CN104054188B - 多结太阳能电池的半成品以及制造多结太能电池的方法 - Google Patents

多结太阳能电池的半成品以及制造多结太能电池的方法 Download PDF

Info

Publication number
CN104054188B
CN104054188B CN201380005558.2A CN201380005558A CN104054188B CN 104054188 B CN104054188 B CN 104054188B CN 201380005558 A CN201380005558 A CN 201380005558A CN 104054188 B CN104054188 B CN 104054188B
Authority
CN
China
Prior art keywords
solar cell
semiconductor body
sub
band gap
sacrifice layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380005558.2A
Other languages
English (en)
Other versions
CN104054188A (zh
Inventor
D·富尔曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azur Space Solar Power GmbH
Original Assignee
Azur Space Solar Power GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azur Space Solar Power GmbH filed Critical Azur Space Solar Power GmbH
Publication of CN104054188A publication Critical patent/CN104054188A/zh
Application granted granted Critical
Publication of CN104054188B publication Critical patent/CN104054188B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1808Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only Ge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种多结太阳能电池的半成品,其具有:构造为第一子太阳能电池的半导体本体,该半导体本体具有第一带隙;构造为第二子太阳能电池的半导体本体,该半导体本体具有第二带隙,其中,第一半导体本体和第二半导体本体构造成与隧道二极管进行材料锁合地连接,并且第一带隙构造为不同于第二带隙;以及构造为衬底层的第一载体材料,其中,在第一载体材料和第一子太阳能电池之间构造有牺牲层,并且在牺牲层破坏的情况下将第一载体材料从第一半导体本体去除。

Description

多结太阳能电池的半成品以及制造多结太能电池的方法
技术领域
本发明涉及一种根据专利权利要求1的前序部分所述的多结太阳能电池的半成品以及一种根据专利权利要求9的前序部分所述的用于制造太阳能电池的方法。
背景技术
由US 4 774 194已知了一种用于借助于选择的化学腐蚀过程使基于III-V族的太阳能电池层从载体衬底脱离的方法。此外,由US 4 883 561以及由US2010/0116784A1已知了用于基于化学腐蚀过程将半导体层从该半导体层的载体衬底分离的方法。由US 5 374564已知了这种借助于离子注入方法对半导体层的分离。此外,由DE 196 49 594 A1以及US6071795已知了用于分离半导体材料(特别是基于具有大带间隙的衬底的III族氮化物的LED层)的方法。此外,由US 7 785989 B2已知了一种其他的太阳能电池结构。
发明内容
在这种背景技术下,本发明的任务在于,给出一种改进现有技术的装置。
该任务通过一种具有专利权利要求1所述特征的多结太阳能电池的半成品以及通过一种根据专利权利要求9的前序部分所述的用于制造太阳能电池的方法来解决。本发明的有利的构造方案是从属权利要求的主题。
根据本发明的第一主题提供了一种多结太阳能电池的半成品,该半成品具有:构造为第一子太阳能电池的半导体本体,该半导体本体具有第一带隙;构造为第二子太阳能电池的半导体本体,该半导体本体具有第二带隙,其中,第一半导体本体和第二半导体本体构造成与隧道二极管进行材料锁合地连接,并且第一带隙构造为不同于第二带隙;构造为衬底层的第一载体材料,其中,在第一载体材料和第一子太阳能电池之间构造有牺牲层,并且在牺牲层破坏的情况下第一载体材料从第一半导体本体去除。要注意的是,所述两个子太阳能电池布置为堆叠状,并且将半导体本体称作子太阳能电池,所述半导体本体作为单个半导体本体由太阳光谱的确定范围的入射的光子的能量通过直接转换来产生电能。子太阳能电池的灵敏度范围这样来选择,使得所有的子太阳能电池共同尽可能理想地充分利用太阳光谱。利用这种经堆叠的多结太阳能电池的方案目前可以实现直至40%的转换效率。此外要注意的是,在脱离衬底时优选仅仅牺牲层被破坏。
根据本发明的第二主题提供了一种用于制造多结太阳能电池的方法,该多结太阳能电池具有:构造为衬底层的第一载体材料,其中,制造有构造为第一子太阳能电池的、具有第一带隙的半导体本体,并且制造有构造为第二子太阳能电池的、具有第二带隙的半导体本体,其中,在第一半导体本体和第二半导体本体之间构造有与隧道二极管进行材料锁合的连接,并且第一带隙构造为不同于第二带隙,其中,在第一载体材料和第一子电池之间制造有牺牲层,并且在随后的方法步骤中,在牺牲层破坏的情况下第一载体材料从第一半导体本体去除。
衬底上的牺牲层的优点是,能够以简单且成本低廉的方式使堆叠状的多结太阳能电池从衬底脱离。借助于脱离过程可以在既不损坏衬底也不损坏多结太阳能电池的情况下将多结太阳能电池从衬底分离。有利的是,在所述脱离之后借助于清洁过程来去除该衬底上或者第一子太阳能电池上的牺牲层的可能的残余物。此外有利的是,在脱离衬底层之后可以将其他子太阳能电池安装到该多结太阳能电池上,并且由此可以制造出包括3个、4个或者更多子太阳能电池的堆叠的高效率的多结太阳能电池。所述高效率的多结太阳能电池理解为具有25%以上的转换效率的太阳能电池。
优选的是,经堆叠的多结太阳能电池实施为III-V族太阳能电池、即实施为包括周期系统的第3和第5主族的化合物半导体的太阳能电池。此外,衬底可以再使用于制造多结太阳能电池。如果衬底是成本非常密集的,则制造成本可以通过衬底的再使用来极大地降低。新的分离技术的另一个优点是,此时可以非常快速地且可靠地实施这种脱离。研究表明,新的方法或新型的构造可以非常有利地使用在用于太空应用的多结太阳能电池上,所述多结太阳能电池具有典型的8cm×4cm的尺寸或者更大。此外同样有利的是,使用用于制造多结太阳能电池的新型的脱离过程,所述多结太阳能电池的尺寸小于8cm×4cm、优选地处于1mm2至400mm2的范围内。这种具有小尺寸的多结太阳能电池优选地可使用于陆地上的集中器系统。
特别优选地可以这样实施牺牲层,使得在吸收电磁能量的情况下可以局部加热该牺牲层。借助于因此出现的由热造成的牺牲层分解可以轻易地从太阳能电池堆叠分离所述衬底。因此提高了产品中的处理量和产量并且降低了制造成本。
为了基于电磁辐射的吸收来热诱导地分解牺牲层优选的是,牺牲层具有这样的带隙:该带隙具有小于1.5eV、尤其优选低于1.2eV的能量。因此,牺牲层对于可见光是不透明的并且具有处于红外光谱范围内的吸收带。理想地,然而非必要地,牺牲层具有经堆叠的多结太阳能电池的所有层中最小的带间隙能量。如果经堆叠的多结太阳能电池(即特别是包括第一半导体本体和第二半导体本体的堆叠)的其他的层构造为对于优选处于红外波长范围内入射的电磁辐射是透明的,则由此确保了:穿过包括第一半导体本体和第二半导体本体的堆叠入射的电磁能量仅仅在牺牲层中被吸收。有利的是,牺牲层的带间隙能量和入射的电磁辐射的能量相互协调。研究表明有利的是,牺牲层的吸收带与红外激光装置的波长相协调,该红外激光装置具有配备约1.16eV能量的脉冲激光器、例如具有1064nm波长的Nd-YAG激光器。为此,将牺牲层的带间隙能量调节为≤1.15eV的值。
