CN104157833A - 一种石墨烯/二氧化钛复合多孔材料及其制备方法和用途 - Google Patents

一种石墨烯/二氧化钛复合多孔材料及其制备方法和用途 Download PDF

Info

Publication number
CN104157833A
CN104157833A CN201410422056.6A CN201410422056A CN104157833A CN 104157833 A CN104157833 A CN 104157833A CN 201410422056 A CN201410422056 A CN 201410422056A CN 104157833 A CN104157833 A CN 104157833A
Authority
CN
China
Prior art keywords
graphene
titanium dioxide
porous material
composite porous
dioxide composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410422056.6A
Other languages
English (en)
Other versions
CN104157833B (zh
Inventor
熊晓鹏
柯祺荣
宋立卓
姚舜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201410422056.6A priority Critical patent/CN104157833B/zh
Publication of CN104157833A publication Critical patent/CN104157833A/zh
Application granted granted Critical
Publication of CN104157833B publication Critical patent/CN104157833B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

一种石墨烯/二氧化钛复合多孔材料及其制备方法和用途,涉及多孔材料。所述复合材料具有相互贯通的孔隙结构,基体结构尺度为100nm~5μm,孔径为100nm~5μm,是三维网孔结构;基体微观结构是石墨烯组成连续相,纳米二氧化钛分散在分散的石墨烯片层上。将苯乙烯嵌段共聚物溶于选择性溶剂中形成聚合物胶束溶液;加入氧化石墨烯溶液,待其混匀后再加入二氧化钛超声后流延在置于沉淀剂的饱和气氛中的载板上,待溶剂挥发后,即得聚合物/氧化石墨烯/二氧化钛复合多孔材料,再连同载板置于惰性气氛中碳化,即得产物。可在制备石墨烯/二氧化钛多孔复合电极中应用,所述电极可用于光催化、锂电池和超级电容器等领域。

Description

一种石墨烯/二氧化钛复合多孔材料及其制备方法和用途
技术领域
本发明涉及多孔材料,尤其是涉及一种石墨烯/二氧化钛复合多孔材料及其制备方法和用途。
技术背景
随着科技和社会的发展,对高性能电源的需求量不断增大,传统的静电电容器比能量较小,难以满足实际要求。在此背景下,超级电容器因其具有高充放电速率、对环境无污染、循环寿命长,使用温度范围广等特点,近年来得到广泛研究。
石墨烯是由单层碳原子紧密堆积成的二维蜂窝状晶格结构的碳质材料,是目前已知导电性能最出色的材料,并具有较高的载流子迁移速率。石墨烯因其出色的电学性能,已被广泛应用于制备超高性能的电子产品。其中,石墨烯与金属氧等纳米粒子的复合物近几年得到了较为广泛的研究,并且,这类复合物也已经在光催化、纳米电子、生物技术、能源技术等领域有所应用。如Li等(Journal of the American Chemical Society,2013,135,18300-18303)使用钛酸四丁酯作为钛源,通过溶胶凝胶法制备了石墨烯/二氧化钛复合物,经进一步高温煅烧后所得的石墨烯/二氧化钛材料具有超电容性;如Yang等(ACS NANO,2013,7,1504-1512)同样适用钛酸四丁酯作为钛源,通过水热法制备石墨烯/二氧化钛复合材料,并从理论上阐明了石墨烯改性二氧化钛的机理。
不仅如此,石墨烯与聚合物制备的复合材料也受到各国科学家们的追捧。聚苯胺、聚苯乙烯、聚甲基丙烯酸甲酯、聚吡咯、纤维素、壳聚糖等高分子材料常用来与石墨烯复合,以提高其机械性能和电化学性能。Stankovich等(Nature,2006,442,282-286)通过π-π相互作用,将石墨烯添加到聚苯乙烯中,大大提高了聚苯乙烯的导电性。
关于利用聚合物/氧化石墨烯/二氧钛三者之间的自组装作用来制备石墨烯/二氧化钛多孔电极的报道还比较少。并且将其作为电极在能源领域的应用也将逐步得到关注。一般制备石墨烯/二氧化钛复合材料是使用较为昂贵的钛酸正丁酯、钛酸异丙醇等作为钛源,通过水热法水解,在经高温烧结最后得到石墨烯/二氧化钛复合材料,实验成本高,能耗高。
发明内容
本发明的第一目的在于提供一种具有微纳米多级结构,孔洞相互贯通的石墨烯/二氧化钛复合多孔材料。
本发明的第二目的在于提供一种石墨烯/二氧化钛复合多孔材料的制备方法。
本发明的第三目的在于提供一种石墨烯/二氧化钛复合多孔材料在超级电容器、光催化方面的应用。
所述石墨烯/二氧化钛复合多孔材料,具有相互贯通的孔隙结构,基体结构尺度在100nm~5μm,孔径在100nm~5μm,是一种均匀的三维网孔结构;基体微观结构是石墨烯组成连续相,纳米二氧化钛均匀分散在分散的石墨烯片层上,按质量百分比,石墨烯含量为0.5%~20%,纳米二氧化钛含量为50%~70%,余量为碳。该材料也可以直接在导电载板上制备成多孔石墨烯/二氧化钛复合电极材料。
所述石墨烯/二氧化钛复合多孔材料是以聚合物相分离产生的结构作为模板,聚合物为苯乙烯嵌段共聚物并溶于选择性溶剂中形成胶束溶液;聚合物中的PS链段与石墨烯形成π-π作用而自组装;二氧化钛吸附于石墨烯上,形成聚合物/石墨烯/二氧化钛的复合材料;最后在惰性气氛下高温碳化除去聚合物,从而制备出石墨烯/二氧化钛复合多孔材料。
所述石墨烯/二氧化钛复合多孔材料的制备方法为:
