CN104039690A - 用于燃料电池应用的液体燃料脱硫的方法和系统 - Google Patents

用于燃料电池应用的液体燃料脱硫的方法和系统 Download PDF

Info

Publication number
CN104039690A
CN104039690A CN201280062031.9A CN201280062031A CN104039690A CN 104039690 A CN104039690 A CN 104039690A CN 201280062031 A CN201280062031 A CN 201280062031A CN 104039690 A CN104039690 A CN 104039690A
Authority
CN
China
Prior art keywords
fuel
sofc
gas
liquid
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280062031.9A
Other languages
English (en)
Inventor
H·莫达雷斯
T·罗斯特鲁普尼伊森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Topsoe Fuel Cell AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topsoe Fuel Cell AS filed Critical Topsoe Fuel Cell AS
Publication of CN104039690A publication Critical patent/CN104039690A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

一种用于将用于与燃料电池相连的液体化石燃料的脱硫方法,该方法在一种系统中实施,该系统包括:蒸发器单元(1),其中液体燃料首先被蒸发;气相加氢脱硫器形式的固定床反应器(2),其中在高活性加氢裂化(HAHT)催化剂之上于常压下用氢气处理该燃料,由此使硫物质转化为H2S;吸附器(3),其中所产生的硫化氢能被吸附于催化床;和燃料重整器(4),其中燃料产物被转化为将供给到SOFC系统(6)的合成气。该蒸发器单元(1)包括液体喷射装置,其优选压电式喷嘴形式。

Description

用于燃料电池应用的液体燃料脱硫的方法和系统
本发明涉及用于液体化石燃料脱硫、优选常压脱硫的方法和系统,所述液体化石燃料将用于与燃料电池相连,尤其是与固体氧化物燃料电池(SOFC)相连。
常规的加氢脱硫(HDS),其在炼油厂中十分常见,构成了本发明最接近的背景。由于对低硫燃料的需求不断增长,在最近这些年加氢处理化石燃料以降低其硫含量已变得越来越重要。因此,欧洲炼油厂已经从2005年起供应含有最大50ppm的硫(按重量计)的柴油和汽油燃料,并在2009年已将该含量进一步降至10ppm的硫。常规的HDS被不断地优化以除去硫,并同时确保尽可能小地干扰燃料的组成。为助于此优化,在燃料催化裂化(FCC)领域内的连续研究已提供了能够使炼油厂在无需任何后处理的情况下满足用于超低量硫柴油和汽油的未来规格的催化剂。
SOFC是一种在其中通过电化学反应使燃料气体的化学能直接转化为电能的能量转换装置。单一的SOFC能够产生大约1伏的电压。因此,为了使用燃料电池作为电源,必须构造包括燃料电池堆的燃料电池系统,其中多个单元电池彼此串联连接。
典型的SOFC系统包括用于产生电力的SOFC堆、用于向该堆供给氢气/烃/合成气和氧气的燃料处理装置、用于把由SOFC堆产生的DC电变换为AC电的电能变换系统、以及用于回收在SOFC中产生的热量的热回收装置。
燃料电池可分为碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、聚合物膜燃料电池(PEMFC)、熔融碳酸盐燃料电池(MCFC)和固体氧化物燃料电池(SOFC),后者是目前最令人感兴趣和最有前途的类别。
重整与燃料电池相连的燃料的目的是把作为原料提供的燃料,例如化石燃料,转化为该堆所需要的燃料类型。由于SOFC在高温下运行,SOFC可使用CO并且也可使用CH4作为燃料,但是在SOFC中能够使用其它类型的原燃料当然是便利的。
因为分别与非常规的基于非氢的和常规的基于氢的技术的无效性和无效率有关,在SOFC系统中的物流(logistic)液体燃料(硫含量按重量计在数百ppm的范围内)的脱硫是该系统发展中的主要挑战。尽管加氢脱硫的常规技术在脱硫方面有效,但由于高运行压力是喷淋床反应器中的必要条件,它并不是个有效率的方法。在另一方面,非常规的基于非氢的技术(主要是在常压下的物理吸附)在能耗方面是一种有效率的方法,但对于脱硫并不像传统的加氢脱硫(HDS)那样有效。
现有技术包括了多个涉及燃料脱硫的参考文献。例如,EP 1.468.463 A1描述了一种从用于燃料电池的燃料供应流中脱硫的方法,其目的是生产富氢的燃料流,其用于氢化燃料供应流。在这一专利申请中所描述的系统是结合了氢气增压单元的常规HDS(加氢脱硫)单元。
US 7.318.845涉及一种馏分燃料流重整器系统,其中,燃料进料流首先被分成两支工艺流,即富含脂肪族化合物的贫硫气体流以及富含芳香族化合物和硫的液体残留物流。将富含脂肪族化合物的气体流脱硫,与蒸汽混合并转化为富氢的产物流。降低送往脱硫和重整操作的硫和芳香族烃的量使得整个装置的尺寸和重量最小化,因此所描述的系统非常适合用于燃料电池。
US 2010/0104897 A1公开了一种在固体氧化物燃料电池(SOFC)系统中实施的燃料处理方法。该方法包括,使用脱硫器和初级重整器从基于烃的燃料中脱硫以得到富氢的重整气,以及使用次级重整器选择性分解低级烃并将其转化为氢气和甲烷。该次级重整器仅仅是用于从重整气中脱除烯烃的氢化反应器。
其他已知的用于液体燃料脱硫的现有技术,在可预见的未来看似并非有用。
目前已令人惊讶地发现,特定的加氢脱硫,优选常压加氢脱硫(AtHDS),结合了常规的加氢脱硫(有效性)和非常规的脱硫(有效率)的优点,是应用于燃料电池系统的具有吸引力的工艺。
因此,本发明涉及一种脱硫方法,优选将用于与燃料电池相连的液体化石燃料的常压脱硫方法,尤其是固体氧化物燃料电池(SOFC),所述方法包括以下步骤:
(a)蒸发所选择的液体化石燃料,并且随后在固定床反应器中在催化剂之上用氢气处理,由此使硫物质全部/部分转化,大部分转化为挥发性的S物质H2S和/或COS,
(b)全部或部分脱除所形成的挥发性硫物质,和
(c)在相连的燃料重整单元中将产物转化为大部分是合成气,
然后将所得到的合成气供给到SOFC系统。
该方法的步骤(a)中所使用的催化剂优选为高活性加氢处理(HAHT)催化剂。
本发明还涉及一种用于本发明实际运作的系统。
附图显示了按照本发明设计的一种基于常压加氢脱硫单元的燃料电池(此处为SOFC)系统。
在本发明的燃料脱硫系统中,液体燃料首先在蒸发器单元1中被蒸发,并且随后在固定床反应器2中用氢气处理,优选在常压下,在催化剂之上,优选在高活性加氢处理(HAHT)或加氢裂化催化剂之上进行处理,在此使硫物质转化为硫化氢。由于催化剂的高加氢处理活性,其他(不含硫的)烃链可发生裂化,形成小链。因为烃产物的分子量分布并不重要,在与燃料电池应用相连方面,这是可接受的。
该蒸发器单元1优选包括液体喷射装置,如压电式喷嘴,其具有在室温下将燃料雾化至非常小的液滴尺寸的能力,在使混合蒸气/气体产物的温度高于燃料最终沸点的温度下,优选雾化至50μm或更小的平均液滴尺寸,进入包含氢气和/或蒸汽的热的工艺气体混合物中。此外,蒸发器单元1包括蒸发室,其被设计为使燃料液滴在到达室壁之前蒸发在气体流中。
在随后的燃料处理单元4中,产物被转化为合成气。该燃料处理单元可以是例如用于催化部分氧化(CPO)的单元、蒸汽重整器(SR)或自热重整器(ATR)。该合成气被供给到SOFC系统6。
该SOFC系统6包括SOFC堆(多个堆)和任何SOFC堆燃料进料气体预处理和后处理单元,如SOFC堆燃料预处理和SOFC堆尾气燃烧单元,但不限于此。
所产生的硫化氢能被吸附于吸附器3,其包含催化床,例如ZnO床。为了提高吸附步骤的效率,来自循环气体的水可被冷凝出来并且通过循环泵5供给到燃料重整单元4。
在像本发明系统的燃料电池系统中,由于低压运行,循环压缩机的能量损耗是微不足道的。由于反应器是两相(固/气)类型的,在流体相中无明显的传质阳力。
如上所述,常规的HDS被优化以脱硫,同时仅干扰燃料的组成至可忽略的程度。然而,由于燃料电池系统中的燃料在脱硫后通常被重整形成甲烷,因而对保护燃料的组成而言,CO、CO2和H2并非是必须的。因此比HDS更好的替代方案应该是更积极(aggressive)的加氢处理,其仍释放出硫,但可在更小的反应器系统中于更温和的反应条件下(即要求非常低的氢气分压)实施。
技术上,HDS反应器是三相的喷淋床反应器。在该反应器中,液体燃料层覆盖固体催化剂颗粒。气态反应物(在该情况下为氢气和轻质烃)溶解于液相中,迁移至催化剂表面,并在催化剂的活性位上与液体反应物发生反应。对于这样的反应体系,溶解度可能是反应速率的限制因素。在典型的HDS反应条件下(升高的压力和温度),氢气在液相中的溶解度达到几个百分比,而在常压下则低至几百ppm。这就是常规的HDS单元无法用于常压下运行的燃料电池系统中的原因。在本AtHDS系统中,对高压反应器的需要被消除。
以下的实施例进一步阐述了本发明。
实施例
将负载于氧化铝上的NiMo加氢裂化催化剂样品用硫化氢进行硫化,所述催化剂样品包括7-18%的三氧化钼,并被用作AtHDS催化剂。具有按重量计270ppm的硫含量的喷气燃料JP-8在300-320℃被喷雾至10%氢气和90%氮气的热气体混合物中,并且以1500-20001/hr的GHSV(气时空速)通过催化剂。从反应器中排出的蒸气/气体混合物立即被冷却至室温,并且液体和气体流被分开。使用EDXRF(D7212)来分析硫液相中的硫含量以得到总硫含量。处理后的燃料的硫含量测定为按重量计93ppm。

Claims (11)

1.一种用于将用于与燃料电池相连的液体化石燃料的脱硫方法,所述方法包括以下步骤:
(a)蒸发所选择的液体化石燃料,并且随后在固定床反应器中在催化剂之上用氢气处理,由此使硫物质全部/部分转化,大部分转化为挥发性的硫物质H2S和/或COS,
(b)全部或部分脱除所形成的挥发性硫物质,和
(c)在相连的燃料重整单元中将产物转化为大部分是合成气,
然后将所得到的合成气供给到SOFC系统。
2.如权利要求1所述的方法,其中在步骤(a)中,蒸发所选择的液体化石燃料和随后在固定床反应器中用氢气催化处理是在低于5bar(绝对值),优选低于2bar(绝对值),且最优选接近环境压力的压力下进行。
3.如权利要求1或2所述的方法,其中该燃料电池是固体氧化物燃料电池(SOFC)。
4.如权利要求1所述的方法,其中该催化剂是高活性加氢处理(HAHT)催化剂。
5.一种用于采用前述任一项权利要求所述的方法对液体化石燃料脱硫的系统,所述系统包括:
蒸发器单元(1),其中液体燃料首先被蒸发;气相加氢脱硫器形式的固定床反应器(2),其中在高活性加氢裂化/加氢处理催化剂之上于常压下用氢气处理燃料,由此使硫物质转化为H2S;吸附器(3),其中所产生的硫化氢能被吸附于催化床上;和燃料重整器(4),其中燃料产物被转化为将供给到SOFC系统(6)的合成气。
6.如权利要求5所述的系统,其中该蒸发器单元(1)包括液体喷射装置,其具有在室温下将燃料雾化至进入包含氢气和/或蒸汽的热气体混合物中的非常小的液滴尺寸的能力;和蒸发室,其被设计为使燃料液滴在到达室壁之前蒸发在气体流中。
7.如权利要求6所述的系统,其中该液体喷射装置是压电式喷嘴。
8.如权利要求6所述的系统,其中在该蒸发器单元(1)中的该喷嘴将燃料雾化至低于1000μm,优选低于100μm的平均液滴尺寸。
9.如权利要求5所述的系统,还包括循环泵(5),通过使来自循环气体的水冷凝出来并且将其供给到该燃料重整单元(4)来提高吸附效率。
10.如权利要求5所述的系统,其中该燃料处理单元是用于催化部分氧化的单元、蒸汽重整器或自热重整器(ATR)。
11.如权利要求5所述的系统,其中该SOFC系统(6)包括SOFC堆(多个堆)和任何SOFC堆燃料进料气体预处理和后处理单元,如SOFC堆燃料预处理和SOFC堆废气燃烧单元,但不限于此。
CN201280062031.9A 2011-12-15 2012-11-21 用于燃料电池应用的液体燃料脱硫的方法和系统 Pending CN104039690A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA201100974 2011-12-15
DKPA201100974 2011-12-15
PCT/EP2012/073171 WO2013087378A2 (en) 2011-12-15 2012-11-21 Method and system for liquid fuel desulphurization for fuel cell application

Publications (1)

Publication Number Publication Date
CN104039690A true CN104039690A (zh) 2014-09-10

Family

ID=47278784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280062031.9A Pending CN104039690A (zh) 2011-12-15 2012-11-21 用于燃料电池应用的液体燃料脱硫的方法和系统

Country Status (10)

Country Link
US (1) US20140363749A1 (zh)
EP (1) EP2791050A2 (zh)
JP (1) JP2015507319A (zh)
KR (1) KR20140104476A (zh)
CN (1) CN104039690A (zh)
AU (1) AU2012350999B2 (zh)
CA (1) CA2859186A1 (zh)
EA (1) EA201491166A1 (zh)
IN (1) IN2014CN04289A (zh)
WO (1) WO2013087378A2 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013226327A1 (de) * 2013-12-17 2015-06-18 Thyssenkrupp Marine Systems Gmbh Gaskreislauf für ein Festoxidbrennstoffzellen-System und Festoxidbrennstoffzellen-System
CN108643882B (zh) * 2018-05-04 2023-03-28 西安凯尔文石化助剂制造有