入流速为86μmol/min的TMA,61μmol/min的TMG和6L/min的氨气,生长Al组分为0.55的Al0.55Ga0.45N中间层5,生长厚度为500nm,生长时间为4000s。再接着,通入流速为65μmol/min的TMA,124μmol/min的TMG和6L/min的氨气,生长Al组分为0.35的Al0.35Ga0.65N中间层6,生长厚度为300nm,生长时间为1000s。至此,形成Al组分递减的AlxGa1?xN中间层结构4?6。
5)维持反应室压力和衬底温度不变,在Al0.35Ga0.65N中间层6上生长60个周期Al0.23Ga0.77N(10nm厚)/Al0.32Ga0.68N(12nm厚)的超晶格中间层7。其中Al0.23Ga0.77N层生长时通入流速为86μmol/min的TMA,194μmol/min的TMG和6L/min的氨气,Al0.32Ga0.68N层生长时通入流速为86μmol/min的TMA,117μmol/min的TMG和6L/min的氨气。超晶格中间层总的厚度为1300nm,总的生长时间为4500s。
6)停止向反应室通入Al源,并将衬底温度降低到1000oC,将反应室压力提高到13.3kPa,通入流速为311μmol/min的TMG和10L/min的氨气,生长厚度为500nm的GaN层8,生长时间为600s。接着将反应室压力进一步提高到66.5kPa,在源流速不变的条件下,生长厚度为400nm的GaN层9,生长时间为1000s。
7)然后,将衬底温度提高到1030oC,并将反应室压力降低到13.3kPa,通入流速为52μmol/min的TMA和6L/min的氨气,生长厚度为1nm的AlN插入层10。通入流速为32μmol/min的TMA,74μmol/min的TMG和6L/min的氨气,生长Al组分为0.25的Al0.25Ga0.75N有源层11,生长厚度为25nm。通入流速为194μmol/min的TMG和10L/min的氨气,生长厚度为3nm的GaN盖帽层12。至此,形成包含AlN插入层、Al0.25Ga0.75N有源层和GaN盖帽层的势垒层10?12。至此,表面平整光滑,无微裂纹的Si基Al0.25Ga0.75N/GaN异质结材料生长完成。
需要说明的是,在本发明实施例中,AlN成核层采用生长温度分别为900oC和1030oC的两层,但是考虑到改善Si基III族氮化物外延片的形变、控制外延层的应力,AlN成核层可以采用更多的层结构来组合实现。然而,不论采用何种AlN成核层组成结构,都必须包含采用生长温度为650?950oC的低温AlN层和采用生长温度高于950oC的高温AlN层。
在本发明实施例中,AlxGa1?xN中间层4?6的Al组分分别为0.75、0.55和0.35,需要说明的是AlxGa1?xN中间层结构4?6所允许使用的Al组分比的组合可以为其他组合,所包含的AlxGa1?xN层的层数也不限于三层,可以为2层、4层或更多的层数,甚至AlxGa1?xN中间层结构不限于采用组分阶梯变化的模式,还可以为组分连续变化的模式。不论采用何种AlxGa1?xN中间层结构,都必须满足Al组分由下到上递减的要求,即先生长的为高Al组分的AlxGa1?xN层,后生长的为低Al组分的AlxGa1?xN层,最后生长的AlxGa1?xN层的Al组分在0.1≤ x ≤ 0.5的范围内。
在本发明实施例中,超晶格结构所包含的两层材料的Al组分和厚度也不限于Al0.23Ga0.77N(10nm厚)/Al0.32Ga0.68N(12nm厚)的组合,可以为其他组合,只要满足两种AlGaN材料的单层厚度Ta和Tb在1 nm ≤Ta, Tb≤ 100 nm的范围内,两种材料Al组分在0 ≤ a,b ≤ 0.5的范围内,且两种材料Al组分之差的绝对值在0.05 ≤ ∣a?b∣ ≤ 0.2的范围内。
对于本领域的专业人员来说,在了解了本发明内容和原理后,能够在不背离本发明的原理和范围的情况下,根据本发明的方法进行形式和细节上的各种修正和改变,但是这些基于本发明的修正和改变仍在本发明的权利要求保护范围之内。

Claims (8)

