CN104086754A - 一种聚双噻吩吡咯及其制备方法及利用其制备的聚双噻吩吡咯/阵列式TiO2纳米管 - Google Patents

一种聚双噻吩吡咯及其制备方法及利用其制备的聚双噻吩吡咯/阵列式TiO2纳米管 Download PDF

Info

Publication number
CN104086754A
CN104086754A CN201410299671.2A CN201410299671A CN104086754A CN 104086754 A CN104086754 A CN 104086754A CN 201410299671 A CN201410299671 A CN 201410299671A CN 104086754 A CN104086754 A CN 104086754A
Authority
CN
China
Prior art keywords
bis
thiophene
tio
poly
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410299671.2A
Other languages
English (en)
Other versions
CN104086754B (zh
Inventor
牛海军
温海林
马晓川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heilongjiang University
Original Assignee
Heilongjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heilongjiang University filed Critical Heilongjiang University
Priority to CN201410299671.2A priority Critical patent/CN104086754B/zh
Publication of CN104086754A publication Critical patent/CN104086754A/zh
Application granted granted Critical
Publication of CN104086754B publication Critical patent/CN104086754B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种聚双噻吩吡咯及其制备方法及利用其制备的聚双噻吩吡咯/阵列式TiO2纳米管,本发明涉及电致变色聚合物及其制备。本发明解决现有双噻吩类聚合物电子传输性能差,着变色效率差,变色速率慢的问题。结构通式:1≤n≤100;制备方法:先双傅氏反应;再制备双叔丁基三苯胺基-2,5-二噻吩吡咯;然后电化学聚合;聚双噻吩吡咯/阵列式TiO2纳米管制备方法:先双傅氏反应;再制备双叔丁基三苯胺基-2,5-二噻吩吡咯;然后阳极氧化制备TiO2纳米管阵列膜;再TiO2溶胶的制备;然后TiO2/FTO纳米管阵列透明光电极的制备;最后电致变色器件的制备。本发明用于聚双噻吩吡咯及制备聚双噻吩吡咯/阵列式TiO2纳米管。

Description

一种聚双噻吩吡咯及其制备方法及利用其制备的聚双噻吩吡咯/阵列式TiO2纳米管
技术领域
本发明涉及电致变色聚合物及其制备。
背景技术
电致变色聚合物在性能和多显色结构应用研究方面已经成为当今研究的电致变色材料的热点。随着步入信息化时代,有机光电子学已形成一个有机化学、物理学、信息电子科学和材料科学等诸多学科相互交叉的新兴研究领域。特别是以有机电致发光器件(OLED)、有机光伏器件(OPV)和有机场效应晶体管(OTFT)为代表的有机光电功能材料和器件在新型平板显示、固体照明、柔性显示、高密度信息传输与存储、新能源和光化学利用等领域显现了广阔的应用前景。具有电致变色,电致发光性能的聚双噻吩吡咯/TiO2纳米管的存在必将使显示和传感领域迸发出蓬勃的生命力,其在显示和传感领域均表现出突出的优越性和广阔的开发应用前景。
由于噻吩、三苯胺和咔唑都具有良好的电致变色性能,三苯胺和咔唑和含有双噻吩物质反应形成共平面的聚合物能够降低体系能量,电子易传输使电化学效应更加明显,并且具有高导电率、随电压快速变换颜色以及良好的环境稳定性而务受关注,在太阳能电池、神经探针、电致变色材料和器件的开发等方面具有良好的应用前景。大量的文献报道聚噻吩和聚吡咯衍生物是通过化学氧化法或者电化学氧化法获得的,但又会导致它们的加工和光学等性能变得更差,进而限制了它们的应用。研究发现,含有杂环的二聚体或三聚体(比如二噻吩、三噻吩、二噻吩基吡咯等)可以在不损害其加工性能和光学性能的情况下降低其氧化还原电位,获得较低的能隙(Eg),且聚合物仍能保持良好的电致变色性能和成膜性能。正因为如此,越来越多研究者开始关注二噻吩基吡咯衍生物的合成研究与应用。而单纯的双噻吩类聚合物电极却由于聚合物电子传输性能差导致的存在着变色效率差(50%以下),变色速率慢(3s以上),成膜性差的缺点,因而如何解决这样的问题成为了现在人们研究的重点。
发明内容
本发明要解决现有的双噻吩类聚合物电子传输性能较差,存在着变色效率差,变色速率慢的问题,而提供一种聚双噻吩吡咯及其制备方法及利用其制备的聚双噻吩吡咯/阵列式TiO2纳米管。
一种聚双噻吩吡咯,其特征在于一种聚双噻吩吡咯的结构通式为:
所述的n为1≤n≤100。
一种聚双噻吩吡咯的制备方法是按以下步骤进行:
一、双傅氏反应:①、在氮气气氛下,将无水三氯化铝溶解于二氯甲烷中,得到混合物A;所述的无水三氯化铝的质量与步骤一①中的二氯甲烷的体积比为1g:(3.7~5.5)mL;②、在氮气气氛下,将噻吩和琥珀酰氯溶解于二氯甲烷中,得到混合物B;所述的噻吩与琥珀酰氯的摩尔比为(2~3):1;所述的噻吩与步骤一②中的二氯甲烷的体积比为1:(2.5~3.0);③、在氮气气氛下,将混合物B滴加到混合物A中,用薄层色谱法监测反应进程至反应物消失,反应结束,得到混合物C;所述的混合物A与混合物B的体积比为1:(1~1.5);④、将混合物C静置分层,以二氯甲烷为萃取剂进行萃取,得到有机层,再向有机层中加入质量百分数为10%~12%的盐酸、质量百分数为10%~12%的碳酸氢钠溶液和水进行洗涤,并使用无水硫酸镁干燥,然后再以二氯甲烷为淋洗液,以硅胶为固定相进行柱层分离,最后利用旋转蒸发仪蒸发溶剂及真空干燥,得到1,4-二噻吩-1,4-二丁酮;
二、制备双叔丁基三苯胺基-2,5-二噻吩吡咯:在氮气气氛下,将1,4-二噻吩-1,4-二丁酮与4-氨基-双叔丁基三苯胺及对甲苯磺酸溶于甲苯溶液中,并回流冷凝反应,回流冷凝反应的时间为3天~4天,用薄层色谱法监测反应进程至反应物消失,反应结束,然后利用旋转蒸发仪蒸发溶剂,得粗产品A,将粗产品A溶解于二氯甲烷中,过滤并利用旋转蒸发仪蒸发溶剂,得到粗产品B,然后以二氯甲烷为淋洗液,以硅胶为固定相进行柱层分离,再以二氯甲烷与石油醚的体积比为2:1的混合物为淋洗液,以硅胶为固定相进行柱层分离,得到棕黄色双叔丁基三苯胺基-2,5-二噻吩吡咯;
所述的1,4-二噻吩-1,4-二丁酮与4-氨基-双叔丁基三苯胺的摩尔比为1:(1~1.2);所述的1,4-二噻吩-1,4-二丁酮的物质的量与甲苯溶液的体积比为1mol:(15~20)mL;所述的1,4-二噻吩-1,4-二丁酮与对甲苯磺酸的摩尔比为1:(0.05~0.08);
三、电化学聚合:将FTO导电玻璃衬底预处理,得到预处理后的FTO导电玻璃衬底,将预处理后的FTO导电玻璃衬底浸渍于双叔丁基三苯胺基-2,5-二噻吩吡咯中,浸渍12h~24h,得到浸渍后的FTO导电玻璃衬底,然后以浸渍后的FTO导电玻璃衬底为工作电极,以Ag/AgCl/饱和KCl溶液电极为参比电极,以铂片电极为对电极,通入N2,并将浸渍后的FTO导电玻璃衬底工作电极、Ag/AgCl/饱和KCl溶液电极参比电极及铂片电极对电极放入电解液中,在循环电压为0V~1.5V及扫描速率为100mV/s~150mV/s下聚合15min~30min,得到表面覆有聚合物薄膜的FTO导电玻璃衬底,然后将表面覆有聚合物薄膜的FTO导电玻璃衬底用二氯甲烷进行洗涤,并脱膜,得到聚双噻吩吡咯。
利用一种聚双噻吩吡咯制备的聚双噻吩吡咯/阵列式TiO2纳米管的制备方法是按以下步骤进行:
一、双傅氏反应:①、在氮气气氛下,将无水三氯化铝溶解于二氯甲烷中,得到混合物A;所述的无水三氯化铝的质量与步骤一①中的二氯甲烷的体积比为1g:(3.7~5.5)mL;②、在氮气气氛下,将噻吩和琥珀酰氯溶解于二氯甲烷中,得到混合物B;所述的噻吩与琥珀酰氯的摩尔比为(2~3):1;所述的噻吩与步骤一②中的二氯甲烷的体积比为1:(2.5~3.0);③、在氮气气氛下,将混合物B滴加到混合物A中,用薄层色谱法监测反应进程至反应物消失,反应结束,得到混合物C;所述的混合物A与混合物B的体积比为1:(1~1.5);④、将混合物C静置分层,以二氯甲烷为萃取剂进行萃取,得到有机层,再向有机层中加入质量百分数为10%~12%的盐酸、质量百分数为10%~12%的碳酸氢钠溶液和水进行洗涤,并使用无水硫酸镁干燥,然后再以二氯甲烷为淋洗液,以硅胶为固定相进行柱层分离,最后利用旋转蒸发仪蒸发溶剂及真空干燥,得到1,4-二噻吩-1,4-二丁酮;
二、制备双叔丁基三苯胺基-2,5-二噻吩吡咯:在氮气气氛下,将1,4-二噻吩-1,4-二丁酮与4-氨基-双叔丁基三苯胺及对甲苯磺酸溶于甲苯溶液中,并回流冷凝反应,回流冷凝反应的时间为3天~4天,用薄层色谱法监测反应进程至反应物消失,反应结束,然后利用旋转蒸发仪蒸发溶剂,得粗产品A,将粗产品A溶解于二氯甲烷中,过滤并利用旋转蒸发仪蒸发溶剂,得到粗产品B,然后以二氯甲烷为淋洗液,以硅胶为固定相进行柱层分离,再以二氯甲烷与石油醚的体积比为2:1的混合物为淋洗液,以硅胶为固定相进行柱层分离,得到棕黄色双叔丁基三苯胺基-2,5-二噻吩吡咯;
所述的1,4-二噻吩-1,4-二丁酮与4-氨基-双叔丁基三苯胺的摩尔比为1:(1~1.2);所述的1,4-二噻吩-1,4-二丁酮的物质的量与甲苯溶液的体积比为1mol:(15~20)mL;所述的1,4-二噻吩-1,4-二丁酮与对甲苯磺酸的摩尔比为1:(0.05~0.08);
三、阳极氧化制备TiO2纳米管阵列膜:将高纯钛片按顺序依次使用400目、600目、800目、1000目、2000目、3000目的砂纸进行打磨处理,得到打磨后的钛片,将打磨后的钛片放入丙酮溶液超声脱脂处理30min~60min,取出后放入乙醇溶液超声脱脂处理30min~60min,得到脱脂后的钛片,然后用去离子水冲洗脱脂后的钛片并在空气中静置晾干,得到预处理后的钛片;以不锈钢片为阴极、以预处理后的钛片为阳极,将不锈钢片阴极和预处理后的钛片阳极放入电解液中,然后以直流电源为电源在电解池两端外加34V~40V的电压,并在34V~40V的电压下,氧化沉积1h~1.5h,即得到表面生成一层TiO2纳米管阵列膜的钛片;所述的电解液的溶质为NH4F和去离子水,溶剂为乙二醇,且所述的电解液中NH4F质量百分比为0.8%~1.2%,所述的电解液中去离子水体积百分比为2%~3%;用去离子水冲洗表面生成一层TiO2纳米管阵列膜的钛片并在空气中静置晾干,再将静置晾干后的钛片放置于马弗炉中,以升温速度为2℃/min~5℃/min,将马弗炉温度由室温升温至450℃~500℃,并在温度为450℃~500℃下烧结1h~1.5h,然后退火至常温,得到烧结后的钛片,然后将烧结后的钛片浸入到质量百分数为5%~8%的H2O2溶液中,浸泡20h~24h,得到从钛板上脱落的TiO2纳米管阵列膜;
四、TiO2溶胶的制备:①、将钛酸四丁酯加入到无水乙醇中,并在温度为40℃~50℃及搅拌速度为120r/min~150r/min下,搅拌0.5h~1h,得到混合物D;所述的钛酸四丁酯与无水乙醇的体积比为1:(2~2.5);②、将物质量浓度为10mol/L~12mol/L的浓HCl、无水乙醇及二次去离子水混合,得到混合物E;所述的物质量浓度为10mol/L~12mol/L的浓HCl与无水乙醇的体积比为1:(5~5.5);所述的物质量浓度为10mol/L~12mol/L的浓HCl与二次去离子水的体积比为1:(2~4);③、在搅拌速度为120r/min~150r/min下,将混合物E滴加到混合物D中,继续搅拌4h~6h,得到TiO2溶胶;所述的混合物D与混合物E的体积比为(4.4~5):1;
五、TiO2/FTO纳米管阵列透明光电极的制备:将FTO导电玻璃衬底预处理,得到预处理后的FTO导电玻璃衬底,再在预处理后的FTO导电玻璃衬底上旋涂TiO2溶胶,得到表面覆有TiO2溶胶的FTO导电玻璃,并将TiO2纳米管阵列膜覆盖至表面覆有TiO2溶胶的FTO导电玻璃上,得到TiO2/FTO,然后将TiO2/FTO置于马弗炉内,以升温速度为2℃/min~5℃/min,将马弗炉温度由室温升温至450℃~500℃,并在温度为450℃~500℃下烧结1h~1.5h,得到TiO2/FTO纳米管阵列透明光电极;
六、电致变色器件的制备:将TiO2/FTO纳米管阵列透明光电极浸渍于双叔丁基三苯胺基-2,5-二噻吩吡咯中,浸渍12h~24h,得到浸渍后的TiO2/FTO纳米管阵列透明光电极,然后以浸渍后的TiO2/FTO纳米管阵列透明光电极为工作电极,以Ag/AgCl/饱和KCl溶液电极为参比电极,以铂片电极为对电极,通入N2,并将浸渍后的TiO2/FTO纳米管阵列透明光电极工作电极、Ag/AgCl/饱和KCl溶液电极参比电极及铂片电极对电极放入电解液中,在循环电压为0V~1.5V及扫描速率为100mV/s~150mV/s下聚合15min~30min,得到表面覆有聚合物薄膜的TiO2/FTO纳米管阵列透明电极,然后将表面覆有聚合物薄膜的TiO2/FTO纳米管阵列透明电极用二氯甲烷进行洗涤,得到聚双噻吩吡咯/阵列式TiO2纳米管;
所述的电解液为浓度为0.01mol/L~0.02mol/L的四丁基高氯酸铵的二氯甲烷溶液。
本发明的有益效果是:由于阵列式TiO2纳米管多孔道的特点使得电子传输交换变得容易提高了聚合物电子传输性能,进而使聚双噻吩吡咯/阵列式TiO2纳米管着变色效率提高到90%,变色速率提高到2.5s,聚合物直接电聚合成膜。
本发明用于一种聚双噻吩吡咯及其制备方法及利用其制备的聚双噻吩吡咯/阵列式TiO2纳米管。
附图说明
图1为实施例一制备的聚双噻吩吡咯的核磁共振谱图;
图2为实施例一步骤二制备的双叔丁基三苯胺基-2,5-二噻吩吡咯及步骤三制备的聚双噻吩吡咯的红外谱图如所示;
图3为实施例二步骤三制备的TiO2纳米管阵列膜表面扫描电镜照片;
图4为实施例二步骤三制备的TiO2纳米管阵列膜横截面扫描电镜照片;
图5为TiO2/Ti纳米管阵列电极照片;
图6为实施例二步骤五制备的TiO2/FTO纳米管阵列透明光电极照片;
图7为实施例二步骤六制备的聚双噻吩吡咯/阵列式TiO2纳米管的紫外-可见谱图;
图8为实施例二步骤三制备的双叔丁基三苯胺基-2,5-二噻吩吡咯多圈扫描聚合循环伏安图;
图9为实施例二步骤六制备的聚双噻吩吡咯/阵列式TiO2纳米管电化学循环伏安性能测试;
图10为实施例二步骤六制备的聚双噻吩吡咯/阵列式TiO2纳米管电致变色谱图;
图11为实施例二步骤六制备的聚双噻吩吡咯/阵列式TiO2纳米管热重分析谱图。
具体实施方式
本发明技术方案不局限于以下所列举的具体实施方式,还包括各具体实施方式之间的任意组合。
具体实施方式一:本实施方式的一种聚双噻吩吡咯,其特征在于一种聚双噻吩吡咯的结构通式为:
所述的n为1≤n≤100。
具体实施方式二:本实施方式所述的一种聚双噻吩吡咯的制备方法是按以下步骤进行:
一、双傅氏反应:①、在氮气气氛下,将无水三氯化铝溶解于二氯甲烷中,得到混合物A;所述的无水三氯化铝的质量与步骤一①中的二氯甲烷的体积比为1g:(3.7~5.5)mL;②、在氮气气氛下,将噻吩和琥珀酰氯溶解于二氯甲烷中,得到混合物B;所述的噻吩与琥珀酰氯的摩尔比为(2~3):1;所述的噻吩与步骤一②中的二氯甲烷的体积比为1:(2.5~3.0);③、在氮气气氛下,将混合物B滴加到混合物A中,用薄层色谱法监测反应进程至反应物消失,反应结束,得到混合物C;所述的混合物A与混合物B的体积比为1:(1~1.5);④、将混合物C静置分层,以二氯甲烷为萃取剂进行萃取,得到有机层,再向有机层中加入质量百分数为10%~12%的盐酸、质量百分数为10%~12%的碳酸氢钠溶液和水进行洗涤,并使用无水硫酸镁干燥,然后再以二氯甲烷为淋洗液,以硅胶为固定相进行柱层分离,最后利用旋转蒸发仪蒸发溶剂及真空干燥,得到1,4-二噻吩-1,4-二丁酮;
二、制备双叔丁基三苯胺基-2,5-二噻吩吡咯:在氮气气氛下,将1,4-二噻吩-1,4-二丁酮与4-氨基-双叔丁基三苯胺及对甲苯磺酸溶于甲苯溶液中,并回流冷凝反应,回流冷凝反应的时间为3天~4天,用薄层色谱法监测反应进程至反应物消失,反应结束,然后利用旋转蒸发仪蒸发溶剂,得粗产品A,将粗产品A溶解于二氯甲烷中,过滤并利用旋转蒸发仪蒸发溶剂,得到粗产品B,然后以二氯甲烷为淋洗液,以硅胶为固定相进行柱层分离,再以二氯甲烷与石油醚的体积比为2:1的混合物为淋洗液,以硅胶为固定相进行柱层分离,得到棕黄色双叔丁基三苯胺基-2,5-二噻吩吡咯;
所述的1,4-二噻吩-1,4-二丁酮与4-氨基-双叔丁基三苯胺的摩尔比为1:(1~1.2);所述的1,4-二噻吩-1,4-二丁酮的物质的量与甲苯溶液的体积比为1mol:(15~20)mL;所述的1,4-二噻吩-1,4-二丁酮与对甲苯磺酸的摩尔比为1:(0.05~0.08);
三、电化学聚合:将FTO导电玻璃衬底预处理,得到预处理后的FTO导电玻璃衬底,将预处理后的FTO导电玻璃衬底浸渍于双叔丁基三苯胺基-2,5-二噻吩吡咯中,浸渍12h~24h,得到浸渍后的FTO导电玻璃衬底,然后以浸渍后的FTO导电玻璃衬底为工作电极,以Ag/AgCl/饱和KCl溶液电极为参比电极,以铂片电极为对电极,通入N2,并将浸渍后的FTO导电玻璃衬底工作电极、Ag/AgCl/饱和KCl溶液电极参比电极及铂片电极对电极放入电解液中,在循环电压为0V~1.5V及扫描速率为100mV/s~150mV/s下聚合15min~30min,得到表面覆有聚合物薄膜的FTO导电玻璃衬底,然后将表面覆有聚合物薄膜的FTO导电玻璃衬底用二氯甲烷进行洗涤,并脱膜,得到聚双噻吩吡咯。
步骤一的反应通式为:
具体实施方式三:本实施方式与具体实施方式二不同的是:步骤三中将FTO导电玻璃衬底预处理具体按以下步骤进行操作:将FTO导电玻璃衬底洗衣粉超声洗涤30min,再用无水乙醇超声40min,然后用丙酮超声30min,最后用去离子水存放,得到预处理后的FTO导电玻璃衬底。其它与具体实施方式二相同。
具体实施方式四:本实施方式与具体实施方式二或三之一不同的是:步骤一①中所述的无水三氯化铝的质量与步骤一①中的二氯甲烷的体积比为1g:5mL;步骤一②中所述的噻吩与琥珀酰氯的摩尔比为2:1;步骤一②中所述的噻吩与步骤一②中的二氯甲烷的体积比为1:3;步骤一②中所述的混合物A与混合物B的体积比为1:1。其它与具体实施方式二或三相同。
具体实施方式五:本实施方式与具体实施方二至四之一不同的是:步骤二中所述的1,4-二噻吩-1,4-二丁酮与4-氨基-双叔丁基三苯胺的摩尔比为1:1.2;步骤二中所述的1,4-二噻吩-1,4-二丁酮的物质的量与甲苯溶液的体积比为1mol:20mL;步骤二中所述的1,4-二噻吩-1,4-二丁酮与对甲苯磺酸的摩尔比为1:0.08。其它与具体实施方式二至四相同。
具体实施方式六:本实施方式所述的利用一种聚双噻吩吡咯制备的聚双噻吩吡咯/阵列式TiO2纳米管的制备方法是按以下步骤进行:
一、双傅氏反应:①、在氮气气氛下,将无水三氯化铝溶解于二氯甲烷中,得到混合物A;所述的无水三氯化铝的质量与步骤一①中的二氯甲烷的体积比为1g:(3.7~5.5)mL;②、在氮气气氛下,将噻吩和琥珀酰氯溶解于二氯甲烷中,得到混合物B;所述的噻吩与琥珀酰氯的摩尔比为(2~3):1;所述的噻吩与步骤一②中的二氯甲烷的体积比为1:(2.5~3.0);③、在氮气气氛下,将混合物B滴加到混合物A中,用薄层色谱法监测反应进程至反应物消失,反应结束,得到混合物C;所述的混合物A与混合物B的体积比为1:(1~1.5);④、将混合物C静置分层,以二氯甲烷为萃取剂进行萃取,得到有机层,再向有机层中加入质量百分数为10%~12%的盐酸、质量百分数为10%~12%的碳酸氢钠溶液和水进行洗涤,并使用无水硫酸镁干燥,然后再以二氯甲烷为淋洗液,以硅胶为固定相进行柱层分离,最后利用旋转蒸发仪蒸发溶剂及真空干燥,得到1,4-二噻吩-1,4-二丁酮;
二、制备双叔丁基三苯胺基-2,5-二噻吩吡咯:在氮气气氛下,将1,4-二噻吩-1,4-二丁酮与4-氨基-双叔丁基三苯胺及对甲苯磺酸溶于甲苯溶液中,并回流冷凝反应,回流冷凝反应的时间为3天~4天,用薄层色谱法监测反应进程至反应物消失,反应结束,然后利用旋转蒸发仪蒸发溶剂,得粗产品A,将粗产品A溶解于二氯甲烷中,过滤并利用旋转蒸发仪蒸发溶剂,得到粗产品B,然后以二氯甲烷为淋洗液,以硅胶为固定相进行柱层分离,再以二氯甲烷与石油醚的体积比为2:1的混合物为淋洗液,以硅胶为固定相进行柱层分离,得到棕黄色双叔丁基三苯胺基-2,5-二噻吩吡咯;
所述的1,4-二噻吩-1,4-二丁酮与4-氨基-双叔丁基三苯胺的摩尔比为1:(1~1.2);所述的1,4-二噻吩-1,4-二丁酮的物质的量与甲苯溶液的体积比为1mol:(15~20)mL;所述的1,4-二噻吩-1,4-二丁酮与对甲苯磺酸的摩尔比为1:(0.05~0.08);
三、阳极氧化制备TiO2纳米管阵列膜:将高纯钛片按顺序依次使用400目、600目、800目、1000目、2000目、3000目的砂纸进行打磨处理,得到打磨后的钛片,将打磨后的钛片放入丙酮溶液超声脱脂处理30min~60min,取出后放入乙醇溶液超声脱脂处理30min~60min,得到脱脂后的钛片,然后用去离子水冲洗脱脂后的钛片并在空气中静置晾干,得到预处理后的钛片;以不锈钢片为阴极、以预处理后的钛片为阳极,将不锈钢片阴极和预处理后的钛片阳极放入电解液中,然后以直流电源为电源在电解池两端外加34V~40V的电压,并在34V~40V的电压下,氧化沉积1h~1.5h,即得到表面生成一层TiO2纳米管阵列膜的钛片;所述的电解液的溶质为NH4F和去离子水,溶剂为乙二醇,且所述的电解液中NH4F质量百分比为0.8%~1.2%,所述的电解液中去离子水体积百分比为2%~3%;用去离子水冲洗表面生成一层TiO2纳米管阵列膜的钛片并在空气中静置晾干,再将静置晾干后的钛片放置于马弗炉中,以升温速度为2℃/min~5℃/min,将马弗炉温度由室温升温至450℃~500℃,并在温度为450℃~500℃下烧结1h~1.5h,然后退火至常温,得到烧结后的钛片,然后将烧结后的钛片浸入到质量百分数为5%~8%的H2O2溶液中,浸泡20h~24h,得到从钛板上脱落的TiO2纳米管阵列膜;
四、TiO2溶胶的制备:①、将钛酸四丁酯加入到无水乙醇中,并在温度为40℃~50℃及搅拌速度为120r/min~150r/min下,搅拌0.5h~1h,得到混合物D;所述的钛酸四丁酯与无水乙醇的体积比为1:(2~2.5);②、将物质量浓度为10mol/L~12mol/L的浓HCl、无水乙醇及二次去离子水混合,得到混合物E;所述的物质量浓度为10mol/L~12mol/L的浓HCl与无水乙醇的体积比为1:(5~5.5);所述的物质量浓度为10mol/L~12mol/L的浓HCl与二次去离子水的体积比为1:(2~4);③、在搅拌速度为120r/min~150r/min下,将混合物E滴加到混合物D中,继续搅拌4h~6h,得到TiO2溶胶;所述的混合物D与混合物E的体积比为(4.4~5):1;
五、TiO2/FTO纳米管阵列透明光电极的制备:将FTO导电玻璃衬底预处理,得到预处理后的FTO导电玻璃衬底,再在预处理后的FTO导电玻璃衬底上旋涂TiO2溶胶,得到表面覆有TiO2溶胶的FTO导电玻璃,并将TiO2纳米管阵列膜覆盖至表面覆有TiO2溶胶的FTO导电玻璃上,得到TiO2/FTO,然后将TiO2/FTO置于马弗炉内,以升温速度为2℃/min~5℃/min,将马弗炉温度由室温升温至450℃~500℃,并在温度为450℃~500℃下烧结1h~1.5h,得到TiO2/FTO纳米管阵列透明光电极;
六、电致变色器件的制备:将TiO2/FTO纳米管阵列透明光电极浸渍于双叔丁基三苯胺基-2,5-二噻吩吡咯中,浸渍12h~24h,得到浸渍后的TiO2/FTO纳米管阵列透明光电极,然后以浸渍后的TiO2/FTO纳米管阵列透明光电极为工作电极,以Ag/AgCl/饱和KCl溶液电极为参比电极,以铂片电极为对电极,通入N2,并将浸渍后的TiO2/FTO纳米管阵列透明光电极工作电极、Ag/AgCl/饱和KCl溶液电极参比电极及铂片电极对电极放入电解液中,在循环电压为0V~1.5V及扫描速率为100mV/s~150mV/s下聚合15min~30min,得到表面覆有聚合物薄膜的TiO2/FTO纳米管阵列透明电极,然后将表面覆有聚合物薄膜的TiO2/FTO纳米管阵列透明电极用二氯甲烷进行洗涤,得到聚双噻吩吡咯/阵列式TiO2纳米管;
所述的电解液为浓度为0.01mol/L~0.02mol/L的四丁基高氯酸铵的二氯甲烷溶液。
本实施方式步骤五中在预处理后的FTO导电玻璃衬底上旋涂TiO2溶胶,TiO2溶胶的面积需能够覆盖TiO2纳米管阵列膜;
本实施方式步骤六将TiO2/FTO纳米管阵列透明光电极浸渍于双叔丁基三苯胺基-2,5-二噻吩吡咯中,为使阵列式TiO2纳米管吸附更多的可溶性单体。
本实施方式的有益效果是:由于阵列式TiO2纳米管多孔道的特点使得电子传输交换变得容易提高了聚合物电子传输性能,进而使聚双噻吩吡咯/阵列式TiO2纳米管着变色效率提高到90%,变色速率提高到2.5s,聚合物直接电聚合成膜。
本实施方式使用阳极氧化的方法成功的制备了阵列式TiO2电极,并使用扫描电镜表征TiO2纳米管阵列膜的形貌结构,采用阳极氧化技术在金属钛表面制备的TiO2纳米管分布均匀,以非常有序、规整的阵列形式均匀排列,比表面积大,同时又有很高的量子效应,纳米管与金属钛导电基底直接相连,结合牢固。同时在阵列式TiO2透明电极上加上电致变色材料形成电致变色器件。得到的电致变色器件具有优良的电荷输运性能和电致变色性能,因而在阵列式TiO2透明电极上加上电致变色材料形成的电致变色器件能够提高聚合物的电荷输运性能和电致变色性能。
具体实施方式七:本实施方式与具体实施方六不同的是:步骤五中将FTO导电玻璃衬底预处理具体按以下步骤进行操作:将FTO导电玻璃衬底洗衣粉超声洗涤30min,再用无水乙醇超声40min,然后用丙酮超声30min,最后用去离子水存放,得到预处理后的FTO导电玻璃衬底。其它与具体实施方式六相同。
具体实施方式八:本实施方式与具体实施方六或七之一不同的是:步骤一①中所述的无水三氯化铝的质量与步骤一①中的二氯甲烷的体积比为1g:5mL;步骤一②中所述的噻吩与琥珀酰氯的摩尔比为2:1;步骤一②中所述的噻吩与步骤一②中的二氯甲烷的体积比为1:3;步骤一②中所述的混合物A与混合物B的体积比为1:1。其它与具体实施方式六或七相同。
具体实施方式九:本实施方式与具体实施方六至八之一不同的是:步骤二中所述的1,4-二噻吩-1,4-二丁酮与4-氨基-双叔丁基三苯胺的摩尔比为1:1.2;步骤二中所述的1,4-二噻吩-1,4-二丁酮的物质的量与甲苯溶液的体积比为1mol:20mL;步骤二中所述的1,4-二噻吩-1,4-二丁酮与对甲苯磺酸的摩尔比为1:0.08。其它与具体实施方式六至八相同。
具体实施方式十:本实施方式与具体实施方六至九之一不同的是:步骤四①中所述的钛酸四丁酯与无水乙醇的体积比为1:2;步骤四②中所述的物质量浓度为12mol/L的浓HCl与无水乙醇的体积比为1:5.5;步骤四②中所述的物质量浓度为12mol/L的浓HCl与二次去离子水的体积比为1:2;步骤四③中所述的混合物D与混合物E的体积比为4.4:1。其它与具体实施方式六至九相同。
采用以下实施例验证本发明的有益效果:
实施例一:
本实施例所述的一种聚双噻吩吡咯的制备方法是按以下步骤进行:
一、双傅氏反应:①、在氮气气氛下,将无水三氯化铝溶解于二氯甲烷中,得到混合物A;所述的无水三氯化铝的质量与步骤一①中的二氯甲烷的体积比为1g:5mL;②、在氮气气氛下,将噻吩和琥珀酰氯溶解于二氯甲烷中,得到混合物B;所述的噻吩与琥珀酰氯的摩尔比为2:1;所述的噻吩与步骤一②中的二氯甲烷的体积比为1:3;③、在氮气气氛下,将混合物B滴加到混合物A中,用薄层色谱法监测反应进程至反应物消失,反应结束,得到混合物C;所述的混合物A与混合物B的体积比为1:1;④、将混合物C静置分层,以二氯甲烷为萃取剂进行萃取,得到有机层,再向有机层中加入质量百分数为10%的盐酸、质量百分数为10%的碳酸氢钠溶液和水进行洗涤,并使用无水硫酸镁干燥,然后再以二氯甲烷为淋洗液,以硅胶为固定相进行柱层分离,最后利用旋转蒸发仪蒸发溶剂及真空干燥,得到1,4-二噻吩-1,4-二丁酮;
二、制备双叔丁基三苯胺基-2,5-二噻吩吡咯:在氮气气氛下,将1,4-二噻吩-1,4-二丁酮与4-氨基-双叔丁基三苯胺及对甲苯磺酸溶于甲苯溶液中,并回流冷凝反应,回流冷凝反应的时间为4天,用薄层色谱法监测反应进程至反应物消失,反应结束,然后利用旋转蒸发仪蒸发溶剂,得粗产品A,将粗产品A溶解于二氯甲烷中,过滤并利用旋转蒸发仪蒸发溶剂,得到粗产品B,然后以二氯甲烷为淋洗液,以硅胶为固定相进行柱层分离,再以二氯甲烷与石油醚的体积比为2:1的混合物为淋洗液,以硅胶为固定相进行柱层分离,得到棕黄色双叔丁基三苯胺基-2,5-二噻吩吡咯;
所述的1,4-二噻吩-1,4-二丁酮与4-氨基-双叔丁基三苯胺的摩尔比为1:1.2;所述的1,4-二噻吩-1,4-二丁酮的物质的量与甲苯溶液的体积比为1mol:20mL;所述的1,4-二噻吩-1,4-二丁酮与对甲苯磺酸的摩尔比为1:0.08;
三、电化学聚合:将FTO导电玻璃衬底预处理,得到预处理后的FTO导电玻璃衬底,将预处理后的FTO导电玻璃衬底浸渍于双叔丁基三苯胺基-2,5-二噻吩吡咯中,浸渍12h,得到浸渍后的FTO导电玻璃衬底,然后以浸渍后的FTO导电玻璃衬底为工作电极,以Ag/AgCl/饱和KCl溶液电极为参比电极,以铂片电极为对电极,通入N2,并将浸渍后的FTO导电玻璃衬底工作电极、Ag/AgCl/饱和KCl溶液电极参比电极及铂片电极对电极放入电解液中,在循环电压为0V~1.5V、扫描速率为100mV/s下聚合30min,得到表面覆有聚合物薄膜的FTO导电玻璃衬底,然后将表面覆有聚合物薄膜的FTO导电玻璃衬底用二氯甲烷进行洗涤,并脱膜,得到聚双噻吩吡咯。
步骤三中将FTO导电玻璃衬底预处理具体按以下步骤进行操作:将FTO导电玻璃衬底洗衣粉超声洗涤30min,再用无水乙醇超声40min,然后用丙酮超声30min,最后用去离子水存放,得到预处理后的FTO导电玻璃衬底。
本实施例制备的聚双噻吩吡咯的核磁共振谱图如图1所示,由图可知,1为咔唑环上2个H;2为噻吩环上α位2个H;3为β位和γ位4个H;4、5及6为三苯胺环上的2、2及4个H;7为三苯胺环上靠近叔丁基的4个H;8为甲基的18个H。因此,本实施例制备的聚双噻吩吡咯结构式为
本实施例步骤二制备的双叔丁基三苯胺基-2,5-二噻吩吡咯及步骤三制备的聚双噻吩吡咯的红外谱图如图2所示,a为双叔丁基三苯胺基-2,5-二噻吩吡咯,b为聚双噻吩吡咯;由图可知,双叔丁基三苯胺基-2,5-二噻吩吡咯的红外谱图:692cm-1为α-噻吩环碳氢震动,774cm-1为β-吡咯环碳氢震动,843cm-1为β/β'噻吩环碳氢震动)。聚双噻吩吡咯的红外谱图:692cm-1α-噻吩环碳氢震动消失,其他峰位仍然保持在聚合物红外上,另外新峰800cm-1由于噻吩环的β碳氢震动相应于α位耦合作用。另一方面,745cm-1为咔唑环1,4取代和830cm-1为取代苯环1,4二取代的震动。在644cm-1ClO4 -归因于聚合物中的掺杂,由此可知,所述红外特征与双叔丁基三苯胺基-2,5-二噻吩吡咯结构相符。
实施例二:
本实施例所述的利用一种聚双噻吩吡咯制备的聚双噻吩吡咯/阵列式TiO2纳米管的制备方法是按以下步骤进行:
一、双傅氏反应:①、在氮气气氛下,将无水三氯化铝溶解于二氯甲烷中,得到混合物A;所述的无水三氯化铝的质量与步骤一①中的二氯甲烷的体积比为1g:5mL;②、在氮气气氛下,将噻吩和琥珀酰氯溶解于二氯甲烷中,得到混合物B;所述的噻吩与琥珀酰氯的摩尔比为2:1;所述的噻吩与步骤一②中的二氯甲烷的体积比为1:3;③、在氮气气氛下,将混合物B滴加到混合物A中,用薄层色谱法监测反应进程至反应物消失,反应结束,得到混合物C;所述的混合物A与混合物B的体积比为1:1;④、将混合物C静置分层,以二氯甲烷为萃取剂进行萃取,得到有机层,再向有机层中加入质量百分数为10%的盐酸、质量百分数为10%的碳酸氢钠溶液和水进行洗涤,并使用无水硫酸镁干燥,然后再以二氯甲烷为淋洗液,以硅胶为固定相进行柱层分离,最后利用旋转蒸发仪蒸发溶剂及真空干燥,得到1,4-二噻吩-1,4-二丁酮;
二、制备双叔丁基三苯胺基-2,5-二噻吩吡咯:在氮气气氛下,将1,4-二噻吩-1,4-二丁酮与4-氨基-双叔丁基三苯胺及对甲苯磺酸溶于甲苯溶液中,并回流冷凝反应,回流冷凝反应的时间为4天,用薄层色谱法监测反应进程至反应物消失,反应结束,然后利用旋转蒸发仪蒸发溶剂,得粗产品A,将粗产品A溶解于二氯甲烷中,过滤并利用旋转蒸发仪蒸发溶剂,得到粗产品B,然后以二氯甲烷为淋洗液,以硅胶为固定相进行柱层分离,再以二氯甲烷与石油醚的体积比为2:1的混合物为淋洗液,以硅胶为固定相进行柱层分离,得到棕黄色双叔丁基三苯胺基-2,5-二噻吩吡咯;
所述的1,4-二噻吩-1,4-二丁酮与4-氨基-双叔丁基三苯胺的摩尔比为1:1.2;所述的1,4-二噻吩-1,4-二丁酮的物质的量与甲苯溶液的体积比为1mol:20mL;所述的1,4-二噻吩-1,4-二丁酮与对甲苯磺酸的摩尔比为1:0.08;
三、阳极氧化制备TiO2纳米管阵列膜:将高纯钛片按顺序依次使用400目、600目、800目、1000目、2000目、3000目的砂纸进行打磨处理,得到打磨后的钛片,将打磨后的钛片放入丙酮溶液超声脱脂处理60min,取出后放入乙醇溶液超声脱脂处理60min,得到脱脂后的钛片,然后用去离子水冲洗脱脂后的钛片并在空气中静置晾干,得到预处理后的钛片;以不锈钢片为阴极、以预处理后的钛片为阳极,将不锈钢片阴极和预处理后的钛片阳极放入电解液中,然后以直流电源为电源在电解池两端外加40V的电压,并在40V的电压下,氧化沉积1.5h,即得到表面生成一层TiO2纳米管阵列膜的钛片;所述的电解液的溶质为NH4F和去离子水,溶剂为乙二醇,且所述的电解液中NH4F质量百分比为0.8%,所述的电解液中去离子水体积百分比为2%;用去离子水冲洗表面生成一层TiO2纳米管阵列膜的钛片并在空气中静置晾干,再将静置晾干后的钛片放置于马弗炉中,以升温速度为5℃/min,将马弗炉温度由室温升温至450℃,并在温度为450℃下烧结1h,然后退火至常温,得到烧结后的钛片,然后将烧结后的钛片浸入到质量百分数为8%的H2O2溶液中,浸泡24h,得到从钛板上脱落的TiO2纳米管阵列膜;
四、TiO2溶胶的制备:①、将钛酸四丁酯加入到无水乙醇中,并在温度为40℃及搅拌速度为120r/min下,搅拌1h,得到混合物D;所述的钛酸四丁酯与无水乙醇的体积比为1:2;②、将物质量浓度为12mol/L的浓HCl、无水乙醇及二次去离子水混合,得到混合物E;所述的物质量浓度为12mol/L的浓HCl与无水乙醇的体积比为1:5.5;所述的物质量浓度为12mol/L的浓HCl与二次去离子水的体积比为1:2;③、在搅拌速度为120r/min下,将混合物E滴加到混合物D中,继续搅拌4h,得到TiO2溶胶;所述的混合物D与混合物E的体积比为4.4:1;
五、TiO2/FTO纳米管阵列透明光电极的制备:将FTO导电玻璃衬底预处理,得到预处理后的FTO导电玻璃衬底,再在预处理后的FTO导电玻璃衬底上旋涂TiO2溶胶,得到表面覆有TiO2溶胶的FTO导电玻璃,并将TiO2纳米管阵列膜覆盖至表面覆有TiO2溶胶的FTO导电玻璃上,得到TiO2/FTO,然后将TiO2/FTO置于马弗炉内,以升温速度为5℃/min,将马弗炉温度由室温升温至450℃,并在温度为450℃下烧结1h,,得到TiO2/FTO纳米管阵列透明光电极;
六、电致变色器件的制备:将TiO2/FTO纳米管阵列透明光电极浸渍于双叔丁基三苯胺基-2,5-二噻吩吡咯中,浸渍12h,得到浸渍后的TiO2/FTO纳米管阵列透明光电极,然后以浸渍后的TiO2/FTO纳米管阵列透明光电极为工作电极,以Ag/AgCl/饱和KCl溶液电极为参比电极,以铂片电极为对电极,通入N2,并将浸渍后的TiO2/FTO纳米管阵列透明光电极工作电极、Ag/AgCl/饱和KCl溶液电极参比电极及铂片电极对电极放入电解液中,在循环电压为0V~1.5V、扫描速率为100mV/s下聚合30min,得到表面覆有聚合物薄膜的TiO2/FTO纳米管阵列透明电极,然后将表面覆有聚合物薄膜的TiO2/FTO纳米管阵列透明电极用二氯甲烷进行洗涤,得到聚双噻吩吡咯/阵列式TiO2纳米管;
所述的电解液为浓度为0.01mol/L的四丁基高氯酸铵的二氯甲烷溶液。
步骤五中将FTO导电玻璃衬底预处理具体按以下步骤进行操作:将FTO导电玻璃衬底洗衣粉超声洗涤30min,再用无水乙醇超声40min,然后用丙酮超声30min,最后用去离子水存放,得到预处理后的FTO导电玻璃衬底。
本实施例步骤三制备的TiO2纳米管阵列膜表面扫描电镜照片如图3所示,由图可知,在500nm倍率下的孔洞形貌,TiO2纳米管管径约60nm。本实施例步骤三制备的TiO2纳米管阵列膜横截面扫描电镜照片如图4所示,由图可知,在5.00um倍率下管式形貌,TiO2纳米管管长5.00um。由此可知,TiO2纳米管阵列膜制备成功。
TiO2/Ti纳米管阵列电极照片如图5所示,由图可知,而TiO2/Ti因是钛金属基片并不透光;本实施例步骤五制备的TiO2/FTO纳米管阵列透明光电极照片如图6所示,由图可知,所制得的TiO2/FTO纳米管阵列光电极为半透明,可清晰看见标尺的刻度。相比较之下TiO2/FTO纳米管阵列透明光电极的优势十分明显。除此外,也可发现经450℃退火晶化处理后的TiO2纳米管为浅黄色,得到的是锐钛矿型二氧化钛。
本实施例步骤六制备的聚双噻吩吡咯/阵列式TiO2纳米管的紫外-可见谱图如图7所示,1为单纯FTO/聚双噻吩吡咯,2为步骤五制备的未经循环伏安电聚合的TiO2/FTO纳米管阵列透明光电极,3为具有电致变色的聚双噻吩吡咯/阵列式TiO2纳米管,由图可知,由于未经循环伏安电聚合的TiO2/FTO纳米管阵列透明光电极为半透明薄膜,单纯的FTO/聚双噻吩吡咯吸附染料有限,而具有电致变色的聚双噻吩吡咯/阵列式TiO2纳米管却因吸附了大量的聚合物染料,光透射率大大的降低,即具有电致变色的聚双噻吩吡咯/阵列式TiO2纳米管具有较高的吸光度。具有电致变色的聚双噻吩吡咯/阵列式TiO2纳米管在339.6nm处有明显的强吸收峰。而单纯的FTO/聚双噻吩吡咯吸收峰在307.5nm处电致变色器件吸附了更多的聚合物染料。
本实施例步骤三制备的双叔丁基三苯胺基-2,5-二噻吩吡咯多圈扫描聚合循环伏安图如图8所示,1为第1圈扫描;2为第5圈扫描;3为第10圈扫描;4为第15圈扫描;5为第30圈扫描;6为第50圈扫描;由图可知,从第1圈扫描,双叔丁基三苯胺基-2,5-二噻吩吡咯有一个明显的氧化峰,其对应电位为1.0V,还原电位0.78V,是由噻吩并吡咯基团产生的,这个结果说明三苯胺基团的引入可以降低噻吩并吡咯的氧化电位,防止自身过氧化现象发生。随着扫描电聚合圈数的增加10圈,峰电流逐渐增大,随着扫描电聚合圈数的增加,峰电流逐渐增大,并且分别出现了两对氧化还原峰,其对应电位分别为0.84/0.81,1.0/0.63,这一结果表明,双叔丁基三苯胺基-2,5-二噻吩吡咯在TiO2/FTO纳米管阵列透明光电极上聚合成功,得到了具有电致变色的聚双噻吩吡咯/阵列式TiO2纳米管。
本实施例步骤六制备的聚双噻吩吡咯/阵列式TiO2纳米管电化学循环伏安性能测试如图9所示,由图可知,分别出现了两对氧化还原峰,其对应电位分别为0.85/0.81及1.2/0.63,它们的氧化还原峰电流都随着扫描速率线性增加,这也进一步表明了双叔丁基三苯胺基-2,5-二噻吩吡咯单体的电聚合过程是一个非扩散过程,制得的聚合物薄膜与工作电极之间粘附牢固。实验过程中具有电致变色的聚双噻吩吡咯/阵列式TiO2纳米管循环伏安颜色变化橘红色→蓝紫色。
本实施例步骤六制备的聚双噻吩吡咯/阵列式TiO2纳米管电致变色谱图如10所示,由图可知,在728nm、804nm处有吸收峰,这两处峰随着电位升高而升高,307nm处峰随着电位升高而电位降低(0.0V-1.9V),颜色由橘红色→蓝紫色。
本实施例步骤六制备的聚双噻吩吡咯/阵列式TiO2纳米管热重分析谱图如图11所示,由图可知,聚合物在温度达到200℃处失重6%,在400℃处失重17%,因此具有很好的耐热性能。

Claims (10)

1.一种聚双噻吩吡咯,其特征在于一种聚双噻吩吡咯的结构通式为:
所述的n为1≤n≤100。
2.制备权利要求1所述的一种聚双噻吩吡咯,其特征在于一种聚双噻吩吡咯的制备方法是按以下步骤进行:
一、双傅氏反应:①、在氮气气氛下,将无水三氯化铝溶解于二氯甲烷中,得到混合物A;所述的无水三氯化铝的质量与步骤一①中的二氯甲烷的体积比为1g:(3.7~5.5)mL;②、在氮气气氛下,将噻吩和琥珀酰氯溶解于二氯甲烷中,得到混合物B;所述的噻吩与琥珀酰氯的摩尔比为(2~3):1;所述的噻吩与步骤一②中的二氯甲烷的体积比为1:(2.5~3.0);③、在氮气气氛下,将混合物B滴加到混合物A中,用薄层色谱法监测反应进程至反应物消失,反应结束,得到混合物C;所述的混合物A与混合物B的体积比为1:(1~1.5);④、将混合物C静置分层,以二氯甲烷为萃取剂进行萃取,得到有机层,再向有机层中加入质量百分数为10%~12%的盐酸、质量百分数为10%~12%的碳酸氢钠溶液和水进行洗涤,并使用无水硫酸镁干燥,然后再以二氯甲烷为淋洗液,以硅胶为固定相进行柱层分离,最后利用旋转蒸发仪蒸发溶剂及真空干燥,得到1,4-二噻吩-1,4-二丁酮;
二、制备双叔丁基三苯胺基-2,5-二噻吩吡咯:在氮气气氛下,将1,4-二噻吩-1,4-二丁酮与4-氨基-双叔丁基三苯胺及对甲苯磺酸溶于甲苯溶液中,并回流冷凝反应,回流冷凝反应的时间为3天~4天,用薄层色谱法监测反应进程至反应物消失,反应结束,然后利用旋转蒸发仪蒸发溶剂,得粗产品A,将粗产品A溶解于二氯甲烷中,过滤并利用旋转蒸发仪蒸发溶剂,得到粗产品B,然后以二氯甲烷为淋洗液,以硅胶为固定相进行柱层分离,再以二氯甲烷与石油醚的体积比为2:1的混合物为淋洗液,以硅胶为固定相进行柱层分离,得到棕黄色双叔丁基三苯胺基-2,5-二噻吩吡咯;
所述的1,4-二噻吩-1,4-二丁酮与4-氨基-双叔丁基三苯胺的摩尔比为1:(1~1.2);所述的1,4-二噻吩-1,4-二丁酮的物质的量与甲苯溶液的体积比为1mol:(15~20)mL;所述的1,4-二噻吩-1,4-二丁酮与对甲苯磺酸的摩尔比为1:(0.05~0.08);
三、电化学聚合:将FTO导电玻璃衬底预处理,得到预处理后的FTO导电玻璃衬底,将预处理后的FTO导电玻璃衬底浸渍于双叔丁基三苯胺基-2,5-二噻吩吡咯中,浸渍12h~24h,得到浸渍后的FTO导电玻璃衬底,然后以浸渍后的FTO导电玻璃衬底为工作电极,以Ag/AgCl/饱和KCl溶液电极为参比电极,以铂片电极为对电极,通入N2,并将浸渍后的FTO导电玻璃衬底工作电极、Ag/AgCl/饱和KCl溶液电极参比电极及铂片电极对电极放入电解液中,在循环电压为0V~1.5V及扫描速率为100mV/s~150mV/s下聚合15min~30min,得到表面覆有聚合物薄膜的FTO导电玻璃衬底,然后将表面覆有聚合物薄膜的FTO导电玻璃衬底用二氯甲烷进行洗涤,并脱膜,得到聚双噻吩吡咯。
3.根据权利要求2所述的一种聚双噻吩吡咯的制备方法,其特征在于步骤三中将FTO导电玻璃衬底预处理具体按以下步骤进行操作:将FTO导电玻璃衬底洗衣粉超声洗涤30min,再用无水乙醇超声40min,然后用丙酮超声30min,最后用去离子水存放,得到预处理后的FTO导电玻璃衬底。
4.根据权利要求2所述的一种聚双噻吩吡咯的制备方法,其特征在于步骤一①中所述的无水三氯化铝的质量与步骤一①中的二氯甲烷的体积比为1g:5mL;步骤一②中所述的噻吩与琥珀酰氯的摩尔比为2:1;步骤一②中所述的噻吩与步骤一②中的二氯甲烷的体积比为1:3;步骤一②中所述的混合物A与混合物B的体积比为1:1。
5.根据权利要求2所述的一种聚双噻吩吡咯的制备方法,其特征在于步骤二中所述的1,4-二噻吩-1,4-二丁酮与4-氨基-双叔丁基三苯胺的摩尔比为1:1.2;步骤二中所述的1,4-二噻吩-1,4-二丁酮的物质的量与甲苯溶液的体积比为1mol:20mL;步骤二中所述的1,4-二噻吩-1,4-二丁酮与对甲苯磺酸的摩尔比为1:0.08。
6.利用权利要求1所述的一种聚双噻吩吡咯制备的聚双噻吩吡咯/阵列式TiO2纳米管,其特征在于利用一种聚双噻吩吡咯制备的聚双噻吩吡咯/阵列式TiO2纳米管的制备方法是按以下步骤进行:
一、双傅氏反应:①、在氮气气氛下,将无水三氯化铝溶解于二氯甲烷中,得到混合物A;所述的无水三氯化铝的质量与步骤一①中的二氯甲烷的体积比为1g:(3.7~5.5)mL;②、在氮气气氛下,将噻吩和琥珀酰氯溶解于二氯甲烷中,得到混合物B;所述的噻吩与琥珀酰氯的摩尔比为(2~3):1;所述的噻吩与步骤一②中的二氯甲烷的体积比为1:(2.5~3.0);③、在氮气气氛下,将混合物B滴加到混合物A中,用薄层色谱法监测反应进程至反应物消失,反应结束,得到混合物C;所述的混合物A与混合物B的体积比为1:(1~1.5);④、将混合物C静置分层,以二氯甲烷为萃取剂进行萃取,得到有机层,再向有机层中加入质量百分数为10%~12%的盐酸、质量百分数为10%~12%的碳酸氢钠溶液和水进行洗涤,并使用无水硫酸镁干燥,然后再以二氯甲烷为淋洗液,以硅胶为固定相进行柱层分离,最后利用旋转蒸发仪蒸发溶剂及真空干燥,得到1,4-二噻吩-1,4-二丁酮;
二、制备双叔丁基三苯胺基-2,5-二噻吩吡咯:在氮气气氛下,将1,4-二噻吩-1,4-二丁酮与4-氨基-双叔丁基三苯胺及对甲苯磺酸溶于甲苯溶液中,并回流冷凝反应,回流冷凝反应的时间为3天~4天,用薄层色谱法监测反应进程至反应物消失,反应结束,然后利用旋转蒸发仪蒸发溶剂,得粗产品A,将粗产品A溶解于二氯甲烷中,过滤并利用旋转蒸发仪蒸发溶剂,得到粗产品B,然后以二氯甲烷为淋洗液,以硅胶为固定相进行柱层分离,再以二氯甲烷与石油醚的体积比为2:1的混合物为淋洗液,以硅胶为固定相进行柱层分离,得到棕黄色双叔丁基三苯胺基-2,5-二噻吩吡咯;
所述的1,4-二噻吩-1,4-二丁酮与4-氨基-双叔丁基三苯胺的摩尔比为1:(1~1.2);所述的1,4-二噻吩-1,4-二丁酮的物质的量与甲苯溶液的体积比为1mol:(15~20)mL;所述的1,4-二噻吩-1,4-二丁酮与对甲苯磺酸的摩尔比为1:(0.05~0.08);
三、阳极氧化制备TiO2纳米管阵列膜:将高纯钛片按顺序依次使用400目、600目、800目、1000目、2000目、3000目的砂纸进行打磨处理,得到打磨后的钛片,将打磨后的钛片放入丙酮溶液超声脱脂处理30min~60min,取出后放入乙醇溶液超声脱脂处理30min~60min,得到脱脂后的钛片,然后用去离子水冲洗脱脂后的钛片并在空气中静置晾干,得到预处理后的钛片;以不锈钢片为阴极、以预处理后的钛片为阳极,将不锈钢片阴极和预处理后的钛片阳极放入电解液中,然后以直流电源为电源在电解池两端外加34V~40V的电压,并在34V~40V的电压下,氧化沉积1h~1.5h,即得到表面生成一层TiO2纳米管阵列膜的钛片;所述的电解液的溶质为NH4F和去离子水,溶剂为乙二醇,且所述的电解液中NH4F质量百分比为0.8%~1.2%,所述的电解液中去离子水体积百分比为2%~3%;用去离子水冲洗表面生成一层TiO2纳米管阵列膜的钛片并在空气中静置晾干,再将静置晾干后的钛片放置于马弗炉中,以升温速度为2℃/min~5℃/min,将马弗炉温度由室温升温至450℃~500℃,并在温度为450℃~500℃下烧结1h~1.5h,然后退火至常温,得到烧结后的钛片,然后将烧结后的钛片浸入到质量百分数为5%~8%的H2O2溶液中,浸泡20h~24h,得到从钛板上脱落的TiO2纳米管阵列膜;
四、TiO2溶胶的制备:①、将钛酸四丁酯加入到无水乙醇中,并在温度为40℃~50℃及搅拌速度为120r/min~150r/min下,搅拌0.5h~1h,得到混合物D;所述的钛酸四丁酯与无水乙醇的体积比为1:(2~2.5);②、将物质量浓度为10mol/L~12mol/L的浓HCl、无水乙醇及二次去离子水混合,得到混合物E;所述的物质量浓度为10mol/L~12mol/L的浓HCl与无水乙醇的体积比为1:(5~5.5);所述的物质量浓度为10mol/L~12mol/L的浓HCl与二次去离子水的体积比为1:(2~4);③、在搅拌速度为120r/min~150r/min下,将混合物E滴加到混合物D中,继续搅拌4h~6h,得到TiO2溶胶;所述的混合物D与混合物E的体积比为(4.4~5):1;
五、TiO2/FTO纳米管阵列透明光电极的制备:将FTO导电玻璃衬底预处理,得到预处理后的FTO导电玻璃衬底,再在预处理后的FTO导电玻璃衬底上旋涂TiO2溶胶,得到表面覆有TiO2溶胶的FTO导电玻璃,并将TiO2纳米管阵列膜覆盖至表面覆有TiO2溶胶的FTO导电玻璃上,得到TiO2/FTO,然后将TiO2/FTO置于马弗炉内,以升温速度为2℃/min~5℃/min,将马弗炉温度由室温升温至450℃~500℃,并在温度为450℃~500℃下烧结1h~1.5h,得到TiO2/FTO纳米管阵列透明光电极;
六、电致变色器件的制备:将TiO2/FTO纳米管阵列透明光电极浸渍于双叔丁基三苯胺基-2,5-二噻吩吡咯中,浸渍12h~24h,得到浸渍后的TiO2/FTO纳米管阵列透明光电极,然后以浸渍后的TiO2/FTO纳米管阵列透明光电极为工作电极,以Ag/AgCl/饱和KCl溶液电极为参比电极,以铂片电极为对电极,通入N2,并将浸渍后的TiO2/FTO纳米管阵列透明光电极工作电极、Ag/AgCl/饱和KCl溶液电极参比电极及铂片电极对电极放入电解液中,在循环电压为0V~1.5V及扫描速率为100mV/s~150mV/s下聚合15min~30min,得到表面覆有聚合物薄膜的TiO2/FTO纳米管阵列透明电极,然后将表面覆有聚合物薄膜的TiO2/FTO纳米管阵列透明电极用二氯甲烷进行洗涤,得到聚双噻吩吡咯/阵列式TiO2纳米管;
所述的电解液为浓度为0.01mol/L~0.02mol/L的四丁基高氯酸铵的二氯甲烷溶液。
7.根据权利要求6所述的利用一种聚双噻吩吡咯制备的聚双噻吩吡咯/阵列式TiO2纳米管的制备方法,其特征在于步骤五中将FTO导电玻璃衬底预处理具体按以下步骤进行操作:将FTO导电玻璃衬底洗衣粉超声洗涤30min,再用无水乙醇超声40min,然后用丙酮超声30min,最后用去离子水存放,得到预处理后的FTO导电玻璃衬底。
8.根据权利要求6所述的利用一种聚双噻吩吡咯制备的聚双噻吩吡咯/阵列式TiO2纳米管的制备方法,其特征在于步骤一①中所述的无水三氯化铝的质量与步骤一①中的二氯甲烷的体积比为1g:5mL;步骤一②中所述的噻吩与琥珀酰氯的摩尔比为2:1;步骤一②中所述的噻吩与步骤一②中的二氯甲烷的体积比为1:3;步骤一②中所述的混合物A与混合物B的体积比为1:1。
9.根据权利要求6所述的利用一种聚双噻吩吡咯制备的聚双噻吩吡咯/阵列式TiO2纳米管的制备方法,其特征在于步骤二中所述的1,4-二噻吩-1,4-二丁酮与4-氨基-双叔丁基三苯胺的摩尔比为1:1.2;步骤二中所述的1,4-二噻吩-1,4-二丁酮的物质的量与甲苯溶液的体积比为1mol:20mL;步骤二中所述的1,4-二噻吩-1,4-二丁酮与对甲苯磺酸的摩尔比为1:0.08。
10.根据权利要求6所述的利用一种聚双噻吩吡咯制备的聚双噻吩吡咯/阵列式TiO2纳米管的制备方法,其特征在于步骤四①中所述的钛酸四丁酯与无水乙醇的体积比为1:2;步骤四②中所述的物质量浓度为12mol/L的浓HCl与无水乙醇的体积比为1:5.5;步骤四②中所述的物质量浓度为12mol/L的浓HCl与二次去离子水的体积比为1:2;步骤四③中所述的混合物D与混合物E的体积比为4.4:1。
CN201410299671.2A 2014-06-27 2014-06-27 一种聚双噻吩吡咯及其制备方法及利用其制备的聚双噻吩吡咯/阵列式TiO2纳米管 Expired - Fee Related CN104086754B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410299671.2A CN104086754B (zh) 2014-06-27 2014-06-27 一种聚双噻吩吡咯及其制备方法及利用其制备的聚双噻吩吡咯/阵列式TiO2纳米管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410299671.2A CN104086754B (zh) 2014-06-27 2014-06-27 一种聚双噻吩吡咯及其制备方法及利用其制备的聚双噻吩吡咯/阵列式TiO2纳米管

Publications (2)

Publication Number Publication Date
CN104086754A true CN104086754A (zh) 2014-10-08
CN104086754B CN104086754B (zh) 2016-01-20

Family

ID=51634532

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410299671.2A Expired - Fee Related CN104086754B (zh) 2014-06-27 2014-06-27 一种聚双噻吩吡咯及其制备方法及利用其制备的聚双噻吩吡咯/阵列式TiO2纳米管

Country Status (1)

Country Link
CN (1) CN104086754B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105061415A (zh) * 2015-09-08 2015-11-18 黑龙江大学 含咔唑的三苯胺基双噻吩并吡咯化合物及制备方法和聚合物及聚合物的制备方法和应用
CN105085501A (zh) * 2015-09-08 2015-11-25 黑龙江大学 含甲基的三苯胺基双噻吩并吡咯化合物及制备方法和利用其制备的聚合物及制备方法和应用
CN106046376A (zh) * 2016-06-16 2016-10-26 上海交通大学 含叔丁基b′b2型三胺单体和其超支化聚酰亚胺及制备方法
CN107118205A (zh) * 2017-06-01 2017-09-01 浙江工业大学 一种噻吩‑吡咯‑噻吩衍生物及其制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413718A (ja) * 1990-05-07 1992-01-17 Nissan Motor Co Ltd エレクトロクロミック材料
US20010027254A1 (en) * 2000-03-13 2001-10-04 Katsuyuki Ogura 1-substituted 2,5-dithienyl pyrrole derivatives and film-forming materials
CN102295775A (zh) * 2011-06-09 2011-12-28 黑龙江大学 碳纳米管/聚希夫碱聚合物及其制备方法和应用
CN102675589A (zh) * 2012-05-24 2012-09-19 黑龙江大学 以异氰酸酯基三苯胺为原料制备的电致变色材料及其制备方法
CN102702461A (zh) * 2012-05-24 2012-10-03 黑龙江大学 一种具有电致变色性能的聚氨酯及其制备方法
CN103275132A (zh) * 2013-03-19 2013-09-04 西安交通大学 含三苯胺-噻吩结构的有机太阳能电池材料及其合成方法
CN103396533A (zh) * 2013-08-14 2013-11-20 黑龙江大学 含甲氧基三苯胺-芴共聚物、制备方法及其应用
CN103554957A (zh) * 2013-11-08 2014-02-05 天津理工大学 一种三苯胺-噻吩类有机染料及其制备方法和应用
CN103554958A (zh) * 2013-11-08 2014-02-05 天津理工大学 一种二噻吩吡咯桥-二氢吲哚类有机染料及其制备和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413718A (ja) * 1990-05-07 1992-01-17 Nissan Motor Co Ltd エレクトロクロミック材料
US20010027254A1 (en) * 2000-03-13 2001-10-04 Katsuyuki Ogura 1-substituted 2,5-dithienyl pyrrole derivatives and film-forming materials
CN102295775A (zh) * 2011-06-09 2011-12-28 黑龙江大学 碳纳米管/聚希夫碱聚合物及其制备方法和应用
CN102675589A (zh) * 2012-05-24 2012-09-19 黑龙江大学 以异氰酸酯基三苯胺为原料制备的电致变色材料及其制备方法
CN102702461A (zh) * 2012-05-24 2012-10-03 黑龙江大学 一种具有电致变色性能的聚氨酯及其制备方法
CN103275132A (zh) * 2013-03-19 2013-09-04 西安交通大学 含三苯胺-噻吩结构的有机太阳能电池材料及其合成方法
CN103396533A (zh) * 2013-08-14 2013-11-20 黑龙江大学 含甲氧基三苯胺-芴共聚物、制备方法及其应用
CN103554957A (zh) * 2013-11-08 2014-02-05 天津理工大学 一种三苯胺-噻吩类有机染料及其制备方法和应用
CN103554958A (zh) * 2013-11-08 2014-02-05 天津理工大学 一种二噻吩吡咯桥-二氢吲哚类有机染料及其制备和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUI-MIN WANG ET AL.: "Enhanced Redox Stability and Electrochromic Properties of Aromatic Polyamides Based on N,N-Bis(4-carboxyphenyl)- N‘,N’-bis(4-tert-butylphenyl)-1,4-phenylenediamine", 《JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY》, vol. 49, 18 November 2010 (2010-11-18), pages 337 - 351 *
SHENG-HUEI HSIAO ET AL.: "Synthesis and electrochromic properties of aromatic polyimides bearing pendent triphenylamine units", 《POLYMER》, vol. 55, 25 March 2014 (2014-03-25), pages 2411 - 2421, XP028650042, DOI: doi:10.1016/j.polymer.2014.03.031 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105061415A (zh) * 2015-09-08 2015-11-18 黑龙江大学 含咔唑的三苯胺基双噻吩并吡咯化合物及制备方法和聚合物及聚合物的制备方法和应用
CN105085501A (zh) * 2015-09-08 2015-11-25 黑龙江大学 含甲基的三苯胺基双噻吩并吡咯化合物及制备方法和利用其制备的聚合物及制备方法和应用
CN105085501B (zh) * 2015-09-08 2017-10-10 黑龙江大学 含甲基的三苯胺基双噻吩基吡咯化合物及制备方法和利用其制备的聚合物及制备方法和应用
CN105061415B (zh) * 2015-09-08 2017-12-08 黑龙江大学 含咔唑的三苯胺基双噻吩并吡咯化合物及制备方法和聚合物及聚合物的制备方法和应用
CN106046376A (zh) * 2016-06-16 2016-10-26 上海交通大学 含叔丁基b′b2型三胺单体和其超支化聚酰亚胺及制备方法
CN106046376B (zh) * 2016-06-16 2019-02-22 上海交通大学 含叔丁基b′b2型三胺单体和其超支化聚酰亚胺及制备方法
CN107118205A (zh) * 2017-06-01 2017-09-01 浙江工业大学 一种噻吩‑吡咯‑噻吩衍生物及其制备方法与应用

Also Published As

Publication number Publication date
CN104086754B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
Warnan et al. Multichromophoric sensitizers based on squaraine for NiO based dye-sensitized solar cells
Sun et al. In situ preparation of a flexible polyaniline/carbon composite counter electrode and its application in dye-sensitized solar cells
Yanagida et al. Panchromatic sensitization of nanocrystalline TiO2 with cis-bis (4-carboxy-2-[2 ‘-(4 ‘-carboxypyridyl)] quinoline) bis (thiocyanato-N) ruthenium (II)
Yu et al. Effect of anchoring groups on N-annulated perylene-based sensitizers for dye-sensitized solar cells and photocatalytic H2 evolution
Kirner et al. Sensitization of nanocrystalline metal oxides with a phosphonate-functionalized perylene diimide for photoelectrochemical water oxidation with a CoO x catalyst
Zhu et al. Hybrid structure of polyaniline/ZnO nanograss and its application in dye-sensitized solar cell with performance improvement
Naponiello et al. Photoelectrochemical characterization of squaraine-sensitized nickel oxide cathodes deposited via screen-printing for p-type dye-sensitized solar cells
KR20100136929A (ko) 신규한 유기염료 및 이의 제조방법
Huang et al. A novel polymer gel electrolyte based on cyanoethylated cellulose for dye-sensitized solar cells
CN104086754B (zh) 一种聚双噻吩吡咯及其制备方法及利用其制备的聚双噻吩吡咯/阵列式TiO2纳米管
Kim et al. Electrochemical characterization of newly synthesized polyterthiophene benzoate and its applications to an electrochromic device and a photovoltaic cell
CN101354971A (zh) 掺杂金属的染料敏化TiO2纳晶薄膜光电极的制备方法
KR20080044013A (ko) 광전 소자용 염료 및 이를 포함하는 광전 소자
Huang et al. Novel carbazole based sensitizers for efficient dye-sensitized solar cells: role of the hexyl chain
CN102757611A (zh) 导电高分子溶液及其制备方法
JP5351693B2 (ja) ルテニウム錯体及びそれを使用した光電部品
Yang et al. Electrochemical polymerization effects of triphenylamine-based dye on TiO2 photoelectrodes in dye-sensitized solar cells
Han et al. Flexible counter electrodes with a composite carbon/metal nanowire/polymer structure for use in dye-sensitized solar cells
Kabanakis et al. Synthesis of novel semi-squaraine derivatives and application in efficient dye-sensitized solar cells
KR20100136931A (ko) 신규한 유기염료 및 이의 제조방법
Can et al. Dye-sensitized solar cell (DSSC) applications based on cyano functional small molecules dyes
Reyman et al. Electrodeposition of polythiophene assisted by sonochemistry and incorporation of fluorophores in the polymeric matrix
CN101723983B (zh) 钌金属络合物及用此络合物制作的光电组件
CN103280323A (zh) 锡掺杂染料敏化TiO2纳晶薄膜光电极及其制备方法与应用
KR100969676B1 (ko) 신규한 줄로리딘계 염료 및 이의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120

Termination date: 20180627