将苯乙烯嵌段共聚物溶于选择性溶剂中,形成聚合物胶束溶液;加入氧化石墨烯溶液,待其混匀后,再加入二氧化钛,超声混匀,将混匀的混合溶液流延在置于沉淀剂的饱和气氛中的载板上,待溶剂挥发完毕后,即制得聚合物/氧化石墨烯/二氧化钛复合多孔材料;将聚合物/氧化石墨烯/二氧化钛复合材料连同载板置于惰性气氛中碳化,即得到石墨烯/二氧化钛复合多孔材料。
所制得的石墨烯/二氧化钛复合多孔材料的基体结构尺度为100nm~5μm,孔径为100nm~5μm,是一种均匀的三维网孔结构;基体微观结构是石墨烯组成连续相,纳米二氧化钛均匀分散在分散的石墨烯片层上。
所述苯乙烯嵌段共聚物可选自线形苯乙烯-丁二烯两嵌段共聚物,线形苯乙烯-丁二烯-苯乙烯三嵌段共聚物,星形苯乙烯-丁二烯-苯乙烯嵌段共聚物,苯乙烯-异戊二烯嵌段共聚物等中的一种。
所述选择性溶剂可选自丁酮、乙酸乙酯、四氢呋喃等中的至少一种。
所述聚合物胶束溶液的质量浓度可为1~160mg/mL。
所述聚合物胶束溶液与氧化石墨烯溶液混合的体积比可为1∶0.5~5;所述二氧化钛可选用纳米二氧化钛,尺度在5~50nm;聚合物、氧化石墨烯、二氧化钛的质量比可为(10~80)∶1∶(5~100);所述超声的时间可为2~60min。
所述氧化石墨烯溶液中的氧化石墨可通过hummers方法制备,分散于N,N-二甲基甲酰胺中的质量浓度可为0.1~10mg/mL。
所述溶剂挥发,可在苯乙烯嵌段共聚物的沉淀剂蒸汽气氛中进行;所述沉淀剂可选自甲醇、乙醇、正己烷等中的至少一种。
所述碳化的温度可为350~600℃,碳化的时间可为0.5~6h。
所述石墨烯/二氧化钛复合多孔材料可在制备石墨烯/二氧化钛多孔复合电极中应用,所述石墨烯/二氧化钛多孔复合电极可用于光催化、锂电池和超级电容器等领域。
当使用石墨烯/二氧化钛多孔复合电极作为工作电极时,可使用0.5M硫酸钠为电解液。
本发明直接使用商业纳米二氧化钛作为钛源,无需水热过程,利用聚合物/氧化石墨烯/二氧钛三者之间的自组装过程,制备复合多孔材料;再在惰性气氛下将聚合物碳化,即可制备石墨烯/二氧化钛复合多孔材料;该过程制备方法简便,成本低廉,易于工业化制备。
本发明结合聚合物相分离过程和聚合物-氧化石墨烯-二氧化钛之间的自组装作用制备复合材料。相比于传统水热法,本发明无需水热过程等采用诸如钛酸正丁酯等前驱体,在制备过程中可直接使用二氧化钛来制备的石墨烯/二氧化钛多孔电极,制备过程简单、方便、快捷。此复合多孔材料基体结构尺度在100nm~5μm,孔径在100nm~5μm,是一种均匀的三维网孔结构;基体微观结构是石墨烯组成连续相,纳米二氧化钛均匀分散在分散的石墨烯片层上。本发明所制备的石墨烯/二氧化钛多孔复合电极可用于光催化、锂电池和超级电容器等领域。
附图说明
图1为采用实施例1制备石墨烯/二氧化钛复合多孔材料的扫描电镜图片。
图2为采用实施例2制备石墨烯/二氧化钛复合多孔材料的扫描电镜图片。
图3为采用实施例3制备石墨烯/二氧化钛复合多孔材料的扫描电镜图片。
图4为图3中石墨烯/二氧化钛复合多孔材料的结构放大图。
图5为采用实施例4制备多孔石墨烯/二氧化钛电极截面的扫描电镜图片。
图6为图5中多孔石墨烯/二氧化钛电极截面的结构放大图。
图7为采用实施例4制备的多孔石墨烯/二氧化钛电极的透射电镜图。
图8为采用实施例4制备的多孔石墨烯/二氧化钛电极与纯二氧化钛的X射线衍射谱。
图9为采用实施例4制备的多孔石墨烯/二氧化钛多孔复合电极在不同充放电电流下的充放电曲线。
具体实施方式
下面结合实施例对本发明做进一步的说明。
实施例1
分别配制10mg/mL线形苯乙烯-丁二烯-苯乙烯三嵌段聚合物的丁酮胶束溶液和0.5mg/mL氧化石墨烯的N,N-二甲基甲酰胺溶液,并等体积混匀。在混和溶液中加入二氧化钛,并保证其浓度为5mg/mL,并超声均匀。将上述混合溶液流延于置于乙醇等沉淀剂饱和气氛中的玻璃载板,静止,待其溶液完全挥发成膜。将膜连同导电玻璃置于氮气气氛中于500℃煅烧4h,得到石墨烯/二氧化钛复合多孔材料。将制备的石墨烯二氧化钛复合多孔材料连同载板置入液氮中淬冷,几分钟后将其取出并脆断。将薄膜表面及断面喷金后在电镜下观察。
采用实施例1制备石墨烯/二氧化钛复合多孔材料的扫描电镜图片参见图1。
实施例2
首先配制10mg/mL苯乙烯-异戊二烯嵌段聚合物的四氢呋喃溶液和0.5mg/mL氧化石墨烯的N,N-二甲基甲酰胺溶液,并等体积混匀。后续实验步骤与实施例1相同。
采用实施例2制备石墨烯/二氧化钛复合多孔材料的扫描电镜图片参见图2。
实施例3
首先配制20mg/mL星形苯乙烯-丁二烯-苯乙烯三嵌段共聚物的四氢呋喃溶液和2mg/mL氧化石墨烯的N,N-二甲基甲酰胺溶液,按1∶2的体积比混合;再加入纳米二氧化钛,并保证其浓度为10mg/mL,然后超声均匀。将上述混合溶液流延于置于甲醇等沉淀剂饱和气氛中的玻璃载板,静止,待其溶液完全挥发成膜。后续实验步骤与实施例1相同。
采用实施例3制备石墨烯/二氧化钛复合多孔材料的扫描电镜图片参见图3和4。
实施例4
按照实施例1的方法配制聚合物胶束和氧化石墨烯的混合溶液,加入适量二氧化钛,并保证其浓度为10mg/mL,并超声均匀,将上述混合溶液流延于置于乙醇等沉淀剂饱和气氛中的导电载板,静止,待其溶液完全挥发成膜。后续实验步与实施例1相同。
采用实施例4制备多孔石墨烯/二氧化钛电极截面的扫描电镜图片参见图5和6,采用实施例4制备的多孔石墨烯/二氧化钛电极的透射电镜图参见图7,采用实施例4制备的多孔石墨烯/二氧化钛电极与纯二氧化钛的X射线衍射谱参见图8,采用实施例4制备的多孔石墨烯/二氧化钛多孔复合电极在不同充放电电流下的充放电曲线参见图9。
实施例5
采用实施例4制备的石墨烯/二氧化钛电极作为工作电极,与铂电极、甘汞电极和0.5M硫酸钠作为电解液组装成三电极系统,测量充放电曲线。
本发明所提供的制备多孔材料的方法,是将嵌段共聚物、氧化石墨烯、纳米二氧化钛分散于溶剂中,并流延在载板上,然后置于乙醇、甲醇等单一或混合沉淀剂蒸气气氛中,待溶剂挥发完后,便可制得聚合物/氧化石墨烯/二氧化钛复合材料;将这种复合材料在惰性气氛下碳化聚合物,从而得到具有多孔结构的石墨烯/二氧化钛复合材料。这种复合多孔材料基体结构尺度在100nm~5μm,孔径在100nm~5μm,是一种均匀的三维网孔结构;基体微观结构是石墨烯组成连续相,纳米二氧化钛均匀分散在石墨烯片层上。若在导电载板上制备上述复合材料,则得到具有上述特征的多孔结构石墨烯/二氧化钛电极。所制备的石墨烯/二氧化钛多孔电极材料由微纳米多尺度孔洞组成,孔与孔之间相互贯通,有利于离子扩散,电容达约6mF/cm2。本发明结合聚合物相分离过程和聚合物-石墨烯-二氧化钛之间的自组装作用制备复合材料。相比于传统水热法,本发明无需水热过程等采用诸如钛酸正丁酯等前驱体,在制备过程中可直接使用二氧化钛来制备的石墨烯/二氧化钛多孔电极,制备过程简单、方便、快捷。本发明所制备的石墨烯/二氧化钛多孔电极可用于光催化、锂电池和超级电容器等领域。

Claims (10)

1.一种石墨烯/二氧化钛复合多孔材料,其特征在于其具有相互贯通的孔隙结构,基体结构尺度为100nm~5μm,孔径为100nm~5μm,是一种均匀的三维网孔结构;基体微观结构是石墨烯组成连续相,纳米二氧化钛均匀分散在分散的石墨烯片层上,按质量百分比,石墨烯含量为0.5%~20%,纳米二氧化钛含量为50%~70%,余量为碳。
2.如权利要求1所述一种石墨烯/二氧化钛复合多孔材料的制备方法,其特征在于其具体步骤如下:
将苯乙烯嵌段共聚物溶于选择性溶剂中,形成聚合物胶束溶液;加入氧化石墨烯溶液,待其混匀后,再加入二氧化钛,超声混匀,将混匀的混合溶液流延在置于沉淀剂的饱和气氛中的载板上,待溶剂挥发完毕后,即制得聚合物/氧化石墨烯/二氧化钛复合多孔材料;将聚合物/氧化石墨烯/二氧化钛复合材料连同载板置于惰性气氛中碳化,即得到石墨烯/二氧化钛复合多孔材料。
3.如权利要求2所述一种石墨烯/二氧化钛复合多孔材料的制备方法,其特征在于所述苯乙烯嵌段共聚物选自线形苯乙烯-丁二烯两嵌段共聚物,线形苯乙烯-丁二烯-苯乙烯三嵌段共聚物,星形苯乙烯-丁二烯-苯乙烯嵌段共聚物,苯乙烯-异戊二烯嵌段共聚物中的一种。
4.如权利要求2所述一种石墨烯/二氧化钛复合多孔材料的制备方法,其特征在于所述选择性溶剂选自丁酮、乙酸乙酯、四氢呋喃中的至少一种。
5.如权利要求2所述一种石墨烯/二氧化钛复合多孔材料的制备方法,其特征在于所述聚合物胶束溶液的质量浓度为1~160mg/mL。
6.如权利要求2所述一种石墨烯/二氧化钛复合多孔材料的制备方法,其特征在于所述聚合物胶束溶液与氧化石墨烯溶液混合的体积比为1∶0.5~5;所述二氧化钛可选用纳米二氧化钛,尺度在5~50nm;聚合物、氧化石墨烯、二氧化钛的质量比可为(10~80)∶1∶(5~100);所述超声的时间可为2~60min。
7.如权利要求2所述一种石墨烯/二氧化钛复合多孔材料的制备方法,其特征在于所述氧化石墨烯溶液中的氧化石墨是通过hummers方法制备,分散于N,N-二甲基甲酰胺中的质量浓度可为0.1~10mg/mL。
8.如权利要求2所述一种石墨烯/二氧化钛复合多孔材料的制备方法,其特征在于所述溶剂挥发,是在苯乙烯嵌段共聚物的沉淀剂蒸汽气氛中进行;所述沉淀剂可选自甲醇、乙醇、正己烷中的至少一种。
9.如权利要求2所述一种石墨烯/二氧化钛复合多孔材料的制备方法,其特征在于所述碳化的温度为350~600℃,碳化的时间为0.5~6h。
10.如权利要求1所述一种石墨烯/二氧化钛复合多孔材料在制备石墨烯/二氧化钛多孔复合电极中的应用,所述石墨烯/二氧化钛多孔复合电极可用于光催化、锂电池和超级电容器。
CN201410422056.6A 2014-08-25 2014-08-25 一种石墨烯/二氧化钛复合多孔材料及其制备方法和用途 Expired - Fee Related CN104157833B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410422056.6A CN104157833B (zh) 2014-08-25 2014-08-25 一种石墨烯/二氧化钛复合多孔材料及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410422056.6A CN104157833B (zh) 2014-08-25 2014-08-25 一种石墨烯/二氧化钛复合多孔材料及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN104157833A true CN104157833A (zh) 2014-11-19
CN104157833B CN104157833B (zh) 2016-02-17

Family

ID=51883286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410422056.6A Expired - Fee Related CN104157833B (zh) 2014-08-25 2014-08-25 一种石墨烯/二氧化钛复合多孔材料及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN104157833B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638256A (zh) * 2015-02-03 2015-05-20 中国科学院合肥物质科学研究院 一种纳米复合材料及其制备方法和锂离子电池
CN104907018A (zh) * 2015-05-25 2015-09-16 齐鲁工业大学 一种三维钛酸/氧化石墨烯复合凝胶及其制备方法
CN105195123A (zh) * 2015-07-20 2015-12-30 黑龙江大学 一种利用超声剥离制备石墨烯/二氧化钛复合光催化剂的方法
CN105977460A (zh) * 2016-05-20 2016-09-28 北京师范大学 一种石墨烯复合材料、其制备方法及应用
CN106268738A (zh) * 2015-06-08 2017-01-04 清华大学 氯代芳香族有机物污染土壤修复淋洗液的光催化处理装置及其专用光催化复合板
CN106799219A (zh) * 2016-12-22 2017-06-06 南昌航空大学 一种二氧化钛纳米颗粒/石墨烯复合光催化材料的制备方法
CN106887573A (zh) * 2017-03-10 2017-06-23 辽宁大学 一种米粒状形貌锂离子电池负极材料的制备方法
CN109301226A (zh) * 2018-10-22 2019-02-01 泉州齐美电子科技有限公司 一种基于石墨烯改性的锂离子电池电极材料的制备工艺
CN109437412A (zh) * 2018-12-21 2019-03-08 河海大学 一种生态纤维及制备方法与应用
CN110441370A (zh) * 2019-08-12 2019-11-12 济南大学 一种新型无标记电化学适配体传感器的制备及应用
CN113019153A (zh) * 2021-02-08 2021-06-25 厦门大学 一种疏水透气光催化聚合物纳米复合膜及其制备方法和应用
CN113948691A (zh) * 2021-10-15 2022-01-18 佛山科学技术学院 一种二氧化钛复合材料及其作为储能材料的应用
CN116386928A (zh) * 2023-06-02 2023-07-04 山东科技大学 一种海藻酸钠/二氧化钛复合多孔电极材料及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569761A (zh) * 2010-12-08 2012-07-11 中国科学院金属研究所 二氧化钛∕石墨烯纳米复合材料及其制备方法和应用
CN102683657A (zh) * 2012-05-11 2012-09-19 常州第六元素材料科技股份有限公司 一种锂离子电池负极用石墨烯复合材料及其制备方法
CN103123869A (zh) * 2012-11-28 2013-05-29 华中科技大学 一种具备三维多孔结构的纳米二氧化钛-石墨烯复合材料制备方法及其产品
CN103143338A (zh) * 2013-03-21 2013-06-12 四川农业大学 一种多孔二氧化钛/石墨烯复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569761A (zh) * 2010-12-08 2012-07-11 中国科学院金属研究所 二氧化钛∕石墨烯纳米复合材料及其制备方法和应用
CN102683657A (zh) * 2012-05-11 2012-09-19 常州第六元素材料科技股份有限公司 一种锂离子电池负极用石墨烯复合材料及其制备方法
CN103123869A (zh) * 2012-11-28 2013-05-29 华中科技大学 一种具备三维多孔结构的纳米二氧化钛-石墨烯复合材料制备方法及其产品
CN103143338A (zh) * 2013-03-21 2013-06-12 四川农业大学 一种多孔二氧化钛/石墨烯复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAO-YAN ZHANG等: "Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting", 《JOURNAL OF MATERIALS CHEMISTRY》 *
YONGYE LIANG等: "TiO2 Nanocrystals Grown on Graphene as Advanced Photocatalytic Hybrid Materials", 《NANO RESEARCH》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638256A (zh) * 2015-02-03 2015-05-20 中国科学院合肥物质科学研究院 一种纳米复合材料及其制备方法和锂离子电池
CN104638256B (zh) * 2015-02-03 2017-02-22 中国科学院合肥物质科学研究院 一种纳米复合材料及其制备方法和锂离子电池
CN104907018A (zh) * 2015-05-25 2015-09-16 齐鲁工业大学 一种三维钛酸/氧化石墨烯复合凝胶及其制备方法
CN106268738A (zh) * 2015-06-08 2017-01-04 清华大学 氯代芳香族有机物污染土壤修复淋洗液的光催化处理装置及其专用光催化复合板
CN105195123A (zh) * 2015-07-20 2015-12-30 黑龙江大学 一种利用超声剥离制备石墨烯/二氧化钛复合光催化剂的方法
CN105195123B (zh) * 2015-07-20 2017-12-26 黑龙江大学 一种利用超声剥离制备石墨烯/二氧化钛复合光催化剂的方法
CN105977460A (zh) * 2016-05-20 2016-09-28 北京师范大学 一种石墨烯复合材料、其制备方法及应用
CN105977460B (zh) * 2016-05-20 2018-10-09 北京师范大学 一种石墨烯复合材料、其制备方法及应用
CN106799219A (zh) * 2016-12-22 2017-06-06 南昌航空大学 一种二氧化钛纳米颗粒/石墨烯复合光催化材料的制备方法
CN106887573A (zh) * 2017-03-10 2017-06-23 辽宁大学 一种米粒状形貌锂离子电池负极材料的制备方法
CN109301226A (zh) * 2018-10-22 2019-02-01 泉州齐美电子科技有限公司 一种基于石墨烯改性的锂离子电池电极材料的制备工艺
CN109437412A (zh) * 2018-12-21 2019-03-08 河海大学 一种生态纤维及制备方法与应用
CN109437412B (zh) * 2018-12-21 2021-09-17 河海大学 一种生态纤维及制备方法与应用
CN110441370A (zh) * 2019-08-12 2019-11-12 济南大学 一种新型无标记电化学适配体传感器的制备及应用
CN110441370B (zh) * 2019-08-12 2021-07-09 济南大学 一种无标记电化学适配体传感器的制备及应用
CN113019153A (zh) * 2021-02-08 2021-06-25 厦门大学 一种疏水透气光催化聚合物纳米复合膜及其制备方法和应用
CN113019153B (zh) * 2021-02-08 2022-04-26 厦门大学 一种疏水透气光催化聚合物纳米复合膜及其制备方法和应用
CN113948691A (zh) * 2021-10-15 2022-01-18 佛山科学技术学院 一种二氧化钛复合材料及其作为储能材料的应用
CN113948691B (zh) * 2021-10-15 2023-03-10 佛山科学技术学院 一种二氧化钛复合材料及其作为储能材料的应用
CN116386928A (zh) * 2023-06-02 2023-07-04 山东科技大学 一种海藻酸钠/二氧化钛复合多孔电极材料及制备方法
CN116386928B (zh) * 2023-06-02 2023-08-04 山东科技大学 一种海藻酸钠/二氧化钛复合多孔电极材料及制备方法

Also Published As

Publication number Publication date
CN104157833B (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
CN104157833B (zh) 一种石墨烯/二氧化钛复合多孔材料及其制备方法和用途
Kim et al. Tailored nanoarchitecturing of microporous ZIF-8 to hierarchically porous double-shell carbons and their intrinsic electrochemical property
Yuan et al. Carbon-reinforced Nb2CTx MXene/MoS2 nanosheets as a superior rate and high-capacity anode for sodium-ion batteries
Niu et al. Large-size graphene-like porous carbon nanosheets with controllable N-doped surface derived from sugarcane bagasse pith/chitosan for high performance supercapacitors
Song et al. Nitrogen-enriched hollow porous carbon nanospheres with tailored morphology and microstructure for all-solid-state symmetric supercapacitors
Zhao et al. Two-dimensional titanium carbide/RGO composite for high-performance supercapacitors
Zhu et al. Hierarchically MnO2–nanosheet covered submicrometer-FeCo2O4-tube forest as binder-free electrodes for high energy density all-solid-state supercapacitors
Lv et al. Carbon quantum dot-induced MnO2 nanowire formation and construction of a binder-free flexible membrane with excellent superhydrophilicity and enhanced supercapacitor performance
Hou et al. Hierarchical core–shell structure of ZnO nanorod@ NiO/MoO2 composite nanosheet arrays for high-performance supercapacitors
Li et al. Core-double-shell, carbon nanotube@ polypyrrole@ MnO2 sponge as freestanding, compressible supercapacitor electrode
Li et al. Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability
Mu et al. Construction of hierarchical CNT/rGO-supported MnMoO4 nanosheets on Ni foam for high-performance aqueous hybrid supercapacitors
Moosavifard et al. Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors
Jiang et al. Nanostructured ternary nanocomposite of rGO/CNTs/MnO2 for high-rate supercapacitors
Sarkar et al. High-performance pseudocapacitor electrodes based on α-Fe2O3/MnO2 core–shell nanowire heterostructure arrays
Jia et al. Electrospun kraft lignin/cellulose acetate-derived nanocarbon network as an anode for high-performance sodium-ion batteries
Sun et al. One-step synthesis of 3D network-like Ni x Co1–x MoO4 porous Nanosheets for high performance battery-type hybrid supercapacitors
Hu et al. VO2/TiO2 nanosponges as binder-free electrodes for high-performance supercapacitors
Zhao et al. MnO2/graphene/nickel foam composite as high performance supercapacitor electrode via a facile electrochemical deposition strategy
Zhu et al. 3D network-like mesoporous NiCo2O4 nanostructures as advanced electrode material for supercapacitors
Zhang et al. V2O5 nanowire composite paper as a high-performance lithium-ion battery cathode
Huang et al. Facile synthesis of N, S-codoped hierarchically porous carbon with high volumetric pseudocapacitance
Zhu et al. Composite of CoOOH nanoplates with multiwalled carbon nanotubes as superior cathode material for supercapacitors
Kim et al. Facile synthesis of Co3O4-incorporated multichannel carbon nanofibers for electrochemical applications
He et al. Constructed uninterrupted charge-transfer pathways in three-dimensional micro/nanointerconnected carbon-based electrodes for high energy-density ultralight flexible supercapacitors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160217

Termination date: 20210825

CF01 Termination of patent right due to non-payment of annual fee