1.表面无微裂纹的Si基III族氮化物外延片,其特征是包括Si衬底、二层AlN成核层、三层Al组分递减的AlxGa1?xN中间层、一层AlaGa1-aN/AlbGa1-bN超晶格中间层、二层GaN沟道层、和三层势垒层自下而上依次构成。
2.根据权利要求1所述的表面无微裂纹的Si基III族氮化物外延片,其特征是所述的第三Al组分递减的AlxGa1?xN中间层的Al组分在0.1≤ x ≤ 0.5的范围内,构成超晶格中间层的两种AlGaN材料的单层厚度Ta和Tb在1 nm ≤Ta, Tb≤ 100 nm的范围内,两种材料Al组分在0 ≤ a,b ≤ 0.5的范围内,且两种材料Al组分之差的绝对值在0.05 ≤ ∣a?b∣ ≤ 0.2的范围内。
3.根据权利要求1所述的表面无微裂纹的Si基III族氮化物外延片,其特征是所述的二层AlN成核层中,第一AlN成核层采用650?950oC的生长温度条件进行生长,第二AlN成核层采用高于950oC的生长温度进行生长,二层AlN成核层由两种生长方法形成。
4.根据权利要求1所述的表面无微裂纹的Si基III族氮化物外延片,其特征是所述Al组分递减的AlxGa1?xN中间层之上再生长AlaGa1-aN/AlbGa1-bN超晶格中间层构成复合中间层。
5.根据权利要求1所述的表面无微裂纹的Si基III族氮化物外延片,其特征是所述的二层GaN沟道层中,第一GaN沟道层采用不高于13.3kPa的生长压力条件获得,在该工艺条件下,GaN层会掺入高浓度的C杂质,有助于提高GaN层的耐压能力;第二GaN沟道层采用不低于26.6kPa的生长压力条件获得,在该工艺条件下,C杂质掺入GaN层的难度增加,易于获得低杂质含量的高纯GaN层,有助于改善AlGaN/GaN场效应晶体管的高频输出性能。
6.根据权利要求1所述的表面无微裂纹的Si基III族氮化物外延片,其特征是所述的三层势垒层中,第一势垒层为AlN插入层、第二势垒层为有源层、第三势垒层为GaN盖帽层,有源层可以是AlGaN、AlInN、AlN或AlInGaN材料。
7.如权利要求1所述的表面无微裂纹的Si基III族氮化物外延片结构的生长方法,其特征是该方法包括如下工艺步骤:
以金属有机物化学气相淀积MOCVD为例,
1)采用直径101.6mm的111面单晶Si为衬底1,在进行氮化物外延层的生长之前,通过氢氟酸基的腐蚀液去除Si衬底表面的氧化膜,然后,将它置于MOCVD设备的反应室中;
2)在反应室压力为6.65kPa的氢气气氛下加热Si衬底到1000oC,进行10min的热退火;
3)维持反应室压力不变,将衬底温度降低到900oC,通入流速为10L/min的氨气和流速为86μmol/min的三甲基铝TMA,生长厚度为100nm的第一AlN成核层,生长时间为1800s,接着将衬底温度提高到1030oC,在源流速不变的条件下,生长厚度为100nm的第二AlN成核层,生长时间为1800s;
4)向反应室中通入流速为86μmol/min的TMA,23μmol/min的三甲基镓TMG和6L/min的氨气,生长Al组分为0.75的第一AlxGa1?xN中间层,生长厚度为350nm,生长时间为3000s,接着,通入流速为86μmol/min的TMA,61μmol/min的TMG和6L/min的氨气,生长Al组分为0.55的第二AlxGa1?xN中间层,生长厚度为500nm,生长时间为4000s,再接着,通入流速为65μmol/min的TMA,124μmol/min的TMG和6L/min的氨气,生长Al组分为0.35的第三AlxGa1?xN中间层,生长厚度为300nm,生长时间为1000s,至此,形成Al组分递减的AlxGa1?xN中间层结构;
5)维持反应室压力和衬底温度不变,在第三Al组分递减的AlxGa1?xN中间层上生长60个周期10nm厚Al0.23Ga0.77N/12nm厚Al0.32Ga0.68N的AlaGa1-aN/AlbGa1-bN超晶格中间层;其中Al0.23Ga0.77N层生长时通入流速为86μmol/min的TMA,194μmol/min的TMG和6L/min的氨气,Al0.32Ga0.68N层生长时通入流速为86μmol/min的TMA,117μmol/min的TMG和6L/min的氨气,超晶格中间层总的厚度为1300nm,总的生长时间为4500s;
6)停止向反应室通入Al源,并将衬底温度降低到1000oC,将反应室压力提高到13.3kPa,通入流速为311μmol/min的TMG和10L/min的氨气,生长厚度为500nm的第一GaN沟道层,生长时间为600s,接着将反应室压力进一步提高到66.5kPa,在源流速不变的条件下,生长厚度为400nm的GaN层,生长时间为1000s;
7)将衬底温度提高到1030oC,并将反应室压力降低到13.3kPa,通入流速为52μmol/min的TMA和6L/min的氨气,生长厚度为1nm的AlN插入层,通入流速为32μmol/min的TMA,74μmol/min的TMG和6L/min的氨气,生长Al组分为0.25的Al0.25Ga0.75N有源层,生长厚度为25nm,通入流速为194μmol/min的TMG和10L/min的氨气,生长厚度为3nm的GaN盖帽层,至此,形成包含AlN插入层、Al0.25Ga0.75N有源层和GaN盖帽层的势垒层;至此,表面平整光滑,无微裂纹的Si基Al0.25Ga0.75N/GaN异质结材料生长完成。
8.如权利要求7所述的表面无微裂纹的Si基III族氮化物外延片结构的生长方法,其特征是所述Al组分递减的AlxGa1?xN中间层的层数不限于三层,可以为2层、4层或更多的层数,Al组分递减的AlxGa1?xN中间层结构不限于采用组分阶梯变化的模式,还可以为组分连续变化的模式。
CN201410394782.1A 2014-08-13 2014-08-13 表面无微裂纹的Si基III族氮化物外延片 Active CN104201196B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410394782.1A CN104201196B (zh) 2014-08-13 2014-08-13 表面无微裂纹的Si基III族氮化物外延片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410394782.1A CN104201196B (zh) 2014-08-13 2014-08-13 表面无微裂纹的Si基III族氮化物外延片

Publications (2)

Publication Number Publication Date
CN104201196A true CN104201196A (zh) 2014-12-10
CN104201196B CN104201196B (zh) 2017-07-28

Family

ID=52086464

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410394782.1A Active CN104201196B (zh) 2014-08-13 2014-08-13 表面无微裂纹的Si基III族氮化物外延片

Country Status (1)

Country Link
CN (1) CN104201196B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105225931A (zh) * 2015-09-30 2016-01-06 中国电子科技集团公司第四十八研究所 AlN模板及其生长方法、基于AlN模板的Si基GaN外延结构及其生长方法
CN106098749A (zh) * 2016-06-30 2016-11-09 中国电子科技集团公司第五十五研究所 一种硅衬底上AlGaN/GaN异质结构及其生长方法
CN110400744A (zh) * 2019-08-21 2019-11-01 聚力成半导体(重庆)有限公司 一种提高氮化镓器件外延层质量的结构及其制备方法
CN110603650A (zh) * 2017-04-24 2019-12-20 苏州晶湛半导体有限公司 一种半导体结构和制备半导体结构的方法
CN111446285A (zh) * 2020-03-23 2020-07-24 深圳市汇芯通信技术有限公司 一种半导体结构及其制作方法和集成电路
CN111527587A (zh) * 2017-12-19 2020-08-11 胜高股份有限公司 第iii族氮化物半导体基板的制备方法
CN111640828A (zh) * 2020-06-18 2020-09-08 佛山紫熙慧众科技有限公司 AlGaN基紫外LED外延结构
CN112760611A (zh) * 2020-12-22 2021-05-07 温州大学激光与光电智能制造研究院 一种提高mocvd外延薄膜质量的优化生长方法
CN113921376A (zh) * 2021-08-30 2022-01-11 西安电子科技大学 一种硅基GaN薄膜及其外延生长方法
WO2023064156A1 (en) * 2021-10-14 2023-04-20 Applied Materials, Inc. SUBSTRATE PROCESSING FOR GaN GROWTH

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053399A (ja) * 2006-08-24 2008-03-06 Nippon Telegr & Teleph Corp <Ntt> 半導体構造および半導体構造の製造方法
WO2013108733A1 (ja) * 2012-01-16 2013-07-25 シャープ株式会社 ヘテロ接合型電界効果トランジスタ用のエピタキシャルウエハ
CN103515419A (zh) * 2012-06-27 2014-01-15 台湾积体电路制造股份有限公司 用于硅衬底上的iii-v族氮化物层的梯度氮化铝镓和超晶格缓冲层
CN103887381A (zh) * 2014-03-28 2014-06-25 西安神光皓瑞光电科技有限公司 一种提升紫外led外延材料结晶质量的生长方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053399A (ja) * 2006-08-24 2008-03-06 Nippon Telegr & Teleph Corp <Ntt> 半導体構造および半導体構造の製造方法
WO2013108733A1 (ja) * 2012-01-16 2013-07-25 シャープ株式会社 ヘテロ接合型電界効果トランジスタ用のエピタキシャルウエハ
CN103515419A (zh) * 2012-06-27 2014-01-15 台湾积体电路制造股份有限公司 用于硅衬底上的iii-v族氮化物层的梯度氮化铝镓和超晶格缓冲层
CN103887381A (zh) * 2014-03-28 2014-06-25 西安神光皓瑞光电科技有限公司 一种提升紫外led外延材料结晶质量的生长方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105225931B (zh) * 2015-09-30 2018-12-21 中国电子科技集团公司第四十八研究所 AlN模板及其生长方法、基于AlN模板的Si基GaN外延结构及其生长方法
CN105225931A (zh) * 2015-09-30 2016-01-06 中国电子科技集团公司第四十八研究所 AlN模板及其生长方法、基于AlN模板的Si基GaN外延结构及其生长方法
CN106098749A (zh) * 2016-06-30 2016-11-09 中国电子科技集团公司第五十五研究所 一种硅衬底上AlGaN/GaN异质结构及其生长方法
CN110603650B (zh) * 2017-04-24 2022-07-08 苏州晶湛半导体有限公司 一种半导体结构和制备半导体结构的方法
CN110603650A (zh) * 2017-04-24 2019-12-20 苏州晶湛半导体有限公司 一种半导体结构和制备半导体结构的方法
CN111527587B (zh) * 2017-12-19 2023-11-21 胜高股份有限公司 第iii族氮化物半导体基板的制备方法
CN111527587A (zh) * 2017-12-19 2020-08-11 胜高股份有限公司 第iii族氮化物半导体基板的制备方法
CN110400744A (zh) * 2019-08-21 2019-11-01 聚力成半导体(重庆)有限公司 一种提高氮化镓器件外延层质量的结构及其制备方法
CN111446285A (zh) * 2020-03-23 2020-07-24 深圳市汇芯通信技术有限公司 一种半导体结构及其制作方法和集成电路
CN111640828B (zh) * 2020-06-18 2021-08-31 佛山紫熙慧众科技有限公司 AlGaN基紫外LED外延结构
CN111640828A (zh) * 2020-06-18 2020-09-08 佛山紫熙慧众科技有限公司 AlGaN基紫外LED外延结构
CN112760611A (zh) * 2020-12-22 2021-05-07 温州大学激光与光电智能制造研究院 一种提高mocvd外延薄膜质量的优化生长方法
CN112760611B (zh) * 2020-12-22 2022-12-27 温州大学激光与光电智能制造研究院 一种提高mocvd外延薄膜质量的优化生长方法
CN113921376A (zh) * 2021-08-30 2022-01-11 西安电子科技大学 一种硅基GaN薄膜及其外延生长方法
WO2023064156A1 (en) * 2021-10-14 2023-04-20 Applied Materials, Inc. SUBSTRATE PROCESSING FOR GaN GROWTH

Also Published As

Publication number Publication date
CN104201196B (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
CN104201196A (zh) 表面无微裂纹的Si基III族氮化物外延片
JP5804768B2 (ja) 半導体素子及びその製造方法
CN102549716B (zh) 用于基于氮化镓或其它氮化物的半导体装置的背侧应力补偿
US8405064B2 (en) Nitride semiconductor device
JP4530171B2 (ja) 半導体装置
CN102511075B (zh) 外延基板以及外延基板的制造方法
US8648389B2 (en) Semiconductor device with spacer layer between carrier traveling layer and carrier supplying layer
KR101186032B1 (ko) 질화갈륨 또는 질화알루미늄갈륨 층을 제조하는 방법
JP2010232293A (ja) 半導体装置
JPWO2004066393A1 (ja) 半導体装置及びその製造方法
CN103460360A (zh) 半导体元件及其制造方法
TW201304138A (zh) 具有極佳穩定性的氮基半導體裝置
JP2010278199A (ja) 電界効果型トランジスタおよびその製造方法
JP2012015304A (ja) 半導体装置
JP2016207748A (ja) 半導体装置の製造方法および半導体装置
US8994032B2 (en) III-N material grown on ErAIN buffer on Si substrate
US8872308B2 (en) AlN cap grown on GaN/REO/silicon substrate structure
CN105810725A (zh) 硅基氮化镓半导体晶片及其制作方法
KR20120068394A (ko) 반도체 소자 및 반도체 소자 제조 방법
TWI578382B (zh) A semiconductor substrate, a semiconductor device, and a semiconductor device
JP6089122B2 (ja) 窒化物半導体積層体およびその製造方法並びに窒化物半導体装置
KR20150000753A (ko) 질화물 반도체 소자 및 그 제조 방법
JP6815278B2 (ja) 窒化物半導体積層物、半導体装置、窒化物半導体積層物の製造方法および半導体装置の製造方法
WO2016059923A1 (ja) 窒化物半導体およびそれを用いた電子デバイス
WO2023167709A2 (en) Semiconductor heterostructures with scandium iii-nitride layer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant