CN104169774A - 光学系统、光学设备和用于制造光学系统的方法 - Google Patents

光学系统、光学设备和用于制造光学系统的方法 Download PDF

Info

Publication number
CN104169774A
CN104169774A CN201380014648.8A CN201380014648A CN104169774A CN 104169774 A CN104169774 A CN 104169774A CN 201380014648 A CN201380014648 A CN 201380014648A CN 104169774 A CN104169774 A CN 104169774A
Authority
CN
China
Prior art keywords
lens
optical system
optical
positive
lens member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380014648.8A
Other languages
English (en)
Other versions
CN104169774B (zh
Inventor
古井田启吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of CN104169774A publication Critical patent/CN104169774A/zh
Application granted granted Critical
Publication of CN104169774B publication Critical patent/CN104169774B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Abstract

一种光学系统,以从物体起的顺序包括:第一透镜组(G1)、孔径光阑(S)和第二透镜组(G2),其中,第一透镜组(G1)以从物体起的顺序包括:负透镜构件(L1)、正透镜构件(L2)和其像侧表面是面向孔径光阑(S)的凹表面的第一透镜构件(L3,L4),第二透镜组(G2)以从物体起的顺序包括:其物体侧表面是面向孔径光阑(S)的凹表面的第二透镜构件(L5,L6),以及最接近像地布置的正透镜构件(L8),第一透镜构件(L3,L4)和第二透镜构件(L5,L6)夹着孔径光阑(S)而面向彼此,并且,满足下面的条件表达式(1)和(2):1.5<fG1/f<2.6…(1)以及2.1<TL/f<3.1…(2),其中,fG1表示第一透镜组(G1)的焦距,f表示光学系统(WL)的焦距,并且TL表示在光学系统(WL)中从最接近物体的光学表面至最接近像的光学表面的、在光轴上的距离。

Description

光学系统、光学设备和用于制造光学系统的方法
技术领域
本发明涉及具有适合于用于数字相机、胶片摄像机或摄像机等的成像光学系统的广角和大孔径的光学系统。
背景技术
近来已经提出了广角镜头(例如,参见专利文件1),该广角镜头的透镜镜筒可以当不使用相机时收缩到相机内,并且该广角镜头具有紧凑性、广视角和高远心度。
现有技术列表
专利文件
专利文件1:日本公开专利公布No.2010-101979(A)
发明内容
本发明要解决的问题
传统广角透镜的Fno是大约2.8,但是预期实现更大的孔径。
在上述情况下,本发明的目的是提供一种光学系统、一种包括光学系统的光学设备和一种用于制造光学系统的方法,该光学系统具有紧凑性、宽视角、大孔径、高远心度和高性能。
用于解决问题的手段
为了实现该目的,根据本发明的一种光学系统以从物体起的顺序具有:具有正屈光力的第一透镜组;孔径光阑;以及,第二透镜组,其中,第一透镜组以从物体起的顺序包括:负透镜构件;正透镜构件;和第一透镜构件,其像侧表面是面向孔径光阑的凹表面,第二透镜组以从物体起的顺序包括:第二透镜构件,其物体侧表面是面向孔径光阑的凹表面;以及,最接近像地设置的正透镜构件,第一透镜构件和第二透镜构件夹着孔径光阑而面向彼此,并且,满足下面的条件表达式。透镜构件的每一个可以由单透镜或胶合透镜构成。
1.5<fG1/f<2.6
2.1<TL/f<3.1
其中,fG1表示第一透镜组的焦距,f表示光学系统的焦距,并且TL表示在光学系统中从最接近物体的光学表面至最接近像的光学表面的、在光轴上的距离。
在根据本发明的光学系统中,优选的是,满足下面的条件表达式。
0.6<β2R<0.9
其中,β2R表示在第二透镜组中与像最接近地设置的正透镜构件的成像放大率。
在根据本发明的光学系统中,优选的是,构成第一透镜组的负透镜构件是具有负弯月形的单透镜,其物体侧表面是面向物体的凸表面。
在根据本发明的光学系统中,优选的是,构成第一透镜组的第一透镜构件具有负屈光力。
在根据本发明的光学系统中,优选的是,第二透镜组具有正屈光力。
在根据本发明的光学系统中,优选的是,构成第二透镜组的第二透镜构件是最接近物体地设置的负透镜和在其像侧上设置的正透镜的胶合透镜,并且,满足下面的条件表达式。
|n21–n22|<0.016
其中,n21表示在d线处的构成第二透镜构件的负透镜的光学材料的折射率,并且n22表示在d线处的构成第二透镜构件的正透镜的光学材料的折射率。
在根据本发明的光学系统中,优选的是,构成第二透镜组的光学表面的至少一个表面是非球面的。
根据本发明的一种光学设备具有如上所述的光学系统的任何一种。
根据本发明的一种用于制造光学系统的方法是用于制造下述光学系统的方法,该光学系统以从物体起的顺序具有:具有正屈光力的第一透镜组;孔径光阑;以及,第二透镜组,其中,第一透镜组以从物体起的顺序包括:负透镜构件;正透镜构件;和第一透镜构件,其像侧表面是面向孔径光阑的凹表面,第二透镜组以从物体起的顺序包括:第二透镜构件,其物体侧表面是面向孔径光阑的凹表面;以及,最接近像地设置的正透镜构件,第一透镜构件和第二透镜构件夹着孔径光阑而面向彼此,并且在透镜镜筒中组装每一个透镜,使得满足下面的条件表达式。
1.5<fG1/f<2.6
2.1<TL/f<3.1
其中,fG1表示第一透镜组的焦距,f表示光学系统的焦距,并且TL表示在光学系统中从最接近物体的光学表面至最接近像的光学表面的、在光轴上的距离。
本发明的有益效果
根据本发明,可以提供一种光学系统、一种包括光学系统的光学设备和一种用于制造光学系统的方法,光学系统具有紧凑性、宽视角、大孔径、高远心度和高性能。
附图说明
图1是用于描述根据示例1的光学系统的透镜配置的一组截面图,其中,图1A示出聚焦在无限远处的状态,并且图1B示出当成像放大率β=-1/20时的状态;
图2是根据示例1的光学系统的各种像差的一组图形,其中,图2A是示出在聚焦在无限远时的光学系统的各种像差的一组图形,并且图2B是示出当成像放大率是β=-1/20时的各种像差的一组图形;
图3是用于描述根据示例2的光学系统的透镜配置的一组截面图,其中,图3A示出聚焦在无限远处的状态,并且图3B示出当成像放大率β=-1/20时的状态;
图4是根据示例2的光学系统的各种像差的一组图形,其中,图4A是示出在聚焦在无限远时的光学系统的各种像差的一组图形,并且图4B是示出当成像放大率是β=-1/20时的各种像差的一组图形;
图5是根据示例3的光学系统的透镜配置的一组图形,其中,图5A示出聚焦在无限远的状态,并且图5B示出当成像放大率是β=-1/20时的状态;
图6是是根据示例3的光学系统的各种像差的一组图形,其中,图6A是示出在聚焦在无限远时的光学系统的各种像差的一组图形,并且图6B是示出当成像放大率是β=-1/20时的各种像差的一组图形;
图7示出包括根据这个实施例的光学系统的数字相机(光学设备);其中,图7A是前视图,并且图7B是后视图;
图8是沿着在图7A中的线A-A’的截面图;并且
图9是描述用于制造根据这个实施例的光学系统的方法的流程图。
具体实施方式
现在参考附图来描述本发明的实施例。如图1中所示,根据这个实施例的光学系统WL以从物体起的顺序具有:具有正屈光力的第一透镜组G1、孔径光阑S和第二透镜组G2,其中,第一透镜组G1以从物体起的顺序包括负透镜构件L1、正透镜构件L2和第一透镜构件,其像侧表面是面向孔径光阑S的凹表面(对应于在图1中的透镜L3和L4的胶合透镜),第二透镜组G2以从物体起的顺序包括:第二透镜构件,其物体侧表面是面向孔径光阑S的凹表面(对应于在图1中的透镜L5和L6的胶合透镜);以及,最接近像地设置的正透镜构件L8(对应于在图1中的透镜L8),第一透镜构件和第二透镜构件夹着孔径光阑S而面向彼此,并且,满足下面的条件表达式(1)和(2)。
1.5<fG1/f<2.6…(1)
2.1<TL/f<3.1…(2)
其中,fG1表示第一透镜组G1的焦距,f表示光学系统WL的焦距,并且TL表示在光学系统WL中从最接近物体的光学表面至最接近像的光学表面的、在光轴上的距离。
根据具有该配置的实施例,可以提供下述光学系统,其透镜镜筒可以当不使用相机时收缩到相机内,并且其仍然具有紧凑性、广视角(大约65°的视角)、大孔径(约2.0Fno)、高远心度和高性能。
条件表达式(1)指定第一透镜组G1的适当的屈光力。通过满足条件表达式(1),在保证远心度的同时实现光学系统的紧凑性。如果超过条件表达式(1)的上限值,则第一透镜组G1的焦距相对于光学系统WL的焦距变长,并且后焦距增大,因此,远心度变高,但是大小减小变难,这是不期望的。如果未达到条件表达式(1)的下限值,则第一透镜组G1的焦距相对于光学系统WL的焦距变短,并且后焦距减小,这对于大小减小是有益的,但是变得难以保证远心度。
为了展示本实施例的效果,优选的是,条件表达式(1)的上限值是2.3。更优选的是,条件表达式(1)的上限值是1.85。
条件表达式(2)指定光学系统WL的适当的长度以平衡光学系统WL的大小减小和像差校正。如果超过条件表达式(2)的上限值,则有益的是,校正各种像差,诸如球面像差和像散,但是光学系统WL的全长变得太长,并且使得大小减小困难,这是不期望的。如果未达到条件表达式(2)的下限值,则光学系统WL的全长变短,这对于大小减小有益,但是变得难以校正球面像差、像散和彗差,这是不期望的。
为了展示本实施例的效果,优选的是,条件表达式(2)的上限值是3.0。为了展示本实施例的效果,优选的是,条件表达式(2)的下限值是2.6。
优选的是,该实施例的光学系统WL满足下面的条件表达式(3)。
0.6<β2R<0.9...(3)
其中,β2R表示在第二透镜组G2中的最接近像地设置的正透镜构件的成像放大率。
为了当不使用相机时将透镜镜筒收缩到相机内使得相机变得紧凑,优选的是,通过沿着光轴移动在第二透镜组G2中最接近像地设置的正透镜构件(对应于在图1中的透镜L8)来执行从在无限远处的物体到在有限距离处的物体的聚焦。
条件表达式(3)指定在第二透镜组G2中的最接近像地设置的正透镜构件的移动距离和像差校正的平衡。如果超过条件表达式(3)的上限值,则有益的是,校正各种像差,诸如场曲,但是用于聚焦的正透镜构件的移动距离增大,这是不期望的。如果未达到条件表达式(3)的下限值,则用于聚焦的正透镜构件的移动距离减小,这对于聚焦是有益的,但是,彗差的短距离波动在聚焦期间增大,这是不期望的。场曲的校正也变得困难。
为了展示本实施例的效果,优选的是,条件表达式(3)的上限值是0.85。为了展示本实施例的效果,优选的是,条件表达式(3)的下限值是0.75。
在本实施例的光学系统WL中,优选的是,构成第一透镜组G1的负透镜构件L1是具有负弯月形的单透镜,其物体侧表面是面向物体的凸表面。通过该配置,可以满意地校正诸如场曲的各种像差。
在该实施例的光学系统WL中,优选的是,位于在第一透镜组G1中的最接近孔径光阑S并且其像侧表面是面向孔径光阑S的凹表面的第一透镜构件(对应于在图1中的透镜L3和L4的胶合透镜)具有负屈光力。通过该配置,可以满意地校正畸变和场曲。
在该实施例的光学系统WL中,优选的是,第二透镜组G2具有正屈光力。换句话说,光学系统WL以从物体起的顺序具有:具有正屈光力的第一透镜组G1;孔径光阑S;以及,具有正屈光力的第二透镜组G2。通过该配置,可以满意地校正相对于视角的在第一透镜组G1中的像差(例如,畸变、场曲和横色像差)和在第二透镜组G2中的球面像差。
在该实施例的光学系统WL中,优选的是,位于在第二透镜组G2中的最接近孔径光阑S并且其物体侧表面是面向孔径光阑S的凹表面的第二透镜构件是最接近物体地设置的负透镜(对应于在图1中的透镜L5)和在其像侧上设置的正透镜(对应于在图1中的透镜L6)的胶合透镜,并且满足下面的条件表达式(4)。
|n21–n22|<0.016...(4)
其中,n21表示在d线(波长:587.6nm)处的构成第二透镜构件的负透镜的光学材料的折射率,并且,n22表示在d线(波长:587.6nm)处的构成第二透镜构件的正透镜的光学材料的折射率。
条件表达式(4)指定在构成作为第二透镜构件的胶合透镜的负透镜和正透镜之间的适当的折射率差。如果满足条件表达式(4),则在该胶合透镜内的折射率差变小,因此,在减小胶合表面对于各种像差的影响的同时,可以满意地校正纵色像差和横色像差。如果超过条件表达式(4)的上限值,则在胶合透镜内的折射率差增大,并且变得难以独立地校正纵色像差和横色像差。
在该实施例的光学系统WL中,优选的是,构成第二透镜组G2的光学表面的至少一个表面是非球面的。通过该配置,可以满意地校正彗差和场曲。
图7和图8示出作为包括这个光学系统WL的光学设备的数字照相机CAM(光学设备)的配置。在该数字照相机CAM中,如果按下电源按钮(未示出),则打开像捕获透镜(光学系统WL)的快门(未示出),并且来自物体的光被光学系统WL收集,并且在像平面I上设置的图像元件C(例如,CCD、CMOS)上形成像(参见图1)。在数字照相机CAM的后表面上设置的液晶监控器M上显示在图像元件C上形成的物体图像。用户在观看液晶监控器M的同时确定物体图像的构成,然后按下释放按钮B1以使用图像元件C来拍摄物体图像,并且记录和在存储器(未示出)中存储图像。
在相机CAM中,设置了当物体看起来暗时发射辅助光的辅助光发射单元EF和用于设定数字照相机CAM的各种透镜的功能按钮B2。在此,作为示例示出其中整合了相机CAM和光学系统WL的紧凑型相机,但是本发明可以被应用到单镜头反光照相机,其中,包括光学系统WL的透镜镜筒和相机主体是可装卸的。
根据具有上面的配置的相机CAM,包括根据这个实施例的光学系统WL作为像捕获透镜,由此,可以实现下述透镜镜筒,该透镜镜筒当不使用相机时可以收缩到相机内,但是仍然具有紧凑性、光视角、大孔径、高远心度和高性能。
现在参考图9来描述用于制造光学系统WL的方法。首先,以从物体起的顺序在透镜镜筒中组装具有正屈光力的第一透镜组G1、孔径光阑S和第二透镜组G2(步骤ST10)。在这个步骤中,组装第一透镜组G1,使得以从物体起的顺序布置负透镜构件L1、正透镜构件L2和其像侧表面是面向孔径光阑S的凹表面的第一透镜构件。组装第二透镜组G2,使得以从物体起的顺序布置其物体侧表面是面向孔径光阑S的凹表面的第二透镜构件和最接近像地设置的正透镜构件。然后,将第一透镜构件和第二透镜构件设置得夹着孔径光阑S而面向彼此。在透镜镜筒中组装每一个透镜,使得满足表达式(1)和(2)(步骤ST 20)。
1.5<fG1/f<2.6...(1)
2.1<TL/f<3.1...(2)
其中,fG1表示第一透镜组G1的焦距,f表示光学系统WL的焦距,并且TL表示在光学系统WL中从最接近物体的光学表面至最接近像的光学表面的、在光轴上的距离。
图1示出根据这个实施例的透镜配置的示例。在光学系统WL中,第一透镜组G1被组装和设置在孔径光阑S的物体侧上,使得第一透镜组G1整体具有正屈光力,该第一透镜组G1以从物体起的顺序包括:具有面向物体的凸表面的负弯月形透镜L1;双凸正透镜L2;以及,双凸正透镜L3和双凹负透镜L4的胶合透镜。第二透镜组G2被组装和设置在孔径光阑S的像侧上,使得第二透镜组G2整体具有正屈光力,该第二透镜组G2以从物体起的顺序包括:具有面向物体的凹表面的负弯月形透镜L5与具有面向像的凸表面的正弯月形透镜L6的胶合透镜;具有面向像的凸表面的正弯月形透镜L7;以及,双凸正透镜L8。每一个透镜被组装,使得与条件表达式(1)对应的值是1.6001,并且与条件表达式(2)对应的值是2.7148。
根据用于制造光学系统WL的方法,可以获取光学系统,该光学系统具有紧凑性、宽视角、大孔径、高远心度和高性能。
示例
现在参考附图描述该实施例的每一个示例。在下面示出的表格1至表格3列出了示例1至示例3的每一个数据。
在每一个示例中,相对于C线(波长:656.2730nm)、d线(波长:587.5620nm)、F线(波长:486.1330nm)和g线(波长:435.8350nm)来计算像差特性。
在每一个表格中的[透镜数据]中,表面编号是在光传播方向上从物体侧起计数的光学表面的序号。R表示每一个光学表面的曲率半径,D表示在光轴上从每一个光学表面到下一个光学表面(或像平面)的距离,nd表示在d线处的光学部件的材料的折射率,并且,νd表示相对于d线的光学部件的材料的阿贝数。物体表面指示物体的表面,(可变)指示可变表面距离,在曲率半径中的“∞”指示平面或孔径,(光阑)指示孔径光阑S,并且像平面指示像平面I。省略空气的折射率“1.0000”。如果光学表面是非球面的,则向表面编号附上*,并且,在曲率半径R的列中示出近轴曲率半径。
在每一个表格中的[非球面数据]中,通过下面的表达式(a)指示在[透镜数据]中的一种形式的非球面。在此,X(y)表示在高度y处从在非球面的顶点处的切平面至的非球面上的位置在光轴方向上的距离,r表示参考球面的曲率半径(近轴曲率半径),κ表示锥形系数,Ai表示第i阶的非球面系数,并且“E-n”指示“×10-n”。例如,1.234E-05=1.234×10-5
X(y)=(y2/r)/{1+(1-κ×y2/r2)1/2}+A4×y4+A6×y6+A8×y8+A10×y10...(a)
在每一个表格中的[各种数据]中,f表示光学系统的焦距,FNO表示F数,ω表示半视角(最大入射角,单位:°),Y表示像高度,TL表示光学系统的全长,BF表示从最接近像地设置的光学部件的像侧表面至近轴像平面的距离,并且BF(空气转换)表示被转换为空气的从最后的光学表面至近轴像平面的距离。
在每一个表格中的[可变距离数据]中,分别示出在聚焦在无限远处(成像放大率β=0.00)的状态和成像放大率β=-1/20的状态中的可变距离Di。Di表示在第i表面和第i+1表面之间的可变距离。
在每一个表格中的[透镜组数据]中,G表示组编号,“组的第一表面”指示在每一个组中最接近物体的表面的表面编号,并且“组焦距”指示每一个组的焦距。
在每一个表格中的[条件表达式]中,示出与每一个条件表达式(1)至(4)对应的值。
在以下的所有数据值中,除非具体指示,否则“mm”通常用作焦距f、曲率半径R、表面距离D和其他长度的单位,但是单位不限于“mm”,并且可以使用另一个适当的单位,因为即使成比例地扩展或成比例地收缩光学系统,也获得等同的光学性能。
对表格的说明对于所有的示例相同,并且因此在以下被省略。
(示例1)
将参考图1、图2和表格1来描述示例1。如图1所示,根据示例1的光学系统WL(WL1)以从物体起的顺序包括具有正屈光力的第一透镜组G1、孔径光阑S、具有正屈光力的第二透镜组G2和滤波器组FL。
第一透镜组G1以从物体起的顺序包括具有面向物体的凸表面的负弯月形透镜L1、双凸正透镜L2、双凸正透镜L3和双凹负透镜L4的胶合透镜。
第二透镜组G2以从物体起的顺序包括具有面向物体的凹表面的负弯月形透镜L5和具有面向像的凸表面的正弯月形透镜L6的胶合透镜、具有面向像的凸表面的正弯月形透镜L7和双凸正透镜L8。正弯月形透镜L7的像侧透镜表面是非球面的。
滤波器组FL由低通滤波器、红外截止滤波器等构成,以截止超过在像平面I上设置的固态图像元件(例如,CCD、CMOS)的临界分辨率的空间频率。
在根据这个示例的光学系统WL1中,优选的是,通过沿着光轴来移动在第二透镜组G2中最接近像地设置的双凸正透镜L8来执行从在无限远处的物体向具有成像放大率β=-1/20等的、在有限距离处的物体的聚焦。
表格1示出示例1的每一个数据值。在表格1中的表面编号1至19分别对应于具有在图1中所示的曲率半径R1至R19的每一个光学表面。在示例1中,表面13是非球面的。
(表格1)
[透镜数据]
[非球面数据]
表面13
κ=-13.767,A4=-3.58049E-01,A6=1.89486E+00,A8=-1.61600E+00,A10=0.00000E+00
[可变数据]
[可变距离数据]
[透镜组数据]
[条件表达式]
条件表达式(1) fG1/f=1.6001
条件表达式(2) TL/f=2.7148
条件表达式(3) β2R=0.8161
条件表达式(4) |n21-n22|=0.0153
如表格1所示,根据这个示例的光学系统WL1满足条件表达式(1)至(4)。
图2是示出根据示例1的光学系统WL1的各种像差(球面像差、像散、畸变、彗差和横色像差)的一组图形,其中,图2A是示出在聚焦在无限远(成像放大率β=0.00)时的各种像差的一组图形,并且图2B是示出在成像放大率β=-1/20的状态中的各种像差的一组图形。
在示出像差的每一个图形中,FNO表示F数,NA表示数值孔径,A表示相对于每一个像高度的半视角(单位:°),并且HO表示物体高度。d表示在d线处的像差,g表示在g线处的像差,C表示在C线处的像差,并且F表示在F线处的像差。如果未指示d、g、C或F,则这意味着在d线处的像差。在示出像散的图形中,实线指示弧矢像平面,并且虚线指示子午像平面。
对示出像差的图形的说明与对于其他示例的相同,其中,省略该说明。
如示出像差的每一个图形阐明,在示例1中,满意地校正各种像差,显示了良好的光学性能。
(示例2)
将参考图3、图4和表格2来描述示例2。如图3所示,根据示例2的光学系统WL(WL2)以从物体起的顺序包括具有正屈光力的第一透镜组G1、孔径光阑S、具有正屈光力的第二透镜组G2和滤波器组FL。
第一透镜组G1以从物体起的顺序包括具有面向物体的凸表面的负弯月形透镜L1以及双凸正透镜L2和双凹负透镜L3的胶合透镜。负弯月形透镜L1的像侧透镜表面是非球面的。
第二透镜组G2以从物体起的顺序包括双凹负透镜L4和双凸正透镜L5的胶合透镜、具有面向像的凸表面的正弯月形透镜L6和双凸正透镜L7。正弯月形透镜L6的像侧透镜表面是非球面的。
滤波器组FL由低通滤波器、红外截止滤波器等构成,以截止超过在像平面I上设置的固态图像元件(例如,CCD、CMOS)的临界分辨率的空间频率。
在根据这个示例的光学系统WL2中,优选的是,通过沿着光轴来移动在第二透镜组G2中最接近像地设置的双凸正透镜L7来执行从在无限远处的物体向具有成像放大率β=-1/20等的、在有限距离处的物体的聚焦。
表格2示出示例2的每一个数据值。在表格2中的表面编号1至17对应于具有在图3中所示的曲率半径R1至R17的每一个光学表面。在示例2中,表面2和表面11是非球面的。
(表格2)
[透镜数据]
[非球面数据]
表面2
κ=0.6856,A4=4.91075E-02,A6=4.93583E-04,A8=1.12870E+00,A10=0.00000E+00
表面11
κ=-1.1035,A4=8.72058E-02,A6=3.93067E-01,A8=8.22753E-01,A10=0.00000E+00
[各种数据]
[可变距离数据]
[透镜组数据]
[条件表达式]
条件表达式(1) fG1/f=1.8404
条件表达式(2) TL/f=2.9183
条件表达式(3) β2R=0.8056
条件表达式(4) |n21-n22|=0.0108
如表格2所示,根据这个示例的光学系统WL2满足条件表达式(1)至(4)。
图4是示出根据示例2的光学系统WL2的各种像差(球面像差、像散、畸变、彗差和横色像差)的一组图形,其中,图4A是示出在聚焦在无限远(成像放大率β=0.00)时的各种像差的一组图形,并且图4B是示出在成像放大率β=-1/20的状态中的各种像差的一组图形。
如示出像差的每一个图形阐明,在示例2中,满意地校正各种像差,显示了良好的光学性能。
(示例3)
将参考图5、图6和表格3来描述示例3。如图5所示,根据示例3的光学系统WL(WL3)以从物体起的顺序包括具有正屈光力的第一透镜组G1、孔径光阑S、具有正屈光力的第二透镜组G2和滤波器组FL。
第一透镜组G1以从物体起的顺序包括具有面向物体的凸表面的负弯月形透镜L1、双凸正透镜L2和具有面向物体的凸表面的负弯月形透镜L3。负弯月形透镜L1的物体侧和像侧透镜表面是非球面的。
第二透镜组G2以从物体起的顺序包括具有面向物体的凹表面的负弯月形透镜L4和具有面向像的凹表面的正弯月形透镜L5的胶合透镜、具有面向像的凸表面的正弯月形透镜L6和具有面向物体的凸表面的正弯月形透镜L7。正弯月形透镜L6的像侧透镜表面是非球面的。
滤波器组FL由低通滤波器、红外截止滤波器等构成,以截止超过在像平面I上设置的固态图像元件(例如,CCD、CMOS)的临界分辨率的空间频率。
在根据这个示例的光学系统WL3中,优选的是,通过沿着光轴来移动在第二透镜组G2中最接近像地设置的双凸正透镜L7来执行从在无限远处的物体向具有成像放大率β=-1/20等的、在有限距离处的物体的聚焦。
表格3示出示例3的每一个数据值。在表格3中的表面编号1至18分别对应于具有在图5中所示的曲率半径R1至R18的每一个光学表面。在示例3中,表面1、表面2和表面12是非球面的。
(表格3)
[透镜数据]
[非球面数据]
表面1
κ=-0.0919,A4=-6.92790E-02,A6=0.00000E+00,A8=0.00000E+00,A10=0.00000E+00
表面2
κ=0.4555,A4=1.51191E-01,A6=3.57304E-01,A8=0.00000E+00,A10=0.00000E+00
表面11
κ=-5.9869,A4=-3.53602E-01,A6=1.32700E+00,A8=0.00000E+00,A10=0.00000E+00
[可变数据]
[可变距离数据]
[透镜组数据]
[条件表达式]
条件表达式(1) fG1/f=1.8130
条件表达式(2) TL/f=2.8640
条件表达式(3) β2R=0.8148
条件表达式(4) |n21-n22|=0.0119
如表格3所示,根据这个示例的光学系统WL3满足条件表达式(1)至(4)。
图6是示出根据示例3的光学系统WL3的各种像差(球面像差、像散、畸变、彗差和横色像差)的一组图形,其中,图6A是示出在聚焦在无限远(成像放大率β=0.00)时的各种像差的一组图形,并且图6B是示出在成像放大率β=-1/20的状态中的各种像差的一组图形。
如示出像差的每一个图形阐明,在示例3中,满意地校正各种像差,显示了良好的光学性能。
根据如上所述的每一个示例,可以实现下述光学系统:该光学系统的透镜镜筒可以当不使用相机时收缩到相机内,但是仍然具有紧凑性、大约65°的视角、大约2.0的Fno和高远心度。
已经使用实施例的配置要求描述了本发明,但是不必说,本发明不限于该说明。
数字和字符的说明
Wl (WL1至WL3)光学系统
CAM 数字相机(光学设备)
G1  第一透镜组
G2  第二透镜组
S   孔径光阑
FL  滤波器组
I   像平面

Claims (9)

1.一种光学系统,以从物体起的顺序包括:
具有正屈光力的第一透镜组;
孔径光阑;以及,
第二透镜组,
所述第一透镜组以从物体起的顺序包括:负透镜构件、正透镜构件和第一透镜构件,所述第一透镜构件的像侧表面是面向所述孔径光阑的凹表面,
所述第二透镜组以从物体起的顺序包括:第二透镜构件,所述第二透镜构件的物体侧表面是面向所述孔径光阑的凹表面;以及,最接近像地设置的正透镜构件,
所述第一透镜构件和所述第二透镜构件夹着所述孔径光阑而面向彼此,并且,
满足下面的条件表达式:
1.5<fG1/f<2.6
2.1<TL/f<3.1
其中,
fG1表示所述第一透镜组的焦距,
f表示所述光学系统的焦距,并且
TL表示在所述光学系统中从最接近物体的光学表面至最接近像的光学表面的、在光轴上的距离。
2.根据权利要求1所述的光学系统,其中
满足下面的条件表达式。
0.6<β2R<0.9
其中,β2R表示在所述第二透镜组中与像最接近地设置的所述正透镜构件的成像放大率。
3.根据权利要求1所述的光学系统,其中
构成所述第一透镜组的所述负透镜构件是具有负弯月形的单透镜,所述负透镜构件的物体侧表面是面向物体的凸表面。
4.根据权利要求1所述的光学系统,其中
构成所述第一透镜组的所述第一透镜构件具有负屈光力。
5.根据权利要求1所述的光学系统,其中
所述第二透镜组具有正屈光力。
6.根据权利要求1所述的光学系统,其中
构成所述第二透镜组的所述第二透镜构件是最接近物体地设置的负透镜和在其像侧上设置的正透镜的胶合透镜,并且,
满足下面的条件表达式。
|n21–n22|<0.016
其中,
n21表示构成所述第二透镜构件的所述负透镜的光学材料在d线处的折射率,并且
n22表示构成所述第二透镜构件的所述正透镜的光学材料在d线处的折射率。
7.根据权利要求1所述的光学系统,其中
构成所述第二透镜组的光学表面的至少一个表面是非球面的。
8.一种光学设备,包括根据权利要求1所述的光学系统。
9.一种用于制造光学系统的方法,所述光学系统以从物体起的顺序包括:具有正屈光力的第一透镜组;孔径光阑;以及,第二透镜组,
所述第一透镜组以从物体起的顺序包括:负透镜构件、正透镜构件和第一透镜构件,所述第一透镜构件的像侧表面是面向所述孔径光阑的凹表面,
所述第二透镜组以从物体起的顺序包括:第二透镜构件,所述第二透镜构件的物体侧表面是面向所述孔径光阑的凹表面;以及,最接近像地设置的正透镜构件,
所述第一透镜构件和所述第二透镜构件夹着所述孔径光阑而面向彼此,并且
所述方法包括在透镜镜筒中组装每一个透镜,使得满足下面的条件表达式:
1.5<fG1/f<2.6
2.1<TL/f<3.1
其中,
fG1表示所述第一透镜组的焦距,
f表示所述光学系统的焦距,并且
TL表示在所述光学系统中从最接近物体的光学表面至最接近像的光学表面的、在光轴上的距离。
CN201380014648.8A 2012-03-16 2013-02-20 光学系统、光学设备和用于制造光学系统的方法 Active CN104169774B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012-060985 2012-03-16
JP2012060985A JP5900057B2 (ja) 2012-03-16 2012-03-16 光学系、光学機器及び光学系の製造方法
PCT/JP2013/000932 WO2013136670A1 (ja) 2012-03-16 2013-02-20 光学系、光学機器及び光学系の製造方法

Publications (2)

Publication Number Publication Date
CN104169774A true CN104169774A (zh) 2014-11-26
CN104169774B CN104169774B (zh) 2016-10-26

Family

ID=49160622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380014648.8A Active CN104169774B (zh) 2012-03-16 2013-02-20 光学系统、光学设备和用于制造光学系统的方法

Country Status (5)

Country Link
US (1) US9671586B2 (zh)
JP (1) JP5900057B2 (zh)
CN (1) CN104169774B (zh)
IN (1) IN2014DN08387A (zh)
WO (1) WO2013136670A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104503066A (zh) * 2015-01-06 2015-04-08 中国科学院光电技术研究所 一种大视场大数值孔径紫外光投影光刻物镜镜头
CN105700117A (zh) * 2016-04-26 2016-06-22 中山联合光电科技股份有限公司 一种光学成像系统
CN108508571A (zh) * 2017-02-28 2018-09-07 宁波舜宇车载光学技术有限公司 成像系统透镜组
CN108802965A (zh) * 2018-01-18 2018-11-13 桂林电子科技大学 基于机器视觉的高分辨率物方远心系统
CN109791273A (zh) * 2016-10-07 2019-05-21 株式会社尼康 变倍光学系统、光学设备以及变倍光学系统的制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015112993B3 (de) * 2015-08-06 2017-01-19 Jos. Schneider Optische Werke Gmbh Fotografisches Objektiv
IT202000005026U1 (it) * 2020-09-02 2022-03-02 Opto Eng S P A Obbiettivo

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05150158A (ja) * 1991-12-02 1993-06-18 Matsushita Electric Ind Co Ltd 投写レンズおよび投写型表示装置
US20100020420A1 (en) * 2008-07-22 2010-01-28 Samsung Digital Imaging Co., Ltd. Lens optical system
CN102331618A (zh) * 2010-06-16 2012-01-25 株式会社理光 成像透镜,照相设备及便携式信息终端设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479717A (en) * 1987-09-21 1989-03-24 Minolta Camera Kk Zoom lens
US4984876A (en) 1987-09-16 1991-01-15 Minolta Camera Kabushiki Kaisha Zoom lens system
JPS6474518A (en) * 1987-09-16 1989-03-20 Minolta Camera Kk Zoom lens
US5390048A (en) 1991-12-02 1995-02-14 Matsushita Electric Industrial Co., Ltd. Projection lens assembly and projection display apparatus
JP5418745B2 (ja) * 2008-03-04 2014-02-19 株式会社ニコン 撮影レンズ、及び、この撮影レンズを備えた光学機器
JP5305831B2 (ja) 2008-10-22 2013-10-02 株式会社シグマ 結像光学系

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05150158A (ja) * 1991-12-02 1993-06-18 Matsushita Electric Ind Co Ltd 投写レンズおよび投写型表示装置
US20100020420A1 (en) * 2008-07-22 2010-01-28 Samsung Digital Imaging Co., Ltd. Lens optical system
CN102331618A (zh) * 2010-06-16 2012-01-25 株式会社理光 成像透镜,照相设备及便携式信息终端设备

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104503066A (zh) * 2015-01-06 2015-04-08 中国科学院光电技术研究所 一种大视场大数值孔径紫外光投影光刻物镜镜头
CN105700117A (zh) * 2016-04-26 2016-06-22 中山联合光电科技股份有限公司 一种光学成像系统
CN105700117B (zh) * 2016-04-26 2018-05-29 中山联合光电科技股份有限公司 一种光学成像系统
CN109791273A (zh) * 2016-10-07 2019-05-21 株式会社尼康 变倍光学系统、光学设备以及变倍光学系统的制造方法
CN108508571A (zh) * 2017-02-28 2018-09-07 宁波舜宇车载光学技术有限公司 成像系统透镜组
CN108802965A (zh) * 2018-01-18 2018-11-13 桂林电子科技大学 基于机器视觉的高分辨率物方远心系统

Also Published As

Publication number Publication date
WO2013136670A1 (ja) 2013-09-19
JP2013195560A (ja) 2013-09-30
US20150098134A1 (en) 2015-04-09
JP5900057B2 (ja) 2016-04-06
CN104169774B (zh) 2016-10-26
US9671586B2 (en) 2017-06-06
IN2014DN08387A (zh) 2015-05-08

Similar Documents

Publication Publication Date Title
JP5544834B2 (ja) 広角レンズ、及び、この広角レンズを有する光学機器
CN104995542B (zh) 光学系统、光学装置和制造光学系统的方法
US7492526B2 (en) High zoom ratio zoom lens, optical apparatus using the same, and method for varying focal length
CN102132189B (zh) 变焦镜头、成像设备和用于制造变焦镜头的方法
CN104969110B (zh) 光学系统、光学装置和制造光学系统的方法
CN104169774A (zh) 光学系统、光学设备和用于制造光学系统的方法
CN102033302A (zh) 广角镜头、光学设备,和用于制造广角镜头的方法
CN107688226B (zh) 变焦镜头
CN105393156A (zh) 变倍光学系统、成像装置和变倍光学系统的制造方法
CN104145200B (zh) 光学系统、光学装置和制造光学系统的方法
JP5434447B2 (ja) 広角レンズおよび光学機器
JP6236794B2 (ja) 光学系及び光学機器
CN101246254B (zh) 变焦透镜系统和利用该变焦透镜系统的光学设备
JP5825109B2 (ja) ズームレンズおよび光学機器
JP5505770B2 (ja) ズームレンズ、光学機器
CN107615130B (zh) 变倍光学系统以及光学设备
JP6160112B2 (ja) 光学系及び光学機器
JP5903937B2 (ja) 光学系、光学機器及び光学系の製造方法
JP6236795B2 (ja) 光学系及び光学機器
JP6337450B2 (ja) フロントコンバータレンズ
JP6273675B2 (ja) 光学系及び光学機器
US20160154220A1 (en) Zoom lens, optical apparatus and manufacturing method for the zoom lens
JP5115870B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP5903932B2 (ja) 光学系、光学機器及び光学系の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant