CN110441370B - 一种无标记电化学适配体传感器的制备及应用 - Google Patents

一种无标记电化学适配体传感器的制备及应用 Download PDF

Info

Publication number
CN110441370B
CN110441370B CN201910740552.9A CN201910740552A CN110441370B CN 110441370 B CN110441370 B CN 110441370B CN 201910740552 A CN201910740552 A CN 201910740552A CN 110441370 B CN110441370 B CN 110441370B
Authority
CN
China
Prior art keywords
solution
rgo
electrode
gce
acetamiprid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910740552.9A
Other languages
English (en)
Other versions
CN110441370A (zh
Inventor
周长利
衣姜乐
刘汉彪
刘建辉
陈培培
夏方诠
田栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201910740552.9A priority Critical patent/CN110441370B/zh
Publication of CN110441370A publication Critical patent/CN110441370A/zh
Application granted granted Critical
Publication of CN110441370B publication Critical patent/CN110441370B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及电化学适配体传感器的构建方法和检测方法,属于分析化学测试技术领域;特别是涉及一种无标记电化学适配体传感器检测啶虫脒,包括无标记电化学适配体传感器的制备步骤、使用该传感器测定啶虫脒的操作方法等;以DNA自身产生电流为识别信号,原位制备的三维多孔修饰电极负载大量适配体,同时结合DNA自组装技术进行信号放大;构建的无标记电化学适配体传感器,制备过程简捷,检测快速、特异性好、灵敏度高。

Description

一种无标记电化学适配体传感器的制备及应用
技术领域
本发明涉及电化学适配体传感器的构建方法和检测方法,属于分析化学测试技术领域;特别是涉及一种无标记电化学适配体传感器检测啶虫脒,包括无标记电化学适配体传感器的制备步骤、使用该传感器测定啶虫脒的操作方法等;以DNA自身产生电流为识别信号,原位制备的三维多孔修饰电极负载大量适配体,同时结合DNA自组装技术进行信号放大;构建的无标记电化学适配体传感器,制备过程简单,特异性好、灵敏度高。
背景技术
农药残留已成为危害环境和健康的全球问题。啶虫脒是一种神经性毒素类触杀性农药,常被用于控制各种植物上的吸虫类昆虫,对环境和人类的健康造成极其严重的潜在风险。敏感、有选择性的追踪这种神经性毒素已成为目前迫在眉睫的事情。迄今为止,啶虫脒检测方法有:色谱及其联用技术、酶联免疫分析、光谱等分析方法。但是,这些传统的检测方法既费时费力,又往往需要非常昂贵的检测设备,难以满足高灵敏度、选择性以及快速、现场检测的需要。与这些传统方法相比,生物传感器具有低成本和高灵敏度等优点。特别是电化学适配体传感器除上述优点之外,还具有快速、稳定、高选择性、适于在线检测等优势。然而,在适配体传感器应用中,需要将电化学探针或光谱探针修饰在适配体或其它材料表面,以产生可测量的物理信号。因此,适配体传感器多为标记型传感器,构建过程繁琐,且检测灵敏度往往受到探针结构和性质的影响。在标记型电化学适配体传感器中,信号强度更是受到DNA分子导电性差和长程电子传递的影响,从而严重影响检测灵敏度。
众所周知,磷酸根能与钼酸钠反应生成具有电化学活性的磷钼酸钠沉淀,在电极上产生氧化还原电流。而DNA由磷酸骨架组成,因此DNA也可能与钼酸钠反应生成磷钼酸钠沉淀并产生电流。阳明辉团队将适配体同时作为捕获分子和信号分子制备了适配体传感器用于乳腺癌标志物人类表皮生长因子受体2(HER2)的检测(Anal. Chem.,2017, 89:2547−2552)。他通过肽链识别目标物HER2,然后再接适配体,利用适配体产生电流信号;或者结合后续DNA放大技术放大信号(Anal. Chem.,2017, 89:10264−10269)。这使得其构建的传感器在测定每一个样品时都需要先结合目标物,再进行后续操作。每个样品大概需要近10小时才能完成。这显然不适合对农残快速检测的要求。同时,基于DNA自身产生电流的电化学传感器,电极表面上DNA的量直接影响传感器分析灵敏度;构建策略、检测时间也会影响其实际应用性。常用的DNA放大技术,如PCR、滚换反应、自组装等,过程复杂,反应时间长等都限制了该传感器的进一步开发应用。因此开发新型的简单、快速又具备高灵敏度和选择性的无标记电化学适配体传感器,应用于农残快速检测具有重要意义。
发明内容
本发明的目的就是针对电化学适配体传感器研究中的缺点,构建一种能够用于高灵敏检测农药残留啶虫脒的无标记电化学适配体传感器。本发明要解决的主要技术问题是电化学信号的产生及信号放大策略;传感器采用何种构建策略以缩短检测时间。本发明采取的措施为:(1)基于富含于DNA中磷酸基团与钼酸钠在酸性条件下产生的氧化还原电流作为检测信号;(2)利用三维多孔电极,提高电极导电性,提高电流信号传输效率;(3)利用三维多孔电极和DNA自组装技术,协同放大信号:三维多孔电极比表面积大可负载大量的DNA,DNA通过自组装进一步放大,二者协同提高电极表面磷酸基团含量。(4)构建策略是将适配体负载到多孔电极表面,然后通过DNA自组装放大DNA;这样可缩短级联反应的时间,简捷、快速构建传感器,并缩短检测时间。本发明以三维多孔电极3D-CS-rGO/GCE通过纳米金负载啶虫脒适配体;通过设计可发生级联反应的DNA链S1及S2,利用自组装技术,构建了基于DNA自身产生电流信号的无标记电化学适配体传感器,用于检测啶虫脒。当没有目标物时,由于电极表面存在大量的DNA,滴加钼酸钠后会产生灵敏的电流信号;当啶虫脒存在时,由于适配体与啶虫脒的强烈作用,破坏了适配体与S1、S2形成的双螺旋结构,电极表面DNA量急剧减小,其产生的电流信号随之降低;而且随着啶虫脒的浓度增大,信号降低越多。本发明也是一种“signal-on-off”型无标记电化学适配体传感器,检测速度快,灵敏度高,选择性好;传感器制备简捷,使用简便,稳定性、重现性好,无毒,不污染环境,为农残啶虫脒的检测提供了一种可行的新方法。
本发明的技术方案
1.一种基于DNA自身产生电流信号的啶虫脒无标记电化学适配体传感器的制备方法及应用,以DNA自身产生电流为识别信号,原位制备的三维多孔修饰电极负载大量适配体,同时结合DNA自组装技术进行信号放大;构建的无标记电化学适配体传感器,制备过程简单,检测快速、特异性好、灵敏度高;
2. 所述三维多孔修饰电极制备方法如下:
将处理好的玻碳电极浸入壳聚糖-二氧化硅-氧化石墨烯CS-SiO2-rGO复合液中,在-1.2V下,恒电沉积20min;取出电极,以水清洗;然后置于2 mol/L NaOH溶液中,浸泡4min;最后将电极取出清洗;原位制得了三维多孔电极3D-CS-rGO/GCE;
3. 所述壳聚糖-二氧化硅-氧化石墨烯CS-SiO2-rGO复合液,制备方法如下:
将5 mLSiO2纳米球的乙醇分散液加入5 mL、1%(g/mL)的壳聚糖溶液中,再加25 mL0.1 M的HCl 溶液,搅拌10 h,得CS-SiO2复合液;取10 mLCS-SiO2复合液加入到10 mL、5mg/mL的氧化石墨烯GO溶液中,搅拌1 h后置于超声分散30 min,然后继续搅拌72 h,得到CS-SiO2-rGO复合液;
4. 所述SiO2纳米球的乙醇分散液,制备方法如下:
(1)在250 mL锥形瓶中依次加入16.25 mL ETOH(无水乙醇)和24.75 mL超纯水后在1000 rpm磁力下搅拌混匀。然后加入10 mL NH3·H2O,用封口膜封闭后在磁力搅拌器上继续高速搅拌均匀。此为A溶液;
(2)在100 mL 三口烧瓶中依次加入45.5 mL ETOH和4.5 mL TEOS(硅酸四乙酯),然后在磁力搅拌器上高速搅拌均匀。此为B溶液;
(3)将B溶液快速倒入A溶液中,在1000 rpm 高速搅拌下搅拌30 s 后调节转速为400 rpm 后用封口膜封口,并持续搅拌反应2 h。将反应后的溶液用ETOH离心洗涤3至5次后超声分散至40 mL乙醇中,备用;
5. 所述的无标记电化学适配体传感器制备方法如下:
(1)将制备好的3D-CS/rGO-GCE浸入0.25mM的氯金酸溶液中,在0.0V下恒电位沉积5 min,制得纳米金多孔电极Au/3D-CS-rGO/GCE;
(2)将8μL、1.0μM的啶虫脒适配体Apt滴涂到上述电极表面,在4℃下孵化2 h,得Apt/Au/3D-CS-rGO/GCE;
(3)Apt/Au/3D-CS-rGO/GCE以6-巯基己醇封闭非特异性结合位点后,滴涂8μL、1.0μM的DNA链S1,37℃下孵化1 h;继续滴涂8μL、1.0μM的DNA链S2,37℃下孵化1 h后用高纯水清洗,得S2/S1/Apt/Au/3D-CS-rGO/GCE;
6. 所述的无标记电化学适配体传感器用于检测啶虫脒,检测方法:
(1)在S2/S1/Apt/Au/3D-CS-rGO/GCE表面,滴加不同浓度的啶虫脒标准溶液5μL,37°C下孵化60 min后以水清洗;
(2)继续在电极表面滴加10mM的钼酸钠溶液5μL,常温静置20 min;
(3)将上述制得的电极浸入0.5M的硫酸溶液,在0.0 ~ 0.5 V电位区间,利用示差脉冲伏安法(DPV),测量0.22V处的伏安峰峰电流;绘制工作曲线;同时测定传感器线性范围和检测限;
(4)将待测样品溶液代替啶虫脒标准溶液,按步骤(1)、(2)和(3)方法测定峰电流;以工作曲线法求算样品中啶虫脒的含量。
本发明的有益效果
(1)本发明制备的三维多孔电极,是通过恒电位沉积,原位制得。制备方法简单、快速;
(2)利用三维多孔电极比表面积大的特性,提高了啶虫脒适配体负载量;提高了电极导电性,电流信号传输效率升高;适配体在三维多孔电极上产生的信号比在裸电极产生的信号提高了1倍(附图1);
(3)三维多孔电极与DNA自组装技术结合,其协同作用大大提高了电极表面磷酸基团含量,放大信号近3倍(附图1曲线4);
(4)通常DNA自组装所需反应时间较长,约4-6小时。本发明由于将三维多孔电极与DNA自组装技术结合,级联反应时间只需要1小时就可达到足够灵敏度。传感器的制备更为快捷;
(5)本发明检测快速,进行啶虫脒检测时,只需将样品滴加到制备好的传感器表面进行孵化、检测,完成一个样品检测全程只需80min,检测时间大大缩短。克服了传统传感器滴加样品后繁琐冗长的电极制备过程;
(6)本发明基于DNA自身产生电流信号构建的无标记电化学传感器,避免了电化学探针标记DNA所带来的诸如材料合成复杂、制备繁琐、所需时间过长,电化学响应变差、影响信号转换效率等不良影响;
(7)本发明首次将DNA自身产生电流的无标记电化学适配体传感器应用于啶虫脒的检测,具有制备简捷,使用简便、稳定性和重现性好;检测快速、灵敏度和选择性好等特点;可以实现对啶虫脒的简单、快速、高灵敏检测;线性范围为 10-13 ~ 10-7 M,检出限为71.2fM 。
附图说明:
图1为不同修饰电极滴加钼酸钠后在0.5M H2SO4中的DPV曲线
其中,1--Au/3D-CS-rGO/GCE,2--Apt/Au/GCE,3--Apt/Au/3D-CS-rGO/GCE,
4--S2/S1/Apt/Au/3D-CS-rGO/GCE ,5--acetamiprid/S2/S1/Apt/Au/3D-CS-rGO/GCE.
图2为不同浓度啶虫脒时传感器的DPV及线性拟合曲线
其中,1-7分别代表啶虫脒的浓度为:10-7,10-8,10-9,10-10,10-11,10-12,10-13 mol/L。
具体实施方式
为了更好地理解本发明,下面用具体实例来详细说明本发明的技术方案,但是本发明并不局限于此。
实施例1 SiO2纳米球的乙醇分散液制备方法
(1)在250 mL锥形瓶中依次加入16.25 mL ETOH(无水乙醇)和24.75 mL超纯水后在1000 rpm磁力下搅拌混匀。然后加入10 mL NH3·H2O,用封口膜封闭后在磁力搅拌器上继续高速搅拌均匀。此为A溶液;
(2)在100 mL 三口烧瓶中依次加入45.5 mL ETOH和4.5 mL TEOS(硅酸四乙酯),然后在磁力搅拌器上高速搅拌均匀。此为B溶液;
(3)将B溶液快速倒入A溶液中,在1000 rpm 高速搅拌下搅拌30 s 后调节转速为400 rpm 后用封口膜封口,并持续搅拌反应2 h。将反应后的溶液用ETOH离心洗涤3至5次后超声分散至40 mL乙醇中,备用。
实施例2壳聚糖-二氧化硅-氧化石墨烯CS-SiO2-rGO复合液制备方法
将5 mLSiO2纳米球的乙醇分散液加入5 mL、1%(g/mL)的壳聚糖溶液中,再加25 mL0.1 M的HCl 溶液,搅拌10 h,得CS-SiO2复合液;取10 mLCS-SiO2复合液加入到10 mL、5mg/mL的氧化石墨烯GO溶液中,搅拌1 h后置于超声分散30 min,然后继续搅拌72 h,得到CS-SiO2-rGO复合液。
实施例3 三维多孔修饰电极原位制备方法
将处理好的玻碳电极浸入壳聚糖-二氧化硅-氧化石墨烯CS-SiO2-rGO复合液中,在-1.2V下,恒电沉积20min;取出电极,以水清洗;然后置于2 mol/L NaOH溶液中,浸泡4min;最后将电极取出清洗;原位制得了三维多孔电极3D-CS-rGO/GCE。
实施例4 无标记电化学适配体传感器制备方法
(1)将制备好的3D-CS-rGO/GCE浸入0.25mM的氯金酸溶液中,在0.0V下恒电位沉积5 min,制得纳米金多孔电极Au/3D-CS-rGO/GCE;
(2)将8μL、1.0μM的啶虫脒适配体Apt滴涂到上述电极表面,在4℃下孵化2 h,得Apt/Au/3D-CS/rGO/GCE;
(3)Apt/Au/3D-CS/rGO/GCE以6-巯基己醇封闭非特异性结合位点后,滴涂8μL、1.0μM的DNA链S1,37℃下孵化1 h;继续滴涂8μL、1.0μM的DNA链S2,37℃下孵化1 h后用高纯水清洗,得S2/S1/Apt/Au/3D-CS-rGO/GCE,清洗备用。
实施例5 检测啶虫脒的方法
(1)在S2/S1/Apt/Au/3D-CS-rGO/GCE表面,滴加不同浓度的啶虫脒标准溶液5μL,37°C下孵化60 min后以水清洗;
(2)继续在电极表面滴加10mM的钼酸钠溶液5μL,常温静置20 min;
(3)将上述制得的电极浸入0.5M的硫酸溶液,在0.0 ~ 0.5 V电位区间,利用示差脉冲伏安法(DPV),测量0.22V处的伏安峰峰电流;绘制工作曲线;同时测定传感器线性范围和检测限;结果表明,峰电流与啶虫脒浓度的对数呈负相关,线性方程为:Ip(μA)= -21.86-3.45 lgc (mol/L),r=0.986,线性范围为1.0×10-13 ~ 1.0×10-7M,检测限为71.2 fM.
(4)将待测样品溶液代替啶虫脒标准溶液,按步骤(1)、(2)和(3)方法测定峰电流;以工作曲线法求算样品中啶虫脒的含量。

Claims (2)

1.一种无标记电化学适配体传感器的制备方法,其特征在于,以DNA自身产生电流为识别信号,三维多孔电极结合DNA自组装技术协同放大信号,其制备方法如下:
(1)将3D-CS-rGO/GCE浸入0.25 mM的氯金酸溶液中,在0.0 V下恒电位沉积5 min,制得纳米金多孔电极Au/3D-CS-rGO/GCE;
(2)将8 μL、1.0 μM的啶虫脒适配体Apt滴涂到上述电极表面,在4 ℃下孵化2 h,得Apt/Au/3D-CS-rGO/GCE;
(3)Apt/Au/3D-CS-rGO/GCE以6-巯基己醇封闭非特异性结合位点后,滴涂8 μL、1.0 μM的DNA链S1,37 ℃下孵化1 h;继续滴涂8 μL、1.0 μM的DNA链S2,37 ℃下孵化1 h后用高纯水清洗,得S2/S1/Apt/Au/3D-CS-rGO/GCE;
所述的3D-CS-rGO/GCE制备步骤如下:
(1)将5 mL SiO2纳米球的乙醇分散液加入5 mL 0.01 g/mL的壳聚糖溶液中,再加25 mL0.1 M的HCl溶液,搅拌10 h,得CS-SiO2复合液;取10 mL CS-SiO2复合液加入到10 mL、5 mg/mL的氧化石墨烯GO溶液中,搅拌1 h后置于超声分散30 min,然后继续搅拌72 h,得到壳聚糖-二氧化硅-氧化石墨烯CS/SiO2/GO复合液;
(2)将处理好的玻碳电极浸入CS/SiO2/GO复合液中,在-1.2 V下,恒电沉积20 min;取出电极,以水清洗;然后置于2 mol/L NaOH溶液中,浸泡4 min;最后将电极取出清洗,原位制得三维多孔电极3D-CS-rGO/GCE。
2.权利要求1所述的制备方法制得的无标记电化学适配体传感器在检测啶虫脒农残中的应用,其特征在于,检测步骤如下:
(1)在S2/S1/Apt/Au/3D-CS-rGO/GCE表面,滴加不同浓度的啶虫脒标准溶液5 μL,37 °C下孵化60 min后以水清洗;
(2)继续在电极表面滴加10 mM的钼酸钠溶液5 μL,常温静置20 min;
(3)将上述制得的电极浸入0.5 M的硫酸溶液,在0.0 ~ 0.5 V电位区间,利用示差脉冲伏安法,测量0.22 V处的伏安峰峰电流;
(4)将待测样品溶液代替啶虫脒标准溶液,按步骤(1)、(2)和(3)方法测定峰电流,以工作曲线法求算样品中啶虫脒的含量。
CN201910740552.9A 2019-08-12 2019-08-12 一种无标记电化学适配体传感器的制备及应用 Expired - Fee Related CN110441370B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910740552.9A CN110441370B (zh) 2019-08-12 2019-08-12 一种无标记电化学适配体传感器的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910740552.9A CN110441370B (zh) 2019-08-12 2019-08-12 一种无标记电化学适配体传感器的制备及应用

Publications (2)

Publication Number Publication Date
CN110441370A CN110441370A (zh) 2019-11-12
CN110441370B true CN110441370B (zh) 2021-07-09

Family

ID=68434666

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910740552.9A Expired - Fee Related CN110441370B (zh) 2019-08-12 2019-08-12 一种无标记电化学适配体传感器的制备及应用

Country Status (1)

Country Link
CN (1) CN110441370B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112098484B (zh) * 2020-09-11 2022-09-27 常州大学 基于电化学发光法检测啶虫脒的传感器以及制备方法和应用
CN113447553B (zh) * 2021-06-21 2022-09-20 同济大学 基于信号探针封装释放的非固定型电化学传感器及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2253950A1 (en) * 2009-05-19 2010-11-24 Honeywell International Inc. Fast response electrochemical organophosphate sensor
CN104157833A (zh) * 2014-08-25 2014-11-19 厦门大学 一种石墨烯/二氧化钛复合多孔材料及其制备方法和用途
CN109813785A (zh) * 2019-02-21 2019-05-28 济南大学 一种基于中空多孔纳米球双放大信号的啶虫脒电化学适配体传感器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2253950A1 (en) * 2009-05-19 2010-11-24 Honeywell International Inc. Fast response electrochemical organophosphate sensor
CN104157833A (zh) * 2014-08-25 2014-11-19 厦门大学 一种石墨烯/二氧化钛复合多孔材料及其制备方法和用途
CN109813785A (zh) * 2019-02-21 2019-05-28 济南大学 一种基于中空多孔纳米球双放大信号的啶虫脒电化学适配体传感器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Highly sp(2) hybridized and nitrogen, oxygen dual-doped nanoporous carbon network: Synthesis and application for ionic liquid supercapacitors;Dong Xiaoling等;《MICROPOROUS AND MESOPOROUS MATERIALS》;20170607;第259卷;第10264-10269页 *
Self-Assembled DNA Generated Electric Current Biosensor for HER2 Analysis;Shen Congcong等;《Anal. Chem.》;20170901;第89卷;摘要,第10264-10269页,示意图1 *
三维多孔壳聚糖/碳纳米管膜的研制及其在生物传感器中的应用;谢慧英等;《南昌大学学报(理科版)》;20070613;第30卷;摘要,第940-941页 *
石墨烯的改性及其在电化学检测方面的研究新进展;万红利等;《功能材料》;20160830(第08期);第08035-08042页 *

Also Published As

Publication number Publication date
CN110441370A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
Ferrari et al. Recent advances in portable heavy metal electrochemical sensing platforms
Jin et al. Fabrication strategies, sensing modes and analytical applications of ratiometric electrochemical biosensors
Narang et al. A non-enzymatic sensor for hydrogen peroxide based on polyaniline, multiwalled carbon nanotubes and gold nanoparticles modified Au electrode
Fredj et al. Determination of prostate cancer biomarker acid phosphatase at a copper phthalocyanine-modified screen printed gold transducer
Liu et al. A label-free ratiometric electrochemical DNA sensor for monitoring intracellular redox homeostasis
CN104007155B (zh) 一种用于检测水体中痕量汞的电化学传感器及其制备方法和应用
Geng et al. Molecularly imprinted electrochemical sensor based on multi-walled carbon nanotubes for specific recognition and determination of chloramphenicol in milk
Jin et al. Nanomaterial-based environmental sensing platforms using state-of-the-art electroanalytical strategies
CN105424787B (zh) 一种同时检测四环素和土霉素的丝网印刷传感器的制备方法
Tang et al. Label-free potentiometric aptasensing platform for the detection of Pb2+ based on guanine quadruplex structure
Su et al. Amperometric thrombin aptasensor using a glassy carbon electrode modified with polyaniline and multiwalled carbon nanotubes tethered with a thiolated aptamer
CN110441370B (zh) 一种无标记电化学适配体传感器的制备及应用
Sharma et al. Impedimetric sensors: principles, applications and recent trends
Wang et al. A high sensitive single luminophore ratiometric electrochemiluminescence immunosensor in combined with anodic stripping voltammetry
Gao et al. Potentiometric aptasensing of Escherichia coli based on electrogenerated chemiluminescence as a highly sensitive readout
Fan et al. Competitive smartphone-based portable electrochemical aptasensor system based on an MXene/cDNA-MB probe for the determination of Microcystin-LR
Zhou et al. A novel biosensor for silver (I) ion detection based on nanoporous gold and duplex-like DNA scaffolds with anionic intercalator
Hui et al. Graphene oxide/multi-walled carbon nanotubes/gold nanoparticle hybridfunctionalized disposable screen-printed carbon electrode to determine Cd (II) and Pb (II) in soil
CN113960131A (zh) 一种双信号电化学适配体传感器及测定啶虫脒的方法
Gołębiewski et al. Electrochemical sensing of sulfate in aqueous solution with a cyclopeptide-dipyrromethene-Cu (II) or Co (II) complex attached to a gold electrode
CN102980935A (zh) 一种检测多环芳烃蒽菲合量的电化学方法
CN110672696B (zh) 一种检测铜离子、磷酸根离子和碱性磷酸酶的新型电化学方法及其应用
CN109211989A (zh) 一种用于检测阿特拉津的电化学适配体传感器及其制备和检测方法
Luo et al. Amperometric ammonium ion sensor based on polyaniline-poly (styrene sulfonate-co-maleic acid) composite conducting polymeric electrode
Zhao et al. Preparation of a phosphate ion-selective electrode using one-step process optimized with response surface method and its application in real sample detections

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210709

CF01 Termination of patent right due to non-payment of annual fee