CN102757611A - 导电高分子溶液及其制备方法 - Google Patents

导电高分子溶液及其制备方法 Download PDF

Info

Publication number
CN102757611A
CN102757611A CN2011101487073A CN201110148707A CN102757611A CN 102757611 A CN102757611 A CN 102757611A CN 2011101487073 A CN2011101487073 A CN 2011101487073A CN 201110148707 A CN201110148707 A CN 201110148707A CN 102757611 A CN102757611 A CN 102757611A
Authority
CN
China
Prior art keywords
formula
organic solvent
conductive polymer
polymer solution
conjugated polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011101487073A
Other languages
English (en)
Inventor
吴春桂
江建宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Central University
Original Assignee
National Central University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Central University filed Critical National Central University
Publication of CN102757611A publication Critical patent/CN102757611A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/12Polymers characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2349/00Characterised by the use of homopolymers or copolymers of compounds having one or more carbon-to-carbon triple bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L41/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)
  • Hybrid Cells (AREA)

Abstract

一种导电高分子溶液,包含一掺杂态共轭高分子聚合物以及一有机溶剂,掺杂态共轭高分子聚合物具有导电性,且掺杂态共轭高分子是选自聚乙炔、聚吡咯、聚联苯、聚噻吩、聚呋喃、聚(3,4-二氧乙基噻吩)、聚(3,4-二氧丙基噻吩)、聚苯并噻吩、聚苯胺、或其共聚物及衍生物、或其组合,有机溶剂是选自含氟有机溶剂、或是含氟有机溶剂的混合溶剂或是含氟及不含氟有机溶剂的混合溶剂。有机溶剂与掺杂态共轭高分子混合。本发明亦提供一导电高分子溶液的制备方法。本发明的导电高分子溶液对于掺杂态共轭高分子具极佳的溶解度,进而能增加共轭高分子的浓度,并增进其镀成膜后的导电度。

Description

导电高分子溶液及其制备方法
技术领域
本发明是关于一种高分子溶液及其制备方法,且特别是关于一种导电高分子溶液及其制备方法。
背景技术
由于共轭高分子同时具有高分子与半导体或导体的特性,其导电与绝缘特性可经由氧化还原或加酸加碱作可逆的改变,且常以导电高分子膜的形式被应用于太阳能电池、电容器、发光二极管、化学感应器、图案蚀刻、抗腐蚀、电极材料、电磁干扰的遮蔽(EMI shielding)、电致变色及抗静电(ESD)等组件上。一般而言,常用的共轭高分子有聚乙炔(polyacetylenes)、聚吡咯(polypyrroles)、聚联苯(polyparaphenylenes)、聚噻吩(polythiophenes)聚呋喃(polyfurans)、聚苯并噻吩(polythianaphthenes)、聚苯胺(polyanilines,PANI)及它们的衍生物或共聚物。为了制备导电高分子膜,公知技术大都利用水或有机物等溶剂与共轭高分子互溶,以形成高分子溶液,便于后续的操作。其中,高分子溶液的浓度高低不但会影响其导电度,也会影响镀膜或是涂布而成的导电高分子膜的品质。
在公知技术的导电高分子溶液制备过程中,一般是以非掺杂态的共轭高分子的粉末与有机溶剂混合,配合旋转涂布镀膜后,再以掺杂剂来掺杂高分子薄膜,亦或是将非掺杂态的共轭高分子的粉末与有机溶剂混合,并同时添加掺杂剂至溶剂中以掺杂共轭高分子,藉此增加由导电高分子溶液所制成的导电高分子膜的导电性。然而,溶剂沸点过高,亦或是依据不同共轭高分子有时须搭配不同量或种类的掺杂剂以达较佳的导电性,都会导致制备导电薄膜时,步骤变得繁复以及有机溶剂残留等问题,另外,掺杂态导电高分子溶液在制备时会因步骤繁复而有较多的不确定性。
因此如何简化导电高分子薄膜的制备步骤以及提供一种低沸点且能增加掺杂态共轭高分子的溶解度的溶剂,进而提高导电高分子膜的导电性,以及能得到方便使用涂布镀膜方式的导电高分子溶液,并能简化导电高分子溶液的制作过程,已成为目前重要的课题之一。
发明内容
本发明的目的是提供一种高浓度的导电高分子溶液及其制备方法。
本发明可采用以下技术方案来实现的。
本发明提供一种导电高分子溶液包含一掺杂态共轭高分子以及一有机溶剂,有机溶剂与掺杂态共轭高分子混合,掺杂态共轭高分子具有导电性,且掺杂态共轭高分子的高分子是选自聚乙炔(polyacetylenes)、聚吡咯(polypyrroles)、聚联苯(polyparaphenylenes)、聚噻吩(polythiophenes)、聚呋喃(polyfurans)、聚(3,4-二氧乙基噻吩)(poly(3,4-ethylenedioxythiophenes),PEDOT)、聚3,4-二氧丙基噻吩(poly(3,4-(2,2-benzyl propylenedioxythiophenes)),PProDOT)、聚苯并噻吩(polythianaphthenes)、聚苯胺(polyanilines)、或其共聚物及衍生物、或其组合(combinations)。
在一实施例中,掺杂态共轭高分子的结构式分别是下列式(1)至式(11)其中之一、或其共聚物及衍生物、或其组合,有机溶剂结构式至少包含一种选自式(12)、式(13)、或其组合。
Figure BDA0000066121310000021
式(1)    式(2)    式(3)
Figure BDA0000066121310000022
式(4)    式(5)    式(6)
Figure BDA0000066121310000023
式(7)    式(8)
Figure BDA0000066121310000024
式(9)
Figure BDA0000066121310000031
式(10)
Figure BDA0000066121310000032
式(11)
Figure BDA0000066121310000033
式(12)    式(13)
在一实施例中,式(1)至式(11)的n是介于3~5000的整数,式(2)至式(11)的R1至R20是选自氢、氟、氯、溴、碘、胺基、醛基、羧基、OCjH2j+1、CjH2j+1、SCjH2j+1、N(CjH2j+1)2、CjH2j+1SO3H或CjH2jPO3H2其中之一,其中j是介于0~8的整数,式(3)的Y是硫、氧、C6H4、C=C、C=N或N=N其中之一,式(4)的p是介于0~3的整数,式(9)的y是介于0~1,式(1)至式(11)的m是介于-5000~5000的整数,式(1)至式(11)的a是介于-5000~5000的整数,且m及a为绝对值相同但正负相反的整数,式(1)至式(11)的Aa可以是有机阴、阳离子如CSA-1(camphorsulfonic acid)、MSA-1(methylsulfonic acid)、TsO-1(toluene-p-sulfonic acid)、DBSA-1(dodecylbenzenesulfonic acid)、N-alkylpyridinium([CnPY+])、或是式(14)至式(16)其中之一、或是无机阴、阳离子如F-1、Br-1、Cl-1、I-1、SO4 -2、PO4 -3、ClO4 -1、ClO2 -1、BF4 -1、NO3 -1、NH4 +、Na+、K+等。
在一实施例中,式(12)中的e是介于0~5的整数,式(12)及式(13)中的R1至R8是选自氢、氟、氯、溴、碘、胺基、醛基、羧基、OCjH2j+1、CjH2j+1、SCjH2j+1、N(CjH2j+1)2、CjH2j+1SO3H或CjH2jPO3H2,其中j是介于0~8的整数。
Figure BDA0000066121310000041
式(14)    式(15)    式(16)
在一实施例中,式(15)及式(16)中的q是介于1~5000的整数。
在一实施例中,掺杂态共轭高分子是酸掺杂或氧化掺杂的共轭高分子。
在一实施例中,有机溶剂是选自含氟有机溶剂、含氟有机溶剂的混合溶剂、或含氟及不含氟有机溶剂的混合溶剂。