研究表明,根据衬底的种类,不同的材料适用于所述牺牲层。以GaAs衬底、InP衬底或者Ge衬底为前提,牺牲层特别有利地可以由InAs、GaAs、InSb、GaSb、InP或它们的三元和四元的混合半导体来构造。由于Ge的低带间隙的原因,外延的Ge牺牲层特别是适用于GaAs衬底或者InP衬底上的多结太阳能电池。有利的是,构造具有10nm至200nm之间厚度的牺牲层。
根据一个改进方案,牺牲层具有与第一子太阳能电池的晶格常数不同的晶格常数。研究表明有利的是,在衬底上分离出晶格不匹配的牺牲层。
在一个可替换的实施方式中,牺牲层与第一子太阳能电池是晶格相匹配的。在此在制造牺牲层时,这个晶格常数选择成与第一子太阳能电池基本上相同。
研究表明,根据一个改进方案特别有利的是,在牺牲层和第一子太阳能电池之间构造有缓冲层,并且缓冲层具有与第一子太阳能电池进行材料锁合的连接。特别是在脱离时,缓冲层作为附加的保护层起作用并且抑制对第一半导体本体的损坏。研究表明有利的是,缓冲层是晶格相匹配的、即能与第一子太阳能电池的晶格常数相比较地来选择该缓冲层的晶格常数。特别有利的是,缓冲层的厚度在100nm至2μm之间选择,缓冲层的厚度尤其优选地选择为500nm。
根据另一个改进方案,缓冲层构造为布拉格(Bragg)反射镜。因此导致了,未在第一半导体本体中被吸收的光再次反射回到第一半导体本体中。因此可以提高多结太阳能电池的效率。
根据一个实施方式,在第二子太阳能电池上布置有与该第二子太阳能电池进行材料锁合地连接的承载层。研究表明,特别是当在所述脱离之后将至少一个其他子太阳能电池安装到第一子太阳能电池上用于构造包括3个、4个或者更多的子太阳能电池的多结太阳能电池时,在脱离衬底之后所述承载层机械地稳定了太阳能电池。
附图说明
下面参照附图详细说明本发明。在此,相同的部件用相同的标号来标记。所示出的实施方式是极其示意性,即间距以及横向的和竖直的延伸尺寸并不按正确的比例,并且只要没有给出其他标识则也不具有可推断出的相互的几何关系。在附图中:
图1a-1d示出了多结太阳能电池的半成品的各种实施方式以及制造步骤的横截面图。
具体实施方式
图1a的视图示出以堆叠状布置多结太阳能电池10的半成品的示意性横截面,该半成品具有衬底层20、牺牲层30、第一半导体本体40以及与第一半导体本体40材料锁合地连接的第二半导体本体50。在第一半导体本体40和第二半导体本体50之间构造有隧道二极管。牺牲层优选与平放的第一半导体本体40连接。优选的是,多结太阳能电池特别是在使用InGaAs和InGaP情况下构造为III-V族太阳能电池。此外,第一半导体本体40构造为第一子太阳能电池,并且第二半导体本体50构造为第二子太阳能电池,其中,第一子太阳能电池具有第一带隙,并且第二子太阳能电池具有与第一带隙不同的第二带隙。此外,牺牲层具有第三带隙,其中,第三带隙选择为比第一带隙和第二带隙小。此外,衬底层由具有第四带隙的载体材料构成,其中,第四带隙优选小于1.6eV并且优选大于第三带隙。
在图1b的视图中示出半成品的第二实施方式。下面仅仅说明与图1a的视图中所示的实施方式的不同点。在第二半导体本体50上构造有承载层100。承载层可以特别有利地也构造为塑料膜并且在脱离分离之后用于机械地稳定了包括第一和第二半导体本体40和50的堆叠。
在图1c的视图中示出图1b的半成品的改进的过程步骤。下面仅仅说明与前述的附图中所示的实施方式的不同点。牺牲层30借助于红外辐射、优选借助于红外激光来加热和分解。在此,辐射的波长与牺牲层30的吸收能力相匹配。研究表明,光的射入不仅穿过多结太阳能电池的前侧(即穿过包括第一和第二半导体本体40和50的堆叠)或者替换地穿过衬底层20来实现。如果承载层100对于红外激光的波长是透明的,那么在穿过前侧进行照射的情况下在实施方式中有利的是:(如在图1c的视图中所示地)已经在照射之前安装了承载层100。根据替换的实施方式有利的是,在以红外光照射之后才安装承载层100。在此,根据图1a中所示的实施方式的半成品的照射穿过所述前侧和/或穿过所述背侧来实现。这种在照射之后安装的承载层可以接着特别是用于从衬底20取下所述多结太阳能电池。
根据一个改进方案特别有利的是,同时穿过前侧(即穿过具有或者不具有承载层100的半导体本体40和50)并且穿过衬底层20照射所述牺牲层30。通过以光射入来强烈地加热所述牺牲层30。在此,在牺牲层30破坏的情况下多结太阳能电池从衬底层20脱离。
在图1d的视图中示出图1c的半成品的改进的过程步骤。下面仅仅说明与前述的附图之一所示的实施方式的不同点。在完全去除牺牲层30之后翻转所述多结太阳能电池,并且在第一半导体本体40上构造第三半导体本体110。要注意的是,第三半导体本体110同样构造为III-V族化合物。

Claims (11)

1.一种多结太阳能电池(10)的半成品,其具有:
-一构造为第一子太阳能电池的第一半导体本体(40),所述第一半导体本体具有第一带隙,
-一构造为第二子太阳能电池的第二半导体本体(50),所述第二半导体本体具有第二带隙,其中,所述第一半导体本体(40)和所述第二半导体本体(50)与一隧道二极管材料锁合连接,并且所述第一带隙构造为不同于所述第二带隙,
-一构造为衬底层(20)的第一载体材料,并且在所述第一载体材料和所述第一子太阳能电池之间构造有牺牲层(30),
其特征在于:
-所述衬底层(20)构造为GaAs衬底或者InP衬底或者Ge衬底,并且
-所述牺牲层(30)具有第三带隙,其中,所述第三带隙小于所述第一带隙并且小于所述第二带隙,并且
-所述第三带隙小于1.2eV,
为了使得由所述第一半导体本体(40)和所述第二半导体本体(50)所形成的堆叠能在脱离后机械稳定,在所述第二半导体本体(50)上形成承载层(100),并且
-包括所述第一半导体本体(40)和所述第二半导体本体(50)的堆叠以及所述承载层(100)构造为对于以红外波长范围入射的电磁辐射是透明的,并且
-所述牺牲层(30)具有处于红外光谱范围内的吸收带,从而使得穿过所述堆叠和所述承载层(100)入射的电磁能量仅仅在所述牺牲层中被吸收,以便在破坏所述牺牲层的情况下将所述第一载体材料从所述第一半导体本体去除。
2.根据权利要求1所述的半成品,其特征在于,所述牺牲层(30)具有与所述第一子太阳能电池的晶格常数不同的晶格常数。
3.根据权利要求1所述的半成品,其特征在于,所述牺牲层(30)与所述第一子太阳能电池是晶格相匹配的。
4.根据前述权利要求中任一项所述的半成品,其特征在于,所述衬底层(20)具有带间隙:该带间隙具有小于1.5eV的能量。
5.根据权利要求1至3中任一项所述的半成品,其特征在于,在所述牺牲层(30)和所述第一子太阳能电池之间构造有缓冲层,并且所述缓冲层具有与所述第一子太阳能电池的材料锁合连接。
6.根据权利要求5所述的半成品,其特征在于,所述缓冲层构造为布拉格反射镜。
7.一种用于制造多结太阳能电池(10)的方法,所述多结太阳能电池具有
-一构造为衬底层(20)的第一载体材料,其中
-制造构造为第一子太阳能电池的、具有第一带隙的第一半导体本体(40),
-制造构造为第二子太阳能电池的、具有第二带隙的第二半导体本体(50),其中,在所述第一半导体本体(40)和所述第二半导体本体(50)之间构造与一隧道二极管的材料锁合连接,并且
-所述第一带隙构造为不同于所述第二带隙,并且
-在所述第一载体材料和所述第一子太阳能电池之间制造有牺牲层(30),
其特征在于,
-所述衬底层(20)由GaAs衬底或者InP衬底或者Ge衬底构成,并且
-所述牺牲层(30)构造为具有小于1.2eV的第三带隙,其中,所述第三带隙小于所述第一带隙并且小于所述第二带隙,
在红外波长范围的电磁辐射入射前,在所述第二半导体本体(50)上形成承载层(100),所述承载层(100)用于使由所述第一半导体本体(40)和所述第二半导体本体(50)所形成的堆叠在脱离后机械稳定,并且
包括所述第一半导体本体(40)和所述第二半导体本体(50)的堆叠以及所述承载层(100)构造为对于以红外波长范围入射的电磁辐射是透明的,并且在随后的方法步骤中,在只破坏所述牺牲层(30)的情况下将所述第一载体材料从所述第一半导体本体(40)去除,其方式是:穿过包括所述第一半导体本体(40)和所述第二半导体本体(50)的堆叠以及所述承载层(100)入射的电磁辐射在所述牺牲层中被吸收。
8.根据权利要求7所述的方法,其特征在于,在所述牺牲层(30)和所述第一子太阳能电池之间制造有与所述第一子太阳能电池材料锁合地连接的缓冲层。
9.根据权利要求8所述的方法,其特征在于,所述缓冲层构造为布拉格反射镜。
10.根据权利要求7至9中任一项所述的方法,其特征在于,借助于电磁波的吸收来加热和分解所述牺牲层(30),并且所述第一子太阳能电池和所述第二子太阳能电池共同从所述牺牲层(30)脱离。
11.根据权利要求7至9中任一项所述的方法,其特征在于,在所述第一子太阳能电池或者所述第二子太阳能电池上构造另一单结太阳能电池或者另一多结太阳能电池,并且所述另一单结太阳能电池或者所述另一多结太阳能电池具有不同于所述第一子太阳能电池和所述第二子太阳能电池的带隙。
CN201380005558.2A 2012-01-20 2013-01-14 多结太阳能电池的半成品以及制造多结太能电池的方法 Active CN104054188B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12000386.8A EP2618385A1 (de) 2012-01-20 2012-01-20 Halbzeug einer Mehrfachsolarzelle und Verfahren zur Herstellung einer Mehrfachsolarzelle
EP12000386.8 2012-01-20
PCT/EP2013/000096 WO2013107628A2 (de) 2012-01-20 2013-01-14 Halbzeug einer mehrfachsolarzelle und verfahren zur herstellung einer mehrfachsolarzelle

Publications (2)

Publication Number Publication Date
CN104054188A CN104054188A (zh) 2014-09-17
CN104054188B true CN104054188B (zh) 2017-03-08

Family

ID=47666077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380005558.2A Active CN104054188B (zh) 2012-01-20 2013-01-14 多结太阳能电池的半成品以及制造多结太能电池的方法

Country Status (6)

Country Link
US (1) US9666738B2 (zh)
EP (2) EP2618385A1 (zh)
JP (1) JP5893170B2 (zh)
CN (1) CN104054188B (zh)
SG (1) SG11201403340WA (zh)
WO (1) WO2013107628A2 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9831363B2 (en) * 2014-06-19 2017-11-28 John Farah Laser epitaxial lift-off of high efficiency solar cell
WO2015120169A1 (en) 2014-02-05 2015-08-13 Solar Junction Corporation Monolithic multijunction power converter
DE102015006379B4 (de) * 2015-05-18 2022-03-17 Azur Space Solar Power Gmbh Skalierbare Spannungsquelle
DE102016001386A1 (de) 2016-02-09 2017-08-10 Azur Space Solar Power Gmbh Stapelförmige Mehrfachsolarzelle
US10930808B2 (en) 2017-07-06 2021-02-23 Array Photonics, Inc. Hybrid MOCVD/MBE epitaxial growth of high-efficiency lattice-matched multijunction solar cells
WO2019067553A1 (en) 2017-09-27 2019-04-04 Solar Junction Corporation SHORT-LENGTH WAVELENGTH INFRARED OPTOELECTRONIC DEVICES HAVING DILUTED NITRIDE LAYER
DE102018002426A1 (de) * 2018-03-26 2019-09-26 Azur Space Solar Power Gmbh Stapelförmiges III-V-Halbleiterzeug und Herstellungsverfahren
US11742508B2 (en) 2018-11-30 2023-08-29 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11211514B2 (en) 2019-03-11 2021-12-28 Array Photonics, Inc. Short wavelength infrared optoelectronic devices having graded or stepped dilute nitride active regions
US11658256B2 (en) 2019-12-16 2023-05-23 Solaero Technologies Corp. Multijunction solar cells
US11362230B1 (en) 2021-01-28 2022-06-14 Solaero Technologies Corp. Multijunction solar cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2954002A1 (fr) * 2009-12-16 2011-06-17 Emcore Solar Power Inc Procede pour la production de cellules solaires multijonction metamorphiques inversees

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171167A (ja) 1986-01-23 1987-07-28 Mitsubishi Electric Corp 太陽電池の製造方法
US4883561A (en) 1988-03-29 1989-11-28 Bell Communications Research, Inc. Lift-off and subsequent bonding of epitaxial films
FR2681472B1 (fr) 1991-09-18 1993-10-29 Commissariat Energie Atomique Procede de fabrication de films minces de materiau semiconducteur.
DE19649594A1 (de) 1996-11-29 1998-06-04 Deutsche Telekom Ag Optisches Impulsreflektometer
US6071795A (en) 1998-01-23 2000-06-06 The Regents Of The University Of California Separation of thin films from transparent substrates by selective optical processing
JP3856750B2 (ja) * 2001-11-13 2006-12-13 松下電器産業株式会社 半導体装置及びその製造方法
US8173891B2 (en) * 2002-05-21 2012-05-08 Alliance For Sustainable Energy, Llc Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps
WO2004054003A1 (en) * 2002-12-05 2004-06-24 Blue Photonics, Inc. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
CN1938866A (zh) * 2004-03-31 2007-03-28 罗姆股份有限公司 叠层型薄膜太阳能电池及其制造方法
DE102005047152A1 (de) 2005-09-30 2007-04-12 Osram Opto Semiconductors Gmbh Epitaxiesubstrat, Verfahren zu seiner Herstellung und Verfahren zur Herstellung eines Halbleiterchips
US8022292B2 (en) * 2006-10-02 2011-09-20 SolASE Corporation Photovoltaic device employing a resonator cavity
DE102008019268A1 (de) 2008-02-29 2009-09-03 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
CN102177572A (zh) 2008-10-10 2011-09-07 奥塔装置公司 用于外延剥离的台面蚀刻方法和组成
US7785989B2 (en) 2008-12-17 2010-08-31 Emcore Solar Power, Inc. Growth substrates for inverted metamorphic multijunction solar cells
SG176276A1 (en) * 2009-07-17 2012-01-30 Soitec Silicon On Insulator Method of bonding using a bonding layer based on zinc, silicon and oxygen and corresponding structures
JP2011124946A (ja) * 2009-12-14 2011-06-23 Panasonic Corp 固体撮像素子およびこれを備えたカメラ
KR101460086B1 (ko) * 2009-12-15 2014-11-10 소이텍 기판의 재활용 공정
US9559229B2 (en) * 2009-12-31 2017-01-31 Epistar Corporation Multi-junction solar cell
KR100969131B1 (ko) * 2010-03-05 2010-07-07 엘지이노텍 주식회사 발광 소자 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2954002A1 (fr) * 2009-12-16 2011-06-17 Emcore Solar Power Inc Procede pour la production de cellules solaires multijonction metamorphiques inversees

Also Published As

Publication number Publication date
CN104054188A (zh) 2014-09-17
JP2015505641A (ja) 2015-02-23
US9666738B2 (en) 2017-05-30
EP2805357A2 (de) 2014-11-26
WO2013107628A2 (de) 2013-07-25
JP5893170B2 (ja) 2016-03-23
EP2805357B1 (de) 2018-10-24
SG11201403340WA (en) 2014-09-26
US20140326300A1 (en) 2014-11-06
WO2013107628A3 (de) 2013-11-07
EP2618385A1 (de) 2013-07-24

Similar Documents

Publication Publication Date Title
CN104054188B (zh) 多结太阳能电池的半成品以及制造多结太能电池的方法
Deng et al. p-BaSi2/n-Si heterojunction solar cells on Si (001) with conversion efficiency approaching 10%: comparison with Si (111)
Stan et al. High-efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures
CN106887481B (zh) 多结太阳能电池
DE102012004734A1 (de) Mehrfachsolarzelle und deren Verwendung
US20170186904A1 (en) Stack-like multi-junction solar cell
TWI611464B (zh) 半導體元件中應用不同沉積技術所形成之多重接面
US9795542B2 (en) Photoelectric conversion device
CN105552157A (zh) 叠堆状的集成的多结太阳能电池
EP2997603B1 (en) Grouped nanostructured units system forming a metamaterial within the silicon and the manufacturing process to form and arrange them therein
JP5732410B2 (ja) 量子ドット構造体の形成方法ならびに波長変換素子、光光変換装置および光電変換装置
Anctil et al. Status report on emerging photovoltaics
TW201729431A (zh) 堆疊式多接面太陽電池
US11329180B2 (en) Entire solar spectrum multiplying converting platform unit for an optimal light to electricity conversion
CN105229799B (zh) 在硅材料内形成的纳米结构单元及在其中完成它们的制造方法
Haggren et al. III–V Thin Films for Flexible, Cost-Effective, and Emerging Applications in Optoelectronics and Photonics
JP5763603B2 (ja) 光起電装置及びその製造方法
Lantratov et al. AlGaAs/GaAs photovoltaic cells with InGaAs quantum dots
Smith et al. Optical and electrical properties of InAs/GaAs quantum-dot solar cells
TWI409959B (zh) 太陽能電池元件及其裝置
Mizuno et al. A “smart stack” triple-junction cell consisting of InGaP/GaAs and crystalline Si
Stan et al. Evolution of the high efficiency triple junction solar cell for space power
Vu An investigation into current challenges in solar cell technology
Zhang et al. Sensitivity analysis of the theoretical performance of semiconductor upconversion nanostructures
Browne et al. Tandem quantum well solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant