CN104051244B - 脉冲线束 - Google Patents

脉冲线束 Download PDF

Info

Publication number
CN104051244B
CN104051244B CN201410095844.9A CN201410095844A CN104051244B CN 104051244 B CN104051244 B CN 104051244B CN 201410095844 A CN201410095844 A CN 201410095844A CN 104051244 B CN104051244 B CN 104051244B
Authority
CN
China
Prior art keywords
laser diode
carry out
material process
pulsed
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410095844.9A
Other languages
English (en)
Other versions
CN104051244A (zh
Inventor
J·M·哈登
S·R·卡尔森
R·J·马丁森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NLight Inc
Original Assignee
NLight Photonics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NLight Photonics Corp filed Critical NLight Photonics Corp
Publication of CN104051244A publication Critical patent/CN104051244A/zh
Application granted granted Critical
Publication of CN104051244B publication Critical patent/CN104051244B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • B23K1/0056Soldering by means of radiant energy soldering by means of beams, e.g. lasers, E.B.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1674Laser beams characterised by the way of heating the interface making use of laser diodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91441Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time
    • B29C66/91443Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time following a temperature-time profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/949Measuring or controlling the joining process by measuring or controlling the time characterised by specific time values or ranges

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Laser Beam Processing (AREA)

Abstract

诸如对非晶硅进行退火,以形成多晶硅的处理使用曝光至由激光二极管或激光二极管阵列提供的脉冲激光束。基于来自相应的激光二极管的多个束的光束被成形且被引导到衬底。所述激光二极管的占空比被选择成小于约0.2,使得°s可以大于连续波运行中可用的。刚性衬底或柔性衬底上的非晶硅层被处理,以产生具有至少50cm2/Vs的迁移率的多晶硅层。

Description

脉冲线束
技术领域
本公开内容涉及基于激光二极管的材料处理系统。
背景技术
各种类型的硅衬底被用在包含太阳能电池和显示器器件的许多应用中。所谓的非晶硅(a-Si)被用在高分辨率液晶显示器中,以提供有源层,薄膜晶体管可以被限定在所述有源层中。可以使用PECVD将非晶硅沉积在薄膜中。可以通过如下方式来产生低温多晶硅(polysilicon)(LTPS):将a-Si层曝光至高强度的紫外激光脉冲,所述高强度的紫外激光脉冲在不加热下面的衬底的情况下快速地熔融所沉积的a-Si层。然后,a-Si层以晶粒(grain)方式结晶,所述晶粒具有的尺寸依赖于处理期间的温度梯度。LTPS层的典型迁移率在约50-150cm2/V-sec的数量级上,高于与a-Si相关联的0.5cm2/V-sec的迁移率。
常规LTPS处理基于用准分子激光器的表面处理,或所谓的准分子层退火(ELA)。在ELA中,线形的、近似均匀的激光束(典型地,308nm的激光束)作为持续时间约25ns的一系列脉冲被引导到被加热且被熔融的a-Si层。然后,所熔融的层再结晶,以形成一层多晶体硅(polycrystalline silicon)(p-Si)。激光脉冲能量和束均匀性必须被精确地控制。靶a-Si层的每个区域都被曝光至若干准分子激光脉冲,且加热、熔融以及再结晶处理被重复。所产生的LTPS层展现矩形阵列的结晶区(crystalline region)。处理通常以产生结晶区或“晶粒”为目的,对于大多数薄膜晶体管(TFT)背板,结晶区或“晶粒”具有约300nm的尺度。
将准分子激光器维持作为生产设备是复杂且昂贵的。即使最好的准分子激光器也趋于具有非常有限的使用寿命,且准分子激光器腔体及其相关联的光学部件的更换可能是破坏性的且昂贵的。尽管可以获得满意的结果,但是与ELA相关联的处理成本仍居高不下。其他基于激光的处理也需要复杂的或昂贵的设备,因此需要替代的方法。
发明内容
公开了使用脉冲激光二极管以进行材料处理的方法和设备。在一个实施例中,方法包括:选择一个衬底;以及,通过将所述衬底在一个曝光区域中曝光至来自至少一个激光二极管的脉冲光束来处理所述衬底。在特定的实施例中,所述脉冲光束被成形,以形成线束,其中所述曝光区域对应于所述线束。根据一些实施例,所述脉冲光束的光学脉冲具有一个脉冲持续时间T和一个脉冲重复频率f,使得fT小于1、0.5或0.1。在典型的实施例中,所述脉冲光束的波长范围在700nm与980nm之间,且峰脉冲功率是至少10/fT、100/fT或1000/fT瓦特。在一些实施例中,所述脉冲光束由多个激光二极管产生,其中与所述激光二极管相关联的波长在700nm与980nm之间,且在一些实施例中,所述多个激光二极管中的至少两个具有相差至少100nm的发射波长。在其他实施例中,所述多个激光二极管中的至少一个被配置以发射连续光束。在又一些实施例中,所述脉冲光学束作为线束被引导至所述衬底。根据一些实施例,所述脉冲光束和所述衬底中的至少一个被扫描以处理所述衬底。在一些实施例中,扫描被配置成使得所述衬底区域接收至少2个、5个、10个、20个或100个的顺次的光学脉冲。在特定的实施例中,所述衬底是表面上具有非晶硅层的玻璃,且所述脉冲光束被施加,从而在所述表面上产生多晶硅层。在一些情况下,所述非晶硅层被处理,使得多晶硅的迁移率是至少1、10、50、75、100或150cm2/Vs。在附加的替代方案中,所述脉冲光束被引导至光导(light guide),所述光导被配置以使所述脉冲光束均化,且所述衬底被曝光至所均化的光束。
设备包括一个脉冲束源,所述脉冲束源包含被配置以产生相应的脉冲光束的多个激光二极管。束成形系统(beam shaping system)被配置以成形多个脉冲光束,且将一个衬底曝光至所述脉冲光束,其中所述脉冲光束的占空比小于约0.5、0.2、0.1、0.05或0.01。在其他实施例中,所述束成形光学系统包含:一个束均化器(homogenizer),被配置以产生均化束(homogenized beam);以及,一个透镜,被配置以将所述均化束作为线束引导至所述衬底。在一些实施例中,多个光纤被定位,以将多个束中的相应束输送至所述束均化器。
从下面参考附图进行的详细描述中,所公开技术的前述和其他的目的、特征和优势将变得更加明显。
附图说明
图1例示了一个代表性的处理系统,包含激光二极管脉冲束源。
图2例示了一个代表性的处理系统,包含被配置以提供脉冲光束的光纤耦合激光二极管。
图3例示了一个用于将光纤耦合或自由空间光束组合到光管(light pipe)中的代表性的设备。
具体实施方式
如在所述申请和权利要求中使用的,单数形式的“一个(a)”、“一个(an)”以及“所述(the)”包含复数形式,除非上下文另有明确指示。此外,术语“包含”意指“包括”。另外,术语“耦合”不排除在耦合项之间存在中间元件。
在此描述的系统、设备和方法不应被理解为以任何方式进行限制。而是,本公开内容指向各个公开的实施方案(单独地以及彼此间以各种组合和子组合的方式)的所有新颖的且非显而易见的特征和方面。所公开的系统、方法和设备既不限制于任何具体的方面或特征或其组合,也不需要呈现任何一个或多个具体的优势或解决任何一个或多个具体的问题。任何操作理论都是为了便于解释,但是所公开的系统、方法和设备不限制于这样的操作理论。
尽管为了方便呈现而对一些公开的方法的操作以特定的顺次次序进行了描述,但是应理解,这种描述方式包含了重新排列,除非下面陈述的具体的语言需要特定的次序。例如,在一些情况下,顺次描述的操作可以被重新排列或被同时地执行。此外,为了简单起见,附图可能未示出公开的系统、方法和设备可以与其他系统、方法和设备结合使用的各种方式。此外,本说明书有时使用术语“产生”和“提供”来描述公开的方法。这些术语是对执行的实际操作的高水平抽象。对应于这些术语的实际操作将依赖于特定的实施方式而改变,且可容易被本技术领域的普通技术人员识别。
在一些实施例中,值、程序或设备被称作“最低”、“最好”、“最小”或诸如此类。将意识到,这样的描述旨在指示可以在许多被使用的功能替代方案间进行选择,且这样的选择无须更好、更小或以其他方式优于其他选择。
关于代表性的应用(诸如对硅进行退火以形成LTPS、烧蚀(ablation)、或激光尖峰退火(spike annealing)、塑性焊接(plastic welding)、钎焊(soldering)或其他结合(bonding)或退火处理)来描述公开的方法和设备。在一些实施例中,使用自由空间光学系统(free space optics)、纤维光学系统(fiber optics)或其组合来将光束以线束形式输送至衬底。在公开的方法和设备中使用的激光二极管通常产生波长在约600nm和2100nm之间的光束。如果能够提供足够的光学功率,则可以使用单个发射极,但是在大多数应用中,使用激光二极管的阵列或激光二极管堆(stack),具有与自由空间光学系统组合的束或具有被组合在光纤中的束。在任何特定的应用中,基于衬底上的一个或多个衬底材料或衬底层的相关联的吸收系数来选择合适的激光二极管波长。光学功率可以被施加为聚焦斑点(spot)或被施加为线束或其他形状。在许多应用中,线束(line beam)是方便的。
参照图1,基于激光二极管的处理系统100包含被耦合至驱动器105的一个或多个激光二极管102,驱动器105施加具有所选定的幅度和持续时间的脉冲电流,以产生具有所选定的脉冲重复率的、合适的脉冲能量、脉冲功率、脉冲持续时间的光学脉冲。通过线束光学系统104,所述光学脉冲被成形成脉冲线束,且被引导到靶106。如果需要,则束扰乱器(scrambler)或束均化器103可以接收脉冲,且在线束中提供更均匀的功率分布。台(stage)108保持住靶106,且相对于所述线束扫描靶106,以处理所述靶106。控制系统110被耦合至脉冲激光二极管102和台108,从而控制束/靶定位、光束性能以及束聚焦(focus)。对于可用的光学功率,聚焦在靶上的线束面积被选择,以产生特定的处理强度或能量密度(fluence)。基于线束面积(典型地,线束宽度、脉冲重复率以及在所述靶处将获得的脉冲重叠程度)来确定靶扫描速率。在一些处理中,与顺次的脉冲(sequential pulses)相关联的线束具有大的重叠、小的重叠或没有重叠。在许多应用(诸如LTPS处理)中,在特定靶位置处的多重曝光提高了处理质量。有效能量密度范围从约1mJ/cm2至约10,000mJ/cm2、10m J/cm2至约1000mJ/cm2、约20mJ/cm2至约500mJ/cm2或约50mJ/cm2至约125mJ/cm2
可以使用分段透镜(segmented lens)或分段镜、透镜阵列(诸如蝇眼透镜阵列)或具有圆形、矩形或其他横截面区域的锥形或非锥形的光导(light guide)来实施束扰乱器。在Farmer等人的美国专利申请公布文本2012/0168411A1中公开了束扰乱器的一个实施例,所述美国专利申请公布文本以引用的方式纳入本文。
图2是曝光系统200的框图,其中多个激光二极管被耦合,以经由光纤202A-202C提供光束。束成形光学系统206从光纤202A-202C接收束,且将对应的成形束引导到靶210。所述成形束可以被布置成分立的线束或分立的聚焦斑点,或所述束中的一些或全部可以被组合在共同的线束或共同的聚焦斑点中。一个或多个激光二极管(诸如激光二极管堆)可以被耦合到光纤202A-202C的每个,且光纤202A-202C可以具有不同的或相同的纤芯尺寸(coresize),范围从单模纤芯到直径在50μm与1mm之间的多纤芯。与光纤202A-202C的每个相关联的激光二极管可以具有相同的或不同的发射波长,且波长的组合可以被耦合到光纤202A-202C的每一个中。例如,可以使用具有在约800nm与980nm之间的各种发射波长的激光二极管。硅的吸收系数在所述波长范围内的变化约10倍,使得作为深度的函数的能量沉积可以被定制。类似于图2的系统的系统可以在没有光纤的情况下被实施。在一些实施例中,多组激光二极管被耦合至束均化器,且多个均化束被成形且被输送至靶。
图3例示了多发射极(multi-emitter)系统300,其允许沿着轴线301-303所接收的光束通过交织器(interleaver)318被反射到矩形光导320。沿着轴线304-306所接收的光束通过交织器318被传输至光导320,且连同经反射的束,在扰乱之后被引导到靶。交织器318包含被配置以沿着所选定的轴线透射或反射输入束的多个透射区311-313和多个反射区315-317。激光二极管输出束可以通过块光学元件(bulk optical element)被成形且被引导至交织器318,或来自光纤的束可以被准直且被耦合至交织器318。所述束可以具有不同的波长、脉冲持续时间、束横截面区域、形状、数值孔径、脉冲持续时间、脉冲重复率、偏振,或由具有不同的纤芯形状、尺寸或数值孔径的光纤耦合。光导320被示出为具有矩形横截面区域,但是可以使用其他形状,且在一些情况下,使用锥形光导。
包括多个激光二极管的激光二极管系统可以提供至少500W至1kW的连续光学功率。这样的激光二极管和二极管组件也能运行以产生脉冲。可以提供大于可用的连续波功率的峰功率。在具有约1ms或更长的持续时间的脉冲持续时间和激光驱动电流时,激光二极管的内部温度接近连续波条件。不同的激光二极管结构可以具有稍微不同的准CW脉冲持续时间TCW。对于较短的脉冲持续时间,激光二极管峰功率Ppk可以依赖于脉冲持续时间T和脉冲重复频率(PRF)而被增大。然后,峰功率可以高达至少PCW/(PRF·T),其中PRF·T与激光二极管的占空比相关联。通过脉动运行和增大的峰功率,更大的衬底区域可以被曝光,使得可以使用更大的斑点尺寸或更长的线束,同时将激光二极管结的温度维持在不大于连续运行时的温度。例如,当在连续运行中以1W光学功率额定运行的激光二极管以1kHz、20μs的脉冲持续时间运行时可以被脉动至具有50W的峰功率。
在一些实施例中,多发射极系统可以被用来处理硅衬底或者玻璃或其他衬底(包含刚性衬底和柔性衬底)上的硅层,诸如非晶硅。束形状和扫描速率是可调整的,以获得合适的能量密度。通过在大多数激光二极管波长处曝光,束能量被透明衬底(诸如玻璃)传输,从而不用担心衬底损坏或加热。此外,在一些激光二极管波长处,硅的吸收系数足够小(约103/cm,相比于准分子波长为106/cm),从而入射束的一部分通过薄硅层被传输,并且需要更高的束功率来沉积充足的能量。
在一些实施例中,激光脉冲参数被选择以减小平均功率,且保持用于处理可能需要的峰功率。减小平均功率可以减小热应力(thermal stress),使得衬底不翘曲。典型的脉冲宽度在从约1ms(准CW)至约1μs的范围内,使得PRF可以在从约1kHz至约1MHz的范围内,而不超出CW极限。在其他实施例中,脉冲持续时间在从约1ns至约500μs的范围内。
虽然在激光二极管结上没有附加的热应力的情况下,脉冲束允许更高的峰功率,但是脉冲束和连续束可以被组合且被施加至衬底。例如,连续束可以被用于预加热衬底,之后施加脉冲处理束,或者可施加脉冲处理束,之后是后加热束,例如对衬底进行退火,以去除处理束诱发的应力。在一些实施例中,不同的波长被选择,使得第一束(脉冲的或连续的)与衬底上的一个或多个层相互作用,且第二束(脉冲的或连续的)被选择以与一个或多个不同层或衬底自身相互作用。
在一些实施例中,公开的方法和设备被用来对衬底中或衬底上的掺杂层进行退火。所述掺杂层可以是通过快速热退火(RTP)处理进行热退火的、掺杂浓度从约1×1018/cm3至约1×1021/cm3的掺杂多晶硅层。然后,在约1000℃至约1400℃的温度下用脉冲束(诸如脉冲线束)对所述层进行退火约10ms至10s之间的时间。在其他实施例中,公开的方法和设备被用来激活或扩散半导体层或半导体衬底中的掺杂物。在一些实施例中,衬底温度被控制,从而小于约1100℃或其他温度,以减小掺杂物扩散。特定温度的选择通常依赖于材料,从而对于一些处理,避免了熔融。
已经通过参照例示的实施方案描述和例示了所公开技术的原理,应认识到,在不偏离这样的原理的前提下,可以在布置和细节中对所述例示的实施方案进行改型。上面的特定的布置是为了方便例示而提供的,且可以使用其他布置。因此,我们要求保护落入所附权利要求的范围和精神内的所有发明。

Claims (23)

1.一种使用脉冲激光二极管以进行材料处理的方法,包括:
选择一个具有非晶硅层的衬底;
通过组合来自至少第一激光二极管和第二激光二极管的脉冲光束来成形一个脉冲光束,以形成一个光线束,其中由第一激光二极管和第二激光二极管产生的脉冲光束的波长在780nm和980nm之间,并且第一激光二极管和第二激光二极管具有相差至少25nm的发射波长;
通过将所述衬底曝光至所述光线束来处理所述衬底的非晶硅层,从而产生多晶硅层,其中曝光区域对应于所述光线束的横截面面积。
2.根据权利要求1所述的使用脉冲激光二极管以进行材料处理的方法,其中所述脉冲光束的光学脉冲具有在1ms和1μs之间的一个脉冲持续时间T和在1kHz和1MHz之间的一个脉冲重复频率f。
3.根据权利要求2所述的使用脉冲激光二极管以进行材料处理的方法,其中fT小于0.5。
4.根据权利要求2所述的使用脉冲激光二极管以进行材料处理的方法,其中fT小于0.1。
5.根据权利要求1所述的使用脉冲激光二极管以进行材料处理的方法,其中峰脉冲功率是至少10/fT瓦特。
6.根据权利要求5所述的使用脉冲激光二极管以进行材料处理的方法,其中峰脉冲功率是至少100/fT瓦特。
7.根据权利要求6所述的使用脉冲激光二极管以进行材料处理的方法,其中峰脉冲功率是至少1000/fT瓦特。
8.根据权利要求1所述的使用脉冲激光二极管以进行材料处理的方法,其中所述至少第一激光二极管和第二激光二极管中的至少一个被配置以发射一个连续光束。
9.根据权利要求1所述的使用脉冲激光二极管以进行材料处理的方法,还包括扫描所述脉冲光束和所述衬底中的至少一个,从而处理所述衬底。
10.根据权利要求9所述的使用脉冲激光二极管以进行材料处理的方法,其中所述扫描被配置为使得所述衬底接收至少10个顺次的光学脉冲。
11.根据权利要求1所述的使用脉冲激光二极管以进行材料处理的方法,其中所述非晶硅层被处理,以具有至少10cm2/Vs的迁移率。
12.根据权利要求1所述的使用脉冲激光二极管以进行材料处理的方法,其中所述非晶硅层被处理,以具有至少50cm2/Vs的迁移率。
13.根据权利要求1所述的使用脉冲激光二极管以进行材料处理的方法,还包括将所述脉冲光束引导至一个被配置以使所述脉冲光束均化的光导,以及将所述衬底曝光至所均化的光束。
14.根据权利要求1所述的使用脉冲激光二极管以进行材料处理的方法,其中所述衬底包含一个区,该区包含掺杂物,其中所述脉冲光束被施加,从而扩散来自掺杂区的所述掺杂物。
15.根据权利要求14所述的使用脉冲激光二极管以进行材料处理的方法,其中所述衬底包含一个层,所述层具有掺杂区,且所述脉冲光束被施加,从而扩散所述层中的所述掺杂物。
16.根据权利要求15所述的使用脉冲激光二极管以进行材料处理的方法,其中所述层是一个掺杂硅层。
17.根据权利要求1所述的使用脉冲激光二极管以进行材料处理的方法,其中所述衬底在所述曝光区域中被曝光至来自所述至少第一激光二极管和第二激光二极管的所述脉冲光束,从而将至少500℃的温度维持持续100ms和2s之间。
18.根据权利要求1所述的使用脉冲激光二极管以进行材料处理的方法,其中所述衬底在所述曝光区域中被曝光至来自所述至少第一激光二极管和第二激光二极管的所述脉冲光束,从而将至少1000℃的温度维持持续100ms和2s之间。
19.根据权利要求1所述的使用脉冲激光二极管以进行材料处理的方法,其中所述衬底包含一个区,所述区包含掺杂物,其中所述脉冲光束被施加,从而激活掺杂区中的所述掺杂物。
20.根据权利要求19所述的使用脉冲激光二极管以进行材料处理的方法,其中所述衬底包含一个层,所述层具有掺杂区,且所述脉冲光束被施加,从而激活所述层中的所述掺杂物。
21.根据权利要求20所述的使用脉冲激光二极管以进行材料处理的方法,其中所述层是掺杂硅层。
22.根据权利要求1所述的使用脉冲激光二极管以进行材料处理的方法,其中成形所述脉冲光束包含用一个束均化器产生一个均化束;以及,
用一个透镜将所述均化束作为一个线束引导至所述衬底。
23.根据权利要求22所述的使用脉冲激光二极管以进行材料处理的方法,还包括将来自所述第一激光二极管和所述第二激光二极管的束引导至多个光纤,所述多个光纤被定位,以将来自所述第一激光二极管和所述第二激光二极管的束输送到所述束均化器。
CN201410095844.9A 2013-03-15 2014-03-14 脉冲线束 Expired - Fee Related CN104051244B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/840,253 2013-03-15
US13/840,253 US9413137B2 (en) 2013-03-15 2013-03-15 Pulsed line beam device processing systems using laser diodes

Publications (2)

Publication Number Publication Date
CN104051244A CN104051244A (zh) 2014-09-17
CN104051244B true CN104051244B (zh) 2018-01-09

Family

ID=51503931

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410095844.9A Expired - Fee Related CN104051244B (zh) 2013-03-15 2014-03-14 脉冲线束

Country Status (4)

Country Link
US (1) US9413137B2 (zh)
KR (1) KR20140113494A (zh)
CN (1) CN104051244B (zh)
TW (1) TWI598930B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9558973B2 (en) * 2012-06-11 2017-01-31 Ultratech, Inc. Laser annealing systems and methods with ultra-short dwell times
CN109979805B (zh) * 2014-07-03 2023-02-21 Ipg光子公司 通过光纤激光器使非晶硅衬底均匀再结晶的工艺和系统
US10083843B2 (en) 2014-12-17 2018-09-25 Ultratech, Inc. Laser annealing systems and methods with ultra-short dwell times
RU2696335C2 (ru) 2014-12-19 2019-08-01 Конинклейке Филипс Н.В. Модуль лазерного датчика
US11033985B2 (en) * 2015-06-24 2021-06-15 University Of Dundee Method of, and apparatus for, reducing photoelectron yield and/or secondary electron yield
GB201603991D0 (en) 2016-03-08 2016-04-20 Univ Dundee Processing method and apparatus
KR20170024491A (ko) * 2015-08-25 2017-03-07 주식회사 이오테크닉스 레이저 솔더링 장치
US9997888B2 (en) * 2016-10-17 2018-06-12 Cymer, Llc Control of a spectral feature of a pulsed light beam
CN107611005A (zh) * 2017-08-15 2018-01-19 中国科学院宁波材料技术与工程研究所 一种多晶硅薄膜的制备方法及其产物和包含该多晶硅薄膜的太阳能电池

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861622A (ja) 1981-10-09 1983-04-12 Hitachi Ltd 単結晶薄膜の製造方法
NL8902292A (nl) 1989-09-14 1991-04-02 Philips Nv Werkwijze voor het vervaardigen van een een mesa bevattende halfgeleiderinrichting.
AU2001247240A1 (en) * 2000-03-01 2001-09-12 Heraeus Amersil, Inc. Method, apparatus, and article of manufacture for determining an amount of energy needed to bring a quartz workpiece to a fusion weldable condition
US6451631B1 (en) 2000-08-10 2002-09-17 Hitachi America, Ltd. Thin film crystal growth by laser annealing
US20020136507A1 (en) * 2001-02-26 2002-09-26 Musk Robert W. Laser welding components to an optical micro-bench
JP2002301583A (ja) 2001-04-03 2002-10-15 Hitachi Constr Mach Co Ltd レーザ溶接方法及び装置
US7009140B2 (en) 2001-04-18 2006-03-07 Cymer, Inc. Laser thin film poly-silicon annealing optical system
US20040097103A1 (en) * 2001-11-12 2004-05-20 Yutaka Imai Laser annealing device and thin-film transistor manufacturing method
US7023500B2 (en) * 2002-06-05 2006-04-04 Hitachi, Ltd. Display device with active-matrix transistor having silicon film modified by selective laser irradiation
KR20030095313A (ko) 2002-06-07 2003-12-18 후지 샤신 필름 가부시기가이샤 레이저 어닐링장치 및 레이저 박막형성장치
JP2004039660A (ja) 2002-06-28 2004-02-05 Toshiba Corp 多結晶半導体膜の製造方法、薄膜トランジスタの製造方法、表示装置、およびパルスレーザアニール装置
JP2004055771A (ja) * 2002-07-18 2004-02-19 Nec Lcd Technologies Ltd 半導体薄膜の製造方法及びレーザ照射装置
US7056810B2 (en) 2002-12-18 2006-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor apparatus, and semiconductor apparatus and electric appliance
US7304005B2 (en) 2003-03-17 2007-12-04 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing a semiconductor device
JP4373115B2 (ja) * 2003-04-04 2009-11-25 株式会社半導体エネルギー研究所 半導体装置の作製方法
US7364952B2 (en) * 2003-09-16 2008-04-29 The Trustees Of Columbia University In The City Of New York Systems and methods for processing thin films
CN100563894C (zh) 2003-10-03 2009-12-02 住友电气工业株式会社 金属加热方法
JP2005347694A (ja) * 2004-06-07 2005-12-15 Sharp Corp 半導体薄膜の製造方法および半導体薄膜製造装置
JP2006041082A (ja) * 2004-07-26 2006-02-09 Sharp Corp 半導体薄膜の結晶化装置および半導体薄膜の結晶化方法
US7645337B2 (en) * 2004-11-18 2010-01-12 The Trustees Of Columbia University In The City Of New York Systems and methods for creating crystallographic-orientation controlled poly-silicon films
US8399331B2 (en) 2007-10-06 2013-03-19 Solexel Laser processing for high-efficiency thin crystalline silicon solar cell fabrication
US8221544B2 (en) * 2005-04-06 2012-07-17 The Trustees Of Columbia University In The City Of New York Line scan sequential lateral solidification of thin films
US7279721B2 (en) 2005-04-13 2007-10-09 Applied Materials, Inc. Dual wavelength thermal flux laser anneal
CN101432851B (zh) * 2006-03-30 2011-06-15 日立电脑机器株式会社 激光照射装置、激光照射方法以及改性目标体的制造方法
US20080018943A1 (en) 2006-06-19 2008-01-24 Eastman Kodak Company Direct engraving of flexographic printing plates
US7440097B2 (en) * 2006-06-27 2008-10-21 General Electric Company Laser plasma spectroscopy apparatus and method for in situ depth profiling
US7674999B2 (en) * 2006-08-23 2010-03-09 Applied Materials, Inc. Fast axis beam profile shaping by collimation lenslets for high power laser diode based annealing system
JP5073260B2 (ja) 2006-09-29 2012-11-14 日立コンピュータ機器株式会社 レーザアニール装置及びレーザアニール方法
KR100740124B1 (ko) 2006-10-13 2007-07-16 삼성에스디아이 주식회사 다결정 실리콘 박막 트랜지스터 및 그 제조방법
KR20090017084A (ko) 2007-08-14 2009-02-18 주식회사 코윈디에스티 레이저 열처리 장치 및 그 열처리 방법
WO2010032224A2 (en) * 2008-09-22 2010-03-25 Asml Netherlands B.V. Lithographic apparatus, programmable patterning device and lithographic method
CN102369082B (zh) * 2009-03-30 2016-04-06 伯格利-格拉维瑞斯股份有限公司 用于使用激光器借助于掩模和光阑构造具有硬质涂覆的固体表面的方法和设备
US20100320086A1 (en) * 2009-05-13 2010-12-23 KAIST (Korea Advanced Institute of Science and Technology) Flexible biosensor and manufacturing method for the same
JP2011011972A (ja) 2009-06-05 2011-01-20 Lemi Ltd 脆性材料割断装置および脆性材料割断方法
WO2011035279A2 (en) * 2009-09-21 2011-03-24 Board Of Regents, The University Of Texas System Nanocarriers for imaging and therapy applications
JP2011124476A (ja) 2009-12-14 2011-06-23 Sharp Corp レーザドーピング方法
US8835804B2 (en) * 2011-01-04 2014-09-16 Nlight Photonics Corporation Beam homogenizer
US9645502B2 (en) * 2011-04-08 2017-05-09 Asml Netherlands B.V. Lithographic apparatus, programmable patterning device and lithographic method
US20120260847A1 (en) 2011-04-12 2012-10-18 Coherent Gmbh Amorphous silicon crystallization using combined beams from multiple oscillators
WO2014105652A1 (en) * 2012-12-31 2014-07-03 Nlight Photonics Corporaton Short pulse fiber laser for ltps crystallization

Also Published As

Publication number Publication date
TW201435971A (zh) 2014-09-16
CN104051244A (zh) 2014-09-17
TWI598930B (zh) 2017-09-11
KR20140113494A (ko) 2014-09-24
US20140269793A1 (en) 2014-09-18
US9413137B2 (en) 2016-08-09

Similar Documents

Publication Publication Date Title
CN104051244B (zh) 脉冲线束
US10957541B2 (en) Short pulse fiber laser for LTPS crystallization
CN104043900A (zh) 通过线束改进的热处理
CN105719958A (zh) 具有超短停留时间的激光退火系统及方法
JP5322418B2 (ja) レーザ加工方法及びレーザ加工装置
CN102672355A (zh) Led 衬底的划片方法
CN103567630A (zh) 贴合基板的加工方法及加工装置
CN1540390A (zh) 光束均匀器、激光照射装置及半导体装置制造方法
CN106654814A (zh) 可用于晶化和剥离的两用准分子激光系统
CN102626835A (zh) 激光刻划方法以及激光加工装置
CN100426464C (zh) 半导体装置的制造方法
JP2014205194A (ja) レーザ加工装置、レーザ加工装置の制御方法、レーザ装置の制御方法、及び、レーザ装置の調整方法
KR20160017363A (ko) 레이저 결정화 장치
US8163444B2 (en) Mask for crystallizing a semiconductor layer and method of crystallizing a semiconductor layer using the same
JP5541693B2 (ja) レーザアニール装置
CN103081065B (zh) 激光退火装置及激光退火方法
WO2012157410A1 (ja) レーザ処理装置
JP2012033668A (ja) レーザ加工方法
EP2943973B1 (en) Thermal processing by transmission of mid infra-red laser light through semiconductor substrate
CN104282539A (zh) 一种多晶硅制作方法
KR20150060743A (ko) 결정질 반도체의 제조 방법 및 결정질 반도체의 제조 장치
CN106783529B (zh) 一种连续型非晶硅薄膜处理系统及方法
JP6687497B2 (ja) 結晶半導体膜製造方法、結晶半導体膜製造装置および結晶半導体膜製造装置の制御方法
CN209515607U (zh) 一种用于制作多晶硅薄膜的激光照射系统
JP2004103794A (ja) シリコン結晶化方法及びレーザアニール装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Washington State

Applicant after: NLIGHT, Inc.

Address before: Washington State

Applicant before: Enai Laser Technology Co.,Ltd.

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180109

CF01 Termination of patent right due to non-payment of annual fee