在一实施例中,有机溶剂是选自六氟异丙醇(hexafluoroisopropanol,HFIP)、1,1,1,3,3,3-六氟-2-苯基-2-丙醇(1,1,1,3,3,3-hexafluoro-2-phenyl-2-propanol,HFPP)、1,1,1,3,3,3-六氟-2-(对-甲苯基)-丙醇(1,1,1,3,3,3-hexafluoro-2-(p-tolyl)-propanol,HFTP)、或全氟丙烷(perfluoropropane,PFP)、或其组合。
在一实施例中,掺杂态共轭高分子聚合物的浓度是小于40重量百分比。
在一实施例中,导电高分子溶液应用在太阳能电池、电容器、发光二极管、化学感应器、图案蚀刻、抗腐蚀、抗静电、电极材料、防电磁干扰或电致变色。
本发明亦提供一种导电高分子溶液的制备方法,包含以下步骤:混合一共轭高分子单体及一氧化剂于一酸性溶液中;进行聚合反应;过滤取固体部分;清洗及掺杂固体,以得到一掺杂态共轭高分子,掺杂态共轭高分子如权利要求1所述,将掺杂态共轭高分子与有机溶剂混合,其中有机溶剂如权利要求3所述,至少包含一种选自式(12)、或式(13)、或其组合。
承上所述,本发明所提供的导电高分子溶液,将掺杂态共轭高分子如聚乙炔(polyacetylenes)、聚吡咯(polypyrroles)、聚联苯(polyparaphenylenes)、聚噻吩(polythiophenes)、聚呋喃(polyfurans)、聚(3,4-二氧乙基噻吩)(poly(3,4-ethylenedioxythiophenes),PEDOT)、聚(3,4-二氧丙基噻吩)(poly(3,4-(2,2-benzyl propylenedioxythiophenes),PProDOT)、聚苯并噻吩(polythianaphthenes)、聚苯胺(polyanilines)、或其共聚物及衍生物、或其组合,并将掺杂态共轭高分子溶于低沸点的有机溶剂中。其中,有机溶剂特别是低沸点的含氟有机溶剂、或是含氟有机溶剂的混合溶剂、或是含氟及不含氟有机溶剂的混合溶剂,于实测时发现尤其是以HFIP,HFPP,HFTP,或PFP等溶剂对于掺杂态共轭高分子具极佳的溶解度,进而能提高共轭高分子的浓度,并增进成膜后的导电度。另外由于所采用的溶剂属于低沸点有机溶剂,因此制成导电高分子膜后,可减少有机溶剂的残留。经实验证明,本发明的导电高分子溶液,经由涂布或是镀膜等方式,已能广泛地应用在电解电容器、发光二极管、化学感应器、抗腐蚀、染料敏化太阳能电池及电致变色等领域。
附图说明
图1是本发明的导电高分子溶液应用于化学感应器的一实施例的导电聚苯胺膜与不同浓度的维生素C水溶液作用后的紫外光/可见光吸收光谱;
图2是本发明的导电高分子溶液应用于抗腐蚀的一实施例的回形针照片;以及
图3是本发明的导电高分子溶液应用于电致变色的一实施例的聚(3,4-二氧乙基噻吩)膜的穿透度曲线图。
主要元件符号说明:
具体实施方式
以下将参照相关图式,说明依本发明复数实施例的一种导电高分子溶液及其制备方法。本实施例中,导电高分子溶液包含一掺杂态共轭高分子以及一有机溶剂。
掺杂态共轭高分子由交替的单键-双键共轭键结而成,其本质上即具有导电性,可称为本质型导电高分子(intrinsic conductive polymer,ICP)。本实施例中,掺杂态共轭高分子的单体是选自乙炔(acetylenes)、吡咯(pyrroles)、联苯(paraphenylenes)、噻吩(thiophenes)、呋喃(furans)、3,4-二氧乙基噻吩(3,4-ethylenedioxythiophenes,EDOT)、苯并噻吩(thianaphthenes)、3,4-二氧丙基噻吩(3,4-(2,2-benzyl propylenedioxythiophenes),ProDOT)、苯胺(anilines)、或其共聚物、或其衍生物、或其组合。举例而言,上述掺杂态共轭高分子的结构式除了可以分别如下列式(1)至式(9)的均聚物(homopolymers)型的掺杂态共轭高分子之外,还可以是包含由上述一种以上高分子的单体,任意组合所形成的共聚物(copolymers),例如式(10)及式(11)是其中的两个共聚物的例子。其中,式(10)是聚苯胺共聚(3,4-二氧乙基噻吩)(poly(aniline-co-3,4-ethylenedioxy-thiophenes)),是由苯胺(aniline)和3,4-二氧乙基噻吩(EDOT)所组成的共聚物;式(11)是聚苯胺共聚吡咯(poly(aniline-co-pyrroles)),由苯胺(aniline)和吡咯(pyrrole)所组成的共聚物。
Figure BDA0000066121310000061
式(1)    式(2)    式(3)
Figure BDA0000066121310000062
式(4)    式(5)    式(6)
Figure BDA0000066121310000063
式(7)    式(8)
Figure BDA0000066121310000064
式(9)
Figure BDA0000066121310000065
式(10)
Figure BDA0000066121310000071
式(11)
其中,式(1)是掺杂态聚乙炔的结构式;式(2)是掺杂态聚吡咯及其衍生物的结构式;式(3)是掺杂态聚联苯及其衍生物的结构式;式(4)是掺杂态聚噻吩取代物及其衍生物的结构式;式(5)是掺杂态聚呋喃及其衍生物的结构式;式(6)是掺杂态聚(3,4-二氧乙基噻吩)及其衍生物的结构式;式(7)是掺杂态聚(3,4-二氧丙基噻吩)及其衍生物的结构式;式(8)是掺杂态聚苯并噻吩及其衍生物的结构式;式(9)是掺杂态聚苯胺及其衍生物的结构式。
需说明的是,式(1)至式(11)的n是介于3~5000的整数,式(2)至式(11)的R1至R20是选自氢、氟、氯、溴、碘、胺基、醛基、羧基、OCjH2j+1、CjH2j+1、SCjH2j+1、N(CjH2j+1)2、CjH2j+1SO3H或CjH2jPO3H2其中之一,其中j是介于0~8的整数,式(3)的Y是硫、氧、C6H4、C=C、C=N或N=N其中之一,式(4)的p是介于0~3的整数,式(9)的y是介于0~1,式(1)至式(11)的m是介于-5000~5000的整数,式(1)至式(11)的a是介于-5000~5000的整数,且m及a为绝对值相同但正负相反的整数,式(1)至式(11)的Aa可以是有机阴离子、或有机阳离子例如CSA-1(camphorsulfonic acid)、MSA-1(methylsulfonic acid)、TsO-1(toluene-p-sulfonic acid)、DBSA-1(dodecylbenzenesulfonic acid)、N-alkylpyridinium([CnPY]+)、或是式(14)至式(16)其中之一;或是无机阴离子或阳离子,例如F-1、Br-1、Cl-1、I-1、5O4 -2、PO4 -3、ClO4 -1、ClO2 -1、BF4 -1、NO3 -1、NH4 +、Na+、K+等。其中式(15)至式(16)的q是介于1~5000的整数。需注意的是,本实施例中「介于」的定义,包含端点的二个数值。
Figure BDA0000066121310000072
式(14)    式(15)    式(16)
为了提高共轭高分子的导电性,本实施例利用掺杂(doping)的手段以形成电洞或电子传导载子,进而使掺杂态的共轭高分子具有高导电度。其中,掺杂的手段则可以是酸掺杂与氧化掺杂二种方式来提高共轭高分子的导电性。举例来说,酸掺杂用的酸可以是盐酸水溶液,氧化掺杂用的氧化剂可以是过硫酸铵或氯化铁。
有机溶剂则是与上述所述至少任一形式的掺杂态共轭高分子混合,有机溶剂的结构式至少包含一种选自式(12)或式(13)或其组合。
Figure BDA0000066121310000081
式(12)        式(13)
上式(12)中的e是介于0~5的整数,式(12)及式(13)中的R1至R8是选自氢、氟、氯、溴、碘、胺基、醛基、羧基、OCjH2j+1、CjH2j+1、SCjH2j+1、N(CjH2j+1)2、CjH2j+1SO3H或CjH2jPO3H2,其中j是介于0~8的整数。
以下,分别以掺杂态聚苯胺、掺杂态聚(3,4-二氧乙基噻吩)及掺杂态聚吡咯等三种共轭高分子的制备及其与有机溶剂混合为例,以说明本发明的导电高分子溶液及其制备方法。
掺杂态聚苯胺的合成及掺杂
取0.41g过硫酸铵((NH4)2S2O8)溶于10ml的1.2M盐酸水溶液中,另将0.17g苯胺单体溶于0.17g的0.01%苯酚水溶液中,然后再与26ml的1.2M盐酸水溶液混合。将含有过硫酸铵的盐酸水溶液及含有苯胺单体的盐酸水溶液相混合后,于室温下进行聚合反应。约20分钟后,溶液中即产生墨绿色掺杂态的聚苯胺(固体)。将此聚合反应后的溶液倒入滤纸中过滤(除去液体部分,并保留固体部分),然后分别以蒸馏水、甲醇和盐酸水溶液等清洗液来清洗固体部分至滤液是无色后,将所得的聚苯胺高分子粉末经脂肪萃取器(fat extractionapparatus)以丙酮(acetone)及乙腈(acetonitrile)等有机溶剂再次充分清洗后,最后再以盐酸水溶液清洗,使其成为掺杂态的聚苯胺后,干燥后收集粉末。
掺杂态聚(3,4-二氧乙基噻吩)的合成及掺杂
取0.41g过硫酸铵溶于10ml的1.2M盐酸水溶液使过硫酸铵的氧化率增加,另将0.26g 3,4-二氧乙基噻吩单体溶于26ml的1.2M盐酸水溶液。于室温下将含有过硫酸铵的盐酸水溶液及含有3,4-二氧乙基噻吩单体的盐酸水溶液相混合,以进行聚合及掺杂反应。于24小时后,溶液中即产生蓝色聚(3,4-二氧乙基噻吩)(固体)。将此溶液倒入滤纸中过滤取固体部分,然后分别以蒸馏水、甲醇和盐酸水溶液来清洗固体至滤液是无色后,将所得的聚(3,4-二氧乙基噻吩)高分子粉末再以脂肪萃取器以丙酮及乙腈等有机溶剂再次充分清洗后,最后再以盐酸水溶液清洗,干燥后收集粉末。
掺杂态聚吡咯的合成及掺杂
取0.41g过硫酸铵溶于10ml的1.2M盐酸水溶液,另将0.13g吡咯单体溶于26ml的1.2M盐酸水溶液中。于室温下将含有过硫酸铵的盐酸水溶液及含有吡咯单体的盐酸水溶液相混合,进行聚合反应。于24小时后,溶液中即产生黑色聚吡咯(固体)。将此溶液倒入滤纸中过滤并保留固体部分,然后分别以蒸馏水、甲醇和盐酸水溶液清洗至滤液是无色后,将所得高分子粉末再以脂肪萃取器利用丙酮及乙腈等有机溶剂再次充分清洗后,最后再以盐酸水溶液清洗,干燥后收集粉末。
将掺杂态的共轭高分子与有机溶剂混合
取适量的掺杂态聚苯胺粉末、掺杂态聚(3,4-二氧乙基噻吩)粉末、或掺杂态聚吡咯粉末分别溶于有机溶剂六氟异丙醇(hexafluoroisopropanol,HFIP)中,并以超音波震荡掺杂态共轭高分子与有机溶剂混合物数小时,即可分别获得绿色聚苯胺溶液、蓝色聚(3,4-二氧乙基噻吩)溶液及黑色聚吡咯溶液,且掺杂态共轭高分子于溶液中的浓度最高分别可达到35、40及15重量百分比。除了六氟异丙醇(hexafluoro-isopropanol,HFIP)之外,有机溶剂还可以是1,1,1,3,3,3-六氟-2-苯基-2-丙醇(1,1,1,3,3,3-hexa-fluoro-2-phenyl-2-propanol,HFPP)、1,1,1,3,3,3-六氟-2-(对-甲苯基)-丙醇(1,1,1,3,3,3-hexafluoro-2-(p-tolyl)-propanol,HFTP)、或全氟丙烷(perfluoropropane,PFP)等等,均对掺杂态共轭高分子有极佳的溶解度。
以下将举出数个实施例,以证明本发明的掺杂态共轭高分子在导电高分子溶液中的分散度非常好,且能广泛应用于电子组件中。
实施例一:导电高分子溶液于电解电容器的应用
首先将一铝片以40V电压,进行氧化30分钟以生成一层多孔性氧化铝膜。进行化成后,将试片用去离子水冲洗,以烘箱烘干。接着,将导电的聚苯胺溶液(导电的聚苯胺(结构如式(17)溶于六氟异丙醇),滴在多孔蚀刻的氧化铝箔上,待其干燥后再涂上一层碳胶,然后送至烘箱烘干,以除去溶剂。然后于碳胶表面均匀涂上一层银胶,再以烘箱烘干,最后将金箔覆于银胶上,并以接负极的鳄鱼夹夹住,而接正极的鳄鱼夹夹着导线,即可进行电容性质测量,结果如表1所示,表示由本发明的导电高分子溶液干燥后所形成的高分子导电膜,已具有应用于电容组件的特性。
Figure BDA0000066121310000101
式(17)
表1
  电容量(120Hz)   DF值(120Hz)   ESR值(100kHz)
  12.7μF   3.45%   440mΩ
实施例二:导电高分子溶液在发光二极管的应用
在清洗干净的ITO玻璃表面上滴一滴同实施例一的导电聚苯胺溶液,待其干燥成膜后,再用旋转涂布方式镀上一层poly[(2-((2-ethyl-hexyl)-oxy)-5-methoxy-p-phenylene)vinylene](MEH-PPV)(所用溶液是将6mg的MEH-PPV溶于1ml的甲苯中)。以真空蒸镀的方式在MEH-PPV膜上镀上一层厚度是的Al做为阴极,即可组装成一个以导电聚苯胺膜是电洞传输层的双层结构的高分子发光二极管。同样的方法另组装一个高分子发光二极管但不含导电聚苯胺膜的单层结构。比较两种不同结构的高分子发光二极管组件并分别测量其电流-电位曲线(Current-Voltage Curve)及电位-亮度曲线(Voltage-Brightness Curve)(所使用的电源供应及电流测量装置是HP 4145,亮度量测仪是光电倍增管),并测量组件起始电位(Turn-on voltage)、发光效率(Luminance Efficiency)、及接口能障(Barrier Height)等参数。由表2的结果显示,含有聚苯胺导电膜(PANI)的发光二极管的许多参数表现均较不含聚苯胺导电膜的发光二极管的表现好。
表2
Figure BDA0000066121310000103
Figure BDA0000066121310000111
a:起始电位是以亮度为100cd/m2时的电位值
实施例三:导电高分子溶液于化学感应器的应用
在10片清洗干净的聚对苯二甲酸乙二酯(Polyethylene terephthalate,PET)表面上滴在一滴导电聚苯胺溶液(同实施例一),经干燥后制成厚度相同的10片导电聚苯胺膜。另准备10杯左旋维生素C水溶液,浓度分别是0ppm,10-3ppm,10-2ppm,10-1ppm,1ppm,10ppm,100ppm,1000ppm,104ppm,5x104ppm,并用盐酸水溶液将左旋维生素C水溶液的pH值皆调为1,分别将导电聚苯胺膜浸在不同浓度的左旋维生素C水溶液中三分钟后,检测导电聚苯胺膜的紫外光/可见光吸收光谱。结果如图1所示,利用导电聚苯胺膜作为化学感应器,并浸在左旋维生素C水溶液中,量测其吸收光谱变化,可推知水溶液中左旋维生素C的浓度,且其侦测极限可低至10-3ppm。
实施例四:导电高分子溶液于抗腐蚀的应用
取两支回形针,其中一支以浸镀(dip coating)的方式镀上一层导电聚苯胺膜,其中使用的导电聚苯胺溶液同实施例一,然后将两支回形针同时浸入0.1M的盐酸水溶液48小时后取出。结果发现镀有导电聚苯胺膜的回形针依旧如新,但未镀膜的回形针已腐蚀生锈,如图2所示。
实施例五:导电高分子溶液于染料敏化太阳能电池的应用
本实施例是以网印(Screen printing)的方式将二氧化钛(Titanium dioxide,TiO2)浆料涂布至清洗过后的导电玻璃上,放入管状炉后以450℃高温锻烧,使TiO2形成锐钛矿(Anatase)结晶性并使其可紧密附着于FTO(fluorine-doped tinoxide)玻璃,依序涂布两层TiO2膜及一层TiO2散射层制成TiO2电极。将所制备的TiO2电极浸泡于浓度为3×10-4M的N719(cis-bis(isothiocyanato)bis-(2,2’-bipyridyl-4,4’-dicarboxylato)-ruthenium(II)bis-tetra-butylammonium)染料溶液中4小时,取出后以酒精清洗,放置培养皿中阴干。另外,分别将导电聚苯胺溶液(同实施例一)、导电聚(3,4-二氧乙基噻吩)溶液(其中掺杂态聚(3,4-二氧乙基噻吩)的结构如式(18),且溶于六氟异丙醇中)、及导电聚吡咯溶液(其中掺杂态聚吡咯的结构如式(19),且溶于六氟异丙醇中)滴在三片FTO玻璃上,待其干燥即得导电高分子对电极,使用
Figure BDA0000066121310000112
厂牌的垫片,将吸附染料的TiO2电极及导电高分子对电极以三明治的型式组装在一起,最后在钻有孔洞的对电极上灌入电解液,电解液的成分是0.6M BMII(N-methyl-N-butyl-imidazolium iodide)、0.1M LiI、0.05M I2、0.5M TBP(4-tert-butylpyridine)、0.1M GuNCS(guanidinium thiocyanate)溶于乙腈中,并快速的利用盖玻片盖住孔洞密封,即完成染料敏化太阳能电池组件的组装。以AM1.5(100mW/cm2)的太阳光模拟光源照射下,测量电流-电位曲线图,并算得光电转换效率。同时以铂(Pt)膜取代导电高分子膜,在同样条件下也测试其电流-电位曲线图,进行比较,并算得光电转换效率,结果如表3所示。
Figure BDA0000066121310000121
式(18)        式(19)
表3
Figure BDA0000066121310000122
实施例六:导电高分子溶液于电致变色的应用
利用旋转涂布方式将导电聚(3,4-二氧乙基噻吩)溶液(同实施例五)涂布至于ITO导电玻璃,以形成聚(3,4-二氧乙基噻吩)膜,并量测此高分子膜的电致变色能力。图3是聚(3,4-二氧乙基噻吩)薄膜在不同电压下的穿透度曲线图,结果发现在不同电压下,导电聚(3,4-二氧乙基噻吩)薄膜有非常优异的电致变色对比,且是全波段的变化。
承上所述,本发明所提供的导电高分子溶液,将掺杂态共轭高分子如聚乙炔、聚吡咯、聚联苯、聚噻吩、聚呋喃、聚(3,4-二氧乙基噻吩)、聚(3,4-二氧丙基噻吩)、聚苯并噻吩、聚苯胺、或其衍生物及共聚物、或其组合与有机溶剂混合,以增加掺杂态共轭高分子于溶剂中的溶解度。其中,有机溶剂是含氟有机溶剂或是含氟有机溶剂的混合或是含氟及不含氟有机溶剂的混合所组成的有机溶液,实测发现尤其是以HFIP、HFPP、或HFTP等溶剂对于掺杂态共轭高分子具极佳的溶解度,进而能增加共轭高分子的浓度,并增进其镀成膜后的导电度。经实验证明,本发明的导电高分子溶液,经由涂布或是镀膜等方式,已能广泛地应用在电解电容器、发光二极管、化学感应器、抗腐蚀、染料敏化太阳能电池及电致变色等领域。
以上所述仅是举例性,而非限制性。任何未脱离本发明的精神与范畴,而对其进行的等效修改或变更,均应包括在权利要求所限定的范围内。

Claims (11)

1.一种导电高分子溶液,其特征在于,包括:
一掺杂态共轭高分子,所述掺杂态共轭高分子具有导电性,且所述掺杂态共轭高分子是选自聚乙炔、聚吡咯、聚联苯、聚噻吩、聚呋喃、聚(3,4-二氧乙基噻吩)、聚(3,4-二氧丙基噻吩)、聚苯并噻吩、聚苯胺、或其衍生物及共聚物、或其组合;以及
一有机溶剂,与所述掺杂态共轭高分子混合。
2.根据权利要求1所述的导电高分子溶液,其特征在于,所述掺杂态共轭高分子的结构式分别选自式(1)至式(11)其中之一,或其衍生物及共聚物或其组合。
Figure FDA0000066121300000011
式(1)    式(2)    式(3)
Figure FDA0000066121300000012
式(4)    式(5)    式(6)
Figure FDA0000066121300000013
式(7)    式(8)
Figure FDA0000066121300000021
式(9)
式(10)
Figure FDA0000066121300000023
式(11)
3.根据权利要求1所述的导电高分子溶液,其特征在于,所述有机溶剂的结构式至少包含一种选自式(12)、式(13)、或其组合。
式(12)        式(13)
4.根据权利要求2所述的导电高分子溶液,其特征在于,所述式(1)至所述式(11)的n是介于3~5000的整数,所述式(2)至所述式(11)的R1至R20是选自氢、氟、氯、溴、碘、胺基、醛基、羧基、OCjH2j+1、CjH2j+1、SCjH2j+1、N(CjH2j+1)2、CjH2j+1SO3H或CjH2jPO3H2其中之一,其中j是介于0~8的整数,所述式(3)的Y是硫、氧、C6H4、C=C、C=N或N=N其中之一,所述式(4)的p是介于0~3的整数,所述式(9)的y是介于0~1,所述式(1)至所述式(11)的m是介于-5000~5000的整数,所述式(1)至所述式(11)的a是介于-5000~5000的整数,且所述m及所述a是绝对值相同但正负相反的整数,所述式(1)至所述式(11)的Aa可以是有机阴离子、或有机阳离子、或无机阴离子、或无机阳离子。
5.根据权利要求3所述的导电高分子溶液,其特征在于,所述式(12)中的e
是介于0~5的整数,所述式(12)及所述式(13)中的R1至R8是选自氢、氟、氯、溴、碘、胺基、醛基、羧基、OCjH2j+1、CjH2j+1、SCjH2j+1、N(CjH2j+1)2、CjH2j+1SO3H或CjH2jPO3H2,其中j是介于0~8的整数。
6.根据权利要求1所述的导电高分子溶液,其特征在于,所述掺杂态共轭高分子是酸掺杂或氧化掺杂的共轭高分子。
7.根据权利要求1所述的导电高分子溶液,其特征在于,所述有机溶剂是选自含氟有机溶剂、或含氟有机溶剂的混合溶剂、或含氟及不含氟有机溶剂的混合溶剂。
8.根据权利要求1所述的导电高分子溶液,其特征在于,所述有机溶剂是选自六氟异丙醇、1,1,1,3,3,3-六氟-2-苯基-2-丙醇、1,1,1,3,3,3-六氟-2-(对-甲苯基)-丙醇、或全氟丙烷、或其组合。
9.根据权利要求1所述的导电高分子溶液,其特征在于,所述掺杂态共轭高分子的浓度是小于40重量百分比。
10.根据权利要求1所述的导电高分子溶液,其特征在于,所述导电高分子溶液是应用在太阳能电池、电容器、发光二极管、化学感应器、图案蚀刻、抗腐蚀、抗静电、电极材料、防电磁干扰或电致变色。
11.一种导电高分子溶液的制备方法,其特征在于,包括:
混合一共轭高分子单体及一氧化剂于一酸性溶液中;
进行聚合反应;
过滤取固体部分;
清洗并掺杂所述固体,以得到一掺杂态共轭高分子,所述掺杂态共轭高分子是如权利要求1所述;以及
混合所述固体至一有机溶剂中,所述有机溶剂是如权利要求3所述的至少包含一种选自所述式(12)、所述式(13)、或其组合。
CN2011101487073A 2011-04-26 2011-06-03 导电高分子溶液及其制备方法 Pending CN102757611A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW100114469 2011-04-26
TW100114469A TW201242987A (en) 2011-04-26 2011-04-26 Conductive polymer solution and preparation method thereof

Publications (1)

Publication Number Publication Date
CN102757611A true CN102757611A (zh) 2012-10-31

Family

ID=47052285

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101487073A Pending CN102757611A (zh) 2011-04-26 2011-06-03 导电高分子溶液及其制备方法

Country Status (5)

Country Link
US (1) US20120273730A1 (zh)
JP (1) JP2012229391A (zh)
KR (1) KR101354302B1 (zh)
CN (1) CN102757611A (zh)
TW (1) TW201242987A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108335912A (zh) * 2018-01-30 2018-07-27 浙江夏远信息技术有限公司 一种染料敏化太阳能电池准固态电解质
CN108822282A (zh) * 2018-05-28 2018-11-16 上海大学 一种导电聚合物及其制备方法
CN109961954A (zh) * 2017-12-25 2019-07-02 钰邦科技股份有限公司 用于电容器的导电聚合物分散液以及电容器封装结构
CN114068890A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 复合金属负极及其制备方法、二次电池以及终端

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI494356B (zh) * 2011-10-28 2015-08-01 Univ Nat Central 摻雜態共軛高分子膜之製備及處理方法
CN107852793B (zh) * 2015-07-15 2020-02-21 柯尼卡美能达株式会社 有机薄膜层叠体及有机电致发光元件
JP6951159B2 (ja) * 2017-09-07 2021-10-20 信越ポリマー株式会社 キャパシタ及びその製造方法
TWI638018B (zh) * 2017-12-25 2018-10-11 鈺邦科技股份有限公司 用於電容器的導電聚合物分散液以及電容器封裝結構

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1806005A (zh) * 2003-06-18 2006-07-19 信越聚合物株式会社 导电组合物、导电涂料、导电树脂、电容器、光电转换元件及其制备方法
CN101023138A (zh) * 2004-09-22 2007-08-22 信越聚合物株式会社 导电性组合物及其制造方法、抗静电涂料、抗静电膜、抗静电涂膜、滤光器、光信息记录媒体、电容器及其制造方法
CN101085857A (zh) * 2006-06-07 2007-12-12 三星Sdi株式会社 导电聚合物组合物、使用其的导电膜和含该膜的电子器件
CN101297415A (zh) * 2005-08-01 2008-10-29 普莱克斯托尼克斯公司 导电聚合物的潜在掺杂
CN101516959A (zh) * 2006-07-12 2009-08-26 潘尼珀尔有限公司 新型组合物及其生产方法
WO2010143450A1 (ja) * 2009-06-12 2010-12-16 出光興産株式会社 π共役高分子組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6967236B1 (en) 1998-03-06 2005-11-22 International Business Machines Corporation Methods of processing and synthesizing electrically conductive polymers and precursors thereof to form electrically conductive polymers having high electrical conductivity
FR2767138B1 (fr) * 1997-08-07 1999-09-03 Commissariat Energie Atomique Procede de fabrication de polyaniline de masse moleculaire elevee sous forme d'emeraldine et polyaniline obtenue par ce procede
JP2006152167A (ja) * 2004-11-30 2006-06-15 Kaneka Corp 導電性組成物およびそれを用いた成形体
JP5324217B2 (ja) * 2005-06-27 2013-10-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 導電性ポリマー組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1806005A (zh) * 2003-06-18 2006-07-19 信越聚合物株式会社 导电组合物、导电涂料、导电树脂、电容器、光电转换元件及其制备方法
CN101023138A (zh) * 2004-09-22 2007-08-22 信越聚合物株式会社 导电性组合物及其制造方法、抗静电涂料、抗静电膜、抗静电涂膜、滤光器、光信息记录媒体、电容器及其制造方法
CN101297415A (zh) * 2005-08-01 2008-10-29 普莱克斯托尼克斯公司 导电聚合物的潜在掺杂
CN101085857A (zh) * 2006-06-07 2007-12-12 三星Sdi株式会社 导电聚合物组合物、使用其的导电膜和含该膜的电子器件
CN101516959A (zh) * 2006-07-12 2009-08-26 潘尼珀尔有限公司 新型组合物及其生产方法
WO2010143450A1 (ja) * 2009-06-12 2010-12-16 出光興産株式会社 π共役高分子組成物

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109961954A (zh) * 2017-12-25 2019-07-02 钰邦科技股份有限公司 用于电容器的导电聚合物分散液以及电容器封装结构
CN109961954B (zh) * 2017-12-25 2021-04-30 钰邦科技股份有限公司 用于电容器的导电聚合物分散液以及电容器封装结构
CN108335912A (zh) * 2018-01-30 2018-07-27 浙江夏远信息技术有限公司 一种染料敏化太阳能电池准固态电解质
CN108822282A (zh) * 2018-05-28 2018-11-16 上海大学 一种导电聚合物及其制备方法
CN108822282B (zh) * 2018-05-28 2020-11-24 上海大学 一种导电聚合物及其制备方法
CN114068890A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 复合金属负极及其制备方法、二次电池以及终端
CN114068890B (zh) * 2020-08-07 2023-12-08 华为技术有限公司 复合金属负极及其制备方法、二次电池以及终端

Also Published As

Publication number Publication date
US20120273730A1 (en) 2012-11-01
TW201242987A (en) 2012-11-01
KR101354302B1 (ko) 2014-02-07
JP2012229391A (ja) 2012-11-22
KR20120121337A (ko) 2012-11-05

Similar Documents

Publication Publication Date Title
CN102757611A (zh) 导电高分子溶液及其制备方法
Bella et al. A water-based and metal-free dye solar cell exceeding 7% efficiency using a cationic poly (3, 4-ethylenedioxythiophene) derivative
Hsu et al. A dye-sensitized photo-supercapacitor based on PProDOT-Et2 thick films
Chen et al. Using modified poly (3, 4-ethylene dioxythiophene): Poly (styrene sulfonate) film as a counter electrode in dye-sensitized solar cells
Lan et al. Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly (acrylonitrile-co-styrene)/NaI+ I2
Skunik-Nuckowska et al. Integration of solid-state dye-sensitized solar cell with metal oxide charge storage material into photoelectrochemical capacitor
Ahmad et al. Efficient platinum‐free counter electrodes for dye‐sensitized solar cell applications
AU2008305115B2 (en) Process for producing electroconductive polymer electrode and dye-sensitized solar cell comprising the electroconductive polymer electrode
Zhang et al. Influence of doping anions on structure and properties of electro-polymerized polypyrrole counter electrodes for use in dye-sensitized solar cells
Wang et al. Solidification of liquid electrolyte with imidazole polymers for quasi-solid-state dye-sensitized solar cells
Ermiş et al. Synthesis of poly (N-alkyl-3, 4-dihydrothieno [3, 4-b][1, 4] oxazine) derivatives and investigation of their supercapacitive performances for charge storage applications
Lee et al. Iodine vapor doped polyaniline nanoparticles counter electrodes for dye-sensitized solar cells
JP2006108064A (ja) 染料感応太陽電池用高効率対向電極及びその製造方法
Li et al. Ionic liquid-doped poly (3, 4-ethylenedioxythiophene) counter electrodes for dye-sensitized solar cells: Cationic and anionic effects on the photovoltaic performance
Shih et al. Electropolymerized polyaniline/graphene nanoplatelet/multi-walled carbon nanotube composites as counter electrodes for high performance dye-sensitized solar cells
Yusuf et al. Phthaloylchitosan‐based gel polymer electrolytes for efficient dye‐sensitized solar cells
Lan et al. Durability test of PVP‐capped Pt nanoclusters counter electrode for highly efficiency dye‐sensitized solar cell
Yang et al. Electrochemical polymerization effects of triphenylamine-based dye on TiO2 photoelectrodes in dye-sensitized solar cells
Peri et al. Improved performance of dye-sensitized solar cells upon sintering of a PEDOT cathode at various temperatures
Selvakumar et al. Hybrid supercapacitor based on poly (aniline-co-m-anilicacid) and activated carbon in non-aqueous electrolyte
Zhang et al. Photoelectrochemical polymerization of EDOT for solid state dye sensitized solar cells: role of dye and solvent
Erazo et al. Tailoring the PEDOT: PSS hole transport layer by electrodeposition method to improve perovskite solar cells
Cipolla et al. An ion conductive polysiloxane as effective gel electrolyte for long stable dye solar cells
Yao et al. Flexible electrochromic poly (thiophene-furan) film via electrodeposition with high stability
Sun et al. Influence of 4-N, N-dimethylaminopyridine on the photovoltaic performance of dye-sensitized solar cells with poly (ethyleneoxide)/oligo (ethylene glycol) blend electrolytes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121031