CN104043801A - 控制微合金钢板坯角部横裂纹的二次冷却方法 - Google Patents

控制微合金钢板坯角部横裂纹的二次冷却方法 Download PDF

Info

Publication number
CN104043801A
CN104043801A CN201410268120.XA CN201410268120A CN104043801A CN 104043801 A CN104043801 A CN 104043801A CN 201410268120 A CN201410268120 A CN 201410268120A CN 104043801 A CN104043801 A CN 104043801A
Authority
CN
China
Prior art keywords
temperature
casting blank
austenite
strand
corner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410268120.XA
Other languages
English (en)
Other versions
CN104043801B (zh
Inventor
李树森
杨小刚
张立峰
张丽丽
马威
李中华
倪有金
张颖华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Shougang Co Ltd
Original Assignee
Beijing Shougang Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Shougang Co Ltd filed Critical Beijing Shougang Co Ltd
Priority to CN201410268120.XA priority Critical patent/CN104043801B/zh
Publication of CN104043801A publication Critical patent/CN104043801A/zh
Application granted granted Critical
Publication of CN104043801B publication Critical patent/CN104043801B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

本发明属于连铸技术领域,特别涉及一种控制微合金钢板坯角部横裂纹的二次冷却方法,在铸坯出结晶之后至脱离弯曲段之前通过弱冷模式对铸坯角部的温度进行控制,使得铸坯角部温度不低于Ae3温度,在平衡状态下时,奥氏体与铁素体共存的最高温度;在进入矫直段之前,将弱冷模式转变为强冷模式,使得铸坯角部温度达到Ar3温度,即在铸坯冷却过程中,奥氏体开始向铁素体转变的温度;进入矫直段后,继续采用强冷模式。本发明通过优化连铸板坯二冷模式控制,先通过弱冷模式获得尺寸更大且分布更为弥散的析出物,大大增强铸坯的塑性,然后通过强冷模式获得大比例的晶内铁素体,减小应力集中,进而大大降低了铸坯角部横裂纹发生的概率,简单易实现。

Description

控制微合金钢板坯角部横裂纹的二次冷却方法
技术领域
本发明属于连铸技术领域,特别涉及一种控制微合金钢板坯角部横裂纹的二次冷却方法。
背景技术
通过按照特定的工艺流程将一定量的微合金元素(如钒、钛、铌等)添加进钢中,即可形成具有特殊性能的微合金钢。结合这些微合金元素的碳氮化物可以调节形变奥氏体的再结晶过程并能阻止晶粒长大,间接的起到细化晶粒的作用,还能对基体产生沉淀强化,最终提高钢材的强度和韧性。若微合金与钢结合的过程控制不好,结合有AlN、Nb、Ti和V的碳氮化物大量在晶界析出,促使钢的塑性降低,且会在钢板的表面角部产生横裂纹。随着对生产率和热送热轧率要求的不断提高,铸坯角部横裂纹成为影响连铸生产顺行的重要缺陷,防止铸坯角部横裂纹成为本领域技术人员致力于解决的问题。
然而,连铸坯表面角部横裂纹一直是冶金行业的重点和难点,目前对其产生机理的普遍共识为:微合金钢在凝固过程中存在三个低塑性区间,与角部横裂纹密切相关的是第III脆性区,温度在900℃-700℃之间,铸坯在次脆性区内进行矫直致使角部开裂。引发微合金钢在900℃-700℃的温度区间内塑性降低的原因主要有两方面:一方面是细小的析出物在奥氏体晶界析出使得奥氏体晶界产生滑移,进而使其塑性降低;另一方面,在先共析铁素体薄膜在奥氏体晶界生成,因铁素体的强度只有奥氏体的四分之一,在先共析铁素体在奥氏体晶界的产生易引发局部应力集中,最终导致铸坯发生开裂。
目前,控制铸坯表面角部横裂纹的措施主要有“热行法”和“冷行法”。在对微合金钢进行弯曲和矫直的过程中,控制铸坯角部的温度不在第III脆性区对应的温度区间,进而减少铸坯角部出现横裂纹的情况发生。但是由于铸坯角部受到窄面和宽面的二维传热,在实际生产中以上方法很难保证角部温度在弯曲和矫直段完全避开脆性区。另外,还可以控制微合金钢的方法是通过改变铸坯表层的微观组织,使其形成一层抗裂性好的组织。或者在铸坯表层实现晶粒的细化和对第二相粒子。但会大大增加生产成本,且不能保证减少铸坯角部横裂纹的成功率,在国内难以成功应用。
申请号201010259985.1-控制连铸坯表层凝固组织的二次冷却方法,连铸坯出结晶器后,在铸机垂直段以3~10℃/s冷速冷却,冷却时间为50~160秒,在此时间对应的冷却区段内二冷水量增大为宽面水量为260~600L/min,窄面水量为50~125L/min,铸坯在铸机垂直段的强冷方式结束后在后面的冷却区段采用0.55~0.8L/kg比水量的二冷冷却方式。此方法通过再铸机垂直段采用通常水量2-5倍的强冷模式,以控制铸坯表层的析出物和凝固组织。但该方法在垂直段冷却强度过大,铸坯的温度过低,在铸坯进行弯曲和矫直的过程中,容易因塑性降低而产生裂纹。
申请号201210348907.8-降低微合金钢板坯角部横裂纹的二次冷却方法,在铸坯出结晶器后经过垂直段时,前期通过控制二次冷却的冷却速度使铸坯冷却温度达到γ→α转变开始温度,采用强冷却使大量的微合金元素来不及扩散而弥散分布于奥氏体晶粒内部,得到细小弥散分布的第二相颗粒,第二相颗粒均匀分布于晶内成为铁素体的形核质点,铸坯表面铁素体细小弥散;后期减小铸坯冷却水量,利用铸坯凝固潜热使铸坯回热温升,控制回温速度,使铸坯出垂直段时,达到奥氏体相变温度以上;回温过程中,钢中的组织发生α→γ转变,奥氏体晶粒来不及长大,晶粒较细,同时,回热温度低于微合金元素的固溶温度,微合金元素很难回溶,且由于回温过程十分短暂,析出物也来不及聚合长大;整个过程经过γ→α→γ转变,使最后的转变产物晶粒更细小;铸坯离开垂直段后,进入随后的二次冷却区时采用缓慢冷却模式。该方法主要通过要控制铸坯垂直段的冷却,在垂直段前半段以强的冷却速率使铸坯角部温度达到奥氏体向铁素体转变的开始温度,后期减小冷却水流量控制角部温度回温到奥氏体相变温度以上,以实现细化晶粒和控制钢中的第二相粒子行为,从而提高铸坯的高温力学性能。该方法要求铸机的垂直段足够长来保证γ→α→γ转变的完成,这对国内各厂的连铸机来说很难实现。
因此,亟需一种适应国内连铸机的控制微合金钢板坯角部横裂纹的二次冷却方法。
发明内容
本发明所要解决的技术问题是提供一种控制微合金钢板坯角部横裂纹的二次冷却方法,获得弥散的析出物和大比例的晶内铁素体,降低铸坯角部横裂纹发生概率。
为解决上述技术问题,本发明提供了一种控制微合金钢板坯角部横裂纹的二次冷却方法,在铸坯出结晶之后至脱离弯曲段之前通过弱冷模式对铸坯角部的温度进行控制,使得铸坯角部温度不低于Ae3温度,即在平衡状态下时,奥氏体与铁素体共存的最高温度;
在进入矫直段之前,将所述弱冷模式转变为强冷模式,使得铸坯角部温度达到Ar3温度,即在铸坯冷却过程中,奥氏体开始向铁素体转变的温度;
进入矫直段后,继续采用所述强冷模式。
进一步,所述使得铸坯角部温度不低于Ae3温度和所述得铸坯角部温度达到Ar3温度,即在平衡状态下时奥氏体与铁素体共存的最高温度及在铸坯冷却过程中奥氏体开始向铁素体转变的温度,均根据对不同钢种的实验测试得到或者由理论计算获得。
进一步,所述弱冷模式的比水量为0.2-0.3L/kg,所述强冷模式的比水量为0.8-1.5L/kg。
相对于现有技术,本发明提供的一种控制微合金钢板坯角部横裂纹的二次冷却方法,通过弱冷模式获得尺寸更大且分布更为弥散的析出物,大大增强的铸坯塑性,然后通过强冷模式获得大比例的铁素体,减小应力集中,降低裂纹敏感性,进而大大降低了铸坯角部横裂纹发生的概率避开了900-700℃的易脆区,操作简单且易实现,适用于各类连铸机。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的一种控制微合金钢板坯角部横裂纹的二次冷却方法的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
实施方式一
如图1所示,图1为本发明实施例一提供的一种控制微合金钢板坯角部横裂纹的二次冷却方法的流程示意图。
步骤S100:在铸坯出结晶之后至脱离弯曲段之前通过弱冷模式对铸坯角部的温度进行控制,使得铸坯角部温度不低于Ae3温度,即在平衡状态下时,奥氏体与铁素体共存的最高温度。在本实施例中,对处于铸坯出结晶之后至脱离弯曲段之前时间段的铸坯角部进行温度控制,使得铸坯角部温度在弱冷模式的作用下,以较小的冷却速率获得尺寸更大且分布更加弥撒的析出物。其中Ae3温度需根据不同钢种的试验测试或者经过本领域的理论知识计算获得。
可以理解的是,将弱冷模式的比水量设置为0.2L/kg至0.3L/kg,使得铸坯角部温度以较为缓慢的速度下降至不低于奥氏体与铁素体共存的最高温度。
步骤S200:在进入矫直段之前,将所述弱冷模式转变为强冷模式,使得铸坯角部温度达到Ar3温度,即在铸坯冷却过程中,奥氏体开始向铁素体转变的温度。
在本实施例中,即在进入矫直段之前,加大对铸坯的冷却水量,通过将比水量增大。致使铸坯角部温度以较快速度下降至奥氏体开始向铁素体转变的温度。其中Ar3温度需根据不同钢种的试验测试或者经过本领域的理论知识计算获得。
可以理解的是,在进入矫直段之前,比水量由0.2L/kg至0.3L/kg之间增加至0.8L/kg至1.5L/kg之间。致使铸坯角部温度以较快速度下降至奥氏体开始向铁素体转变的温度。
步骤S300:进入矫直段后,继续采用所述强冷模式,促使铸坯角部以较大的冷却速率降温,大大增大了铁素体的生长速率,促进铁素体在晶内生成,大的冷却速率有利于获得大比例的铁素体。
本发明将铸坯冷却过程分为在铸坯出结晶之后至脱离弯曲段之前的时间段及进入矫直段的时间段,并在铸坯出结晶之后至脱离弯曲段之前的时间段内,通过弱冷模式将铸坯角部温度以较为缓慢的速度降至不低于奥氏体与铁素体共存的最高温度,大大促进了更大尺寸且分布更为弥撒的析出物形成,有利于奥氏体晶界滑移,增加了铸坯的塑性;同时通过强冷模式将铸坯角部温度以较快的速度降至奥氏体开始向铁素体转变的温度,大大促进了铁素体的生长速率,进而减少了应力的集中,降低了裂纹敏感性。如此,大大降低了铸坯角部出现横裂纹的概率。
实施方式二
某钢厂在浇铸230mm规格板坯的时候,铸坯内外弧均发生了严重的角部横裂纹,其采用钢种为Q345X,断面尺寸为1500mm×230mm,拉速为1.3m/min。采用本发明的方案重新设定二冷冷却模型,二冷冷却模型设置为:在铸坯出结晶之后至脱离弯曲段之前的时间段内,将比水量设为0.28L/kg,直至铸坯冷却至在平衡状态下时,奥氏体与铁素体共存的最高温度。可以理解的是,奥氏体与铁素体共存的最高温度需对该钢厂采用的钢材进行试验测试得到准确的值。并在之后到达矫直段末端的时间段内将比水量增加至1.2L/kg,直至铸坯冷却至奥氏体开始向铁素体转变的温度。可以理解的是,奥氏体开始向铁素体转变的温度也需对该钢厂采用的钢材进行试验试得准确的值。
之后对下线铸坯进行扫弧检查,铸坯角部质量良好,没有发现角部横裂纹。
实施方式三
某钢厂在浇铸230mm规格板坯的时候,铸坯内外弧均发生了严重的角部横裂纹,其采用钢种为Q345R-1,断面尺寸为2050mm×230mm,拉速为1.0m/min。采用本发明的方案重新设定二冷冷却模型,二冷冷却模型设置为:在铸坯出结晶之后至脱离弯曲段之前的时间段内,将比水量设为0.24L/kg,直至铸坯冷却至平衡状态下时,奥氏体与铁素体共存的最高温度。可以理解的是,奥氏体与铁素体共存的最高温度需对该钢厂采用的钢材进行试验测试得到准确的值。并在之后到达矫直段末端的时间段内将比水量增加至0.8L/kg,直至铸坯冷却至奥氏体开始向铁素体转变的温度。可以理解的是,奥氏体开始向铁素体转变的温度也需对该钢厂采用的钢材进行试验试得准确的值。
之后对下线铸坯进行扫弧检查,相对于未采用重新设定的二冷冷却模型生产的铸坯,角部横裂纹的发生率了下降50%。
实施方式四
某钢厂在浇铸230mm规格板坯的时候,铸坯内外弧均发生了严重的角部横裂纹,其采用钢种为Q345C,断面尺寸为1800mm×230mm,拉速为1.1m/min采用本发明的方案重新设定二冷冷却模型,二冷冷却模型设置为:在铸坯出结晶之后至脱离弯曲段之前的时间段内,将比水量设为0.26L/kg,直至铸坯冷却至平衡状态下时,奥氏体与铁素体共存的最高温度。可以理解的是,奥氏体与铁素体共存的最高温度需对该钢厂采用的钢材进行试验测试得到准确的值。并在之后到达矫直段末端的时间段内将比水量增加至1.0L/kg,直至铸坯冷却至奥氏体开始向铁素体转变的温度。可以理解的是,奥氏体开始向铁素体转变的温度也需对该钢厂采用的钢材进行试验试得准确的值。
之后对下线铸坯进行扫弧检查,铸坯角部横裂纹的发生率由原来的37.5%下降为5%。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (3)

1.一种控制微合金钢板坯角部横裂纹的二次冷却方法,其特征在于,
在铸坯出结晶之后至脱离弯曲段之前通过弱冷模式对铸坯角部的温度进行控制,使得铸坯角部温度不低于Ae3温度,即在平衡状态下时,奥氏体与铁素体共存的最高温度;
在进入矫直段之前,将所述弱冷模式转变为强冷模式,使得铸坯角部温度达到Ar3温度,即在铸坯冷却过程中,奥氏体开始向铁素体转变的温度;
进入矫直段后,继续采用所述强冷模式。
2.如权利要求1所述的控制微合金钢板坯角部横裂纹的二次冷却方法,其特征在于,所述使得铸坯角部温度不低于Ae3温度和所述使得铸坯角部温度达到Ar3温度,即在平衡状态下时奥氏体与铁素体共存的最高温度及在铸坯冷却过程中奥氏体开始向铁素体转变的温度,均根据对不同钢种的实验测试得到或者由理论计算获得。
3.如权利要求1或2任一项所述的控制微合金钢板坯角部横裂纹的二次冷却方法,其特征在于,所述弱冷模式的比水量为0.2-0.3L/kg,所述强冷模式的比水量为0.8-1.5L/kg。
CN201410268120.XA 2014-06-16 2014-06-16 控制微合金钢板坯角部横裂纹的二次冷却方法 Active CN104043801B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410268120.XA CN104043801B (zh) 2014-06-16 2014-06-16 控制微合金钢板坯角部横裂纹的二次冷却方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410268120.XA CN104043801B (zh) 2014-06-16 2014-06-16 控制微合金钢板坯角部横裂纹的二次冷却方法

Publications (2)

Publication Number Publication Date
CN104043801A true CN104043801A (zh) 2014-09-17
CN104043801B CN104043801B (zh) 2016-07-06

Family

ID=51497467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410268120.XA Active CN104043801B (zh) 2014-06-16 2014-06-16 控制微合金钢板坯角部横裂纹的二次冷却方法

Country Status (1)

Country Link
CN (1) CN104043801B (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105478703A (zh) * 2015-12-11 2016-04-13 安阳钢铁股份有限公司 一种防止微合金化钢连铸板坯角部横裂纹的方法
CN105642853A (zh) * 2016-01-28 2016-06-08 北京科技大学 一种连铸坯冷却处理方法
CN106734202A (zh) * 2016-12-27 2017-05-31 中冶连铸技术工程有限责任公司 棒线材和窄带轧制生产线及其生产方法
CN107206474A (zh) * 2015-01-15 2017-09-26 新日铁住金株式会社 铸坯的连续铸造方法
CN107287487A (zh) * 2016-03-31 2017-10-24 上海梅山钢铁股份有限公司 J55级别微合金钢角横裂解决方法
CN107598108A (zh) * 2017-09-28 2018-01-19 江西理工大学 一种判定连铸坯发生角部横裂纹所在工序的方法
CN107695313A (zh) * 2017-08-22 2018-02-16 中冶连铸技术工程有限责任公司 一种解决铸坯边角裂纹的方法及喷嘴布置方法
CN108396133A (zh) * 2017-02-05 2018-08-14 鞍钢股份有限公司 一种高镍钢钢锭的加热方法
CN108393456A (zh) * 2017-02-05 2018-08-14 鞍钢股份有限公司 一种q345b厚板铸坯组织控制方法
CN108907131A (zh) * 2018-07-10 2018-11-30 邯郸钢铁集团有限责任公司 一种降低板坯连铸头尾坯表面裂纹的二冷控制方法
CN109014108A (zh) * 2018-08-23 2018-12-18 德龙钢铁有限公司 一种消除冷轧基料铸坯角部横裂纹的方法
CN109202029A (zh) * 2018-09-04 2019-01-15 张家港荣盛炼钢有限公司 防止微合金钢连铸坯矫直和热送裂纹的生产方法
CN111482564A (zh) * 2020-03-31 2020-08-04 包头钢铁(集团)有限责任公司 一种板坯表面角部横裂纹产生原因的判定方法
CN113042695A (zh) * 2021-03-10 2021-06-29 南京钢铁股份有限公司 一种厚板坯角部裂纹控制工艺
CN113125253A (zh) * 2021-03-03 2021-07-16 江阴兴澄特种钢铁有限公司 一种提高微合金钢连铸板坯表面质量的试验方法
CN113145813A (zh) * 2021-04-16 2021-07-23 鞍钢股份有限公司 一种防止小方坯球扁钢连铸坯角部裂纹方法
CN114505461A (zh) * 2022-01-07 2022-05-17 吉林建龙钢铁有限责任公司 一种改善板坯角部裂纹和中间裂纹的方法
CN114653916A (zh) * 2022-02-28 2022-06-24 柳州钢铁股份有限公司 一种板坯铸坯角部质量缺陷边部二冷水量调整控制方法
CN114734014A (zh) * 2022-03-31 2022-07-12 东北大学 一种微合金钢板坯角部裂纹控制的冷却方法及系统
CN114850423A (zh) * 2022-05-21 2022-08-05 湖南华菱湘潭钢铁有限公司 一种中碳锰钢连铸大方坯角部裂纹的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788597A (ja) * 1993-09-17 1995-04-04 Kawasaki Steel Corp 連続鋳造方法
JPH07251265A (ja) * 1994-03-16 1995-10-03 Nippon Steel Corp 鋼鋳片のスカーフィング方法
JP2001087846A (ja) * 1999-09-22 2001-04-03 Kawasaki Steel Corp 鋼スラブの連続鋳造方法および連続鋳造装置
CN102371350A (zh) * 2010-08-25 2012-03-14 攀钢集团钢铁钒钛股份有限公司 一种电工钢的连铸方法
CN102380596A (zh) * 2011-11-21 2012-03-21 安阳钢铁股份有限公司 一种双流板坯连铸机调整二冷水量和辊缝值方法
CN102861890A (zh) * 2012-09-19 2013-01-09 中冶南方工程技术有限公司 降低微合金钢板坯角部横裂纹的二次冷却方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788597A (ja) * 1993-09-17 1995-04-04 Kawasaki Steel Corp 連続鋳造方法
JPH07251265A (ja) * 1994-03-16 1995-10-03 Nippon Steel Corp 鋼鋳片のスカーフィング方法
JP2001087846A (ja) * 1999-09-22 2001-04-03 Kawasaki Steel Corp 鋼スラブの連続鋳造方法および連続鋳造装置
CN102371350A (zh) * 2010-08-25 2012-03-14 攀钢集团钢铁钒钛股份有限公司 一种电工钢的连铸方法
CN102380596A (zh) * 2011-11-21 2012-03-21 安阳钢铁股份有限公司 一种双流板坯连铸机调整二冷水量和辊缝值方法
CN102861890A (zh) * 2012-09-19 2013-01-09 中冶南方工程技术有限公司 降低微合金钢板坯角部横裂纹的二次冷却方法

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107206474A (zh) * 2015-01-15 2017-09-26 新日铁住金株式会社 铸坯的连续铸造方法
CN107206474B (zh) * 2015-01-15 2019-07-09 日本制铁株式会社 铸坯的连续铸造方法
CN105478703A (zh) * 2015-12-11 2016-04-13 安阳钢铁股份有限公司 一种防止微合金化钢连铸板坯角部横裂纹的方法
CN105642853A (zh) * 2016-01-28 2016-06-08 北京科技大学 一种连铸坯冷却处理方法
CN107287487A (zh) * 2016-03-31 2017-10-24 上海梅山钢铁股份有限公司 J55级别微合金钢角横裂解决方法
CN106734202A (zh) * 2016-12-27 2017-05-31 中冶连铸技术工程有限责任公司 棒线材和窄带轧制生产线及其生产方法
CN108393456A (zh) * 2017-02-05 2018-08-14 鞍钢股份有限公司 一种q345b厚板铸坯组织控制方法
CN108396133A (zh) * 2017-02-05 2018-08-14 鞍钢股份有限公司 一种高镍钢钢锭的加热方法
CN107695313A (zh) * 2017-08-22 2018-02-16 中冶连铸技术工程有限责任公司 一种解决铸坯边角裂纹的方法及喷嘴布置方法
CN107598108A (zh) * 2017-09-28 2018-01-19 江西理工大学 一种判定连铸坯发生角部横裂纹所在工序的方法
CN108907131A (zh) * 2018-07-10 2018-11-30 邯郸钢铁集团有限责任公司 一种降低板坯连铸头尾坯表面裂纹的二冷控制方法
CN108907131B (zh) * 2018-07-10 2020-07-03 邯郸钢铁集团有限责任公司 一种降低板坯连铸头尾坯表面裂纹的二冷控制方法
CN109014108A (zh) * 2018-08-23 2018-12-18 德龙钢铁有限公司 一种消除冷轧基料铸坯角部横裂纹的方法
CN109202029A (zh) * 2018-09-04 2019-01-15 张家港荣盛炼钢有限公司 防止微合金钢连铸坯矫直和热送裂纹的生产方法
CN111482564A (zh) * 2020-03-31 2020-08-04 包头钢铁(集团)有限责任公司 一种板坯表面角部横裂纹产生原因的判定方法
CN113125253A (zh) * 2021-03-03 2021-07-16 江阴兴澄特种钢铁有限公司 一种提高微合金钢连铸板坯表面质量的试验方法
CN113042695A (zh) * 2021-03-10 2021-06-29 南京钢铁股份有限公司 一种厚板坯角部裂纹控制工艺
CN113145813A (zh) * 2021-04-16 2021-07-23 鞍钢股份有限公司 一种防止小方坯球扁钢连铸坯角部裂纹方法
CN113145813B (zh) * 2021-04-16 2022-06-14 鞍钢股份有限公司 一种防止小方坯球扁钢连铸坯角部裂纹方法
CN114505461A (zh) * 2022-01-07 2022-05-17 吉林建龙钢铁有限责任公司 一种改善板坯角部裂纹和中间裂纹的方法
CN114653916A (zh) * 2022-02-28 2022-06-24 柳州钢铁股份有限公司 一种板坯铸坯角部质量缺陷边部二冷水量调整控制方法
CN114653916B (zh) * 2022-02-28 2023-08-08 柳州钢铁股份有限公司 一种板坯铸坯角部质量缺陷边部二冷水量调整控制方法
CN114734014A (zh) * 2022-03-31 2022-07-12 东北大学 一种微合金钢板坯角部裂纹控制的冷却方法及系统
CN114734014B (zh) * 2022-03-31 2024-01-19 东北大学 一种微合金钢板坯角部裂纹控制的冷却方法及系统
CN114850423A (zh) * 2022-05-21 2022-08-05 湖南华菱湘潭钢铁有限公司 一种中碳锰钢连铸大方坯角部裂纹的控制方法
CN114850423B (zh) * 2022-05-21 2023-05-23 湖南华菱湘潭钢铁有限公司 一种中碳锰钢连铸大方坯角部裂纹的控制方法

Also Published As

Publication number Publication date
CN104043801B (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
CN104043801A (zh) 控制微合金钢板坯角部横裂纹的二次冷却方法
CN106694834B (zh) 一种基于钢种凝固特性与组织演变规律的微合金钢连铸冷却控制方法
CN102861890A (zh) 降低微合金钢板坯角部横裂纹的二次冷却方法
CN102392187B (zh) 一种含Cr的管线钢X70热轧平板及生产方法
CN1995431A (zh) 一种中薄板坯连铸连轧生产超细晶粒钢板的方法及钢板
CN104525560A (zh) 普碳钢/含Nb钢20-30mm中厚板麻面的有效控制方法
CN102417959A (zh) 一种免退火处理热轧s50c板带的生产方法
CN105369126B (zh) 一种合金钢及其精轧螺纹钢筋的生产方法以及精轧螺纹钢筋
CN103981463A (zh) 一种韧性优良的x70弯管用热轧平板及其生产方法
CN107414049B (zh) 连铸板坯角部表层金相组织的细化控制方法
CN103981460A (zh) 高韧性x80弯管用热轧平板钢及其生产方法
CN103981462A (zh) 韧性优良的大壁厚x80低温站场用钢及其制造方法
CN104947000A (zh) 屈服强度700MPa级高强钢及TMCP制造方法
CN101994059A (zh) 一种低成本生产厚壁x70管线钢卷板的方法
CN107794449A (zh) 一种超高强度磁轭钢及其制造方法
CN104789887A (zh) 一种超厚规格抗hic及抗ssccx65管线钢板及其制造方法
CN105950972A (zh) 缩短工序时间的厚规格x80管线用钢板及其制造方法
CN106282766B (zh) 低表面粗糙度的500MPa酸洗钢及其生产方法
CN104141099A (zh) 一种超厚规格x70热轧板卷的制造方法
CN108393456B (zh) 一种q345b厚板铸坯组织控制方法
CN104607609A (zh) 一种提高铸坯表面塑性的二冷喷嘴布置方法及二冷控制方法
CN102899580A (zh) 一种大截面奥氏体不锈钢厚板及其制造方法
CN110004359B (zh) 一种高均匀纵横向韧性宽幅钢板及其tmcp工艺生产方法
CN111020375B (zh) 一种v-n微合金化钢中厚板及其生产工艺
CN104018063A (zh) 低合金高强度q420c中厚钢板及其生产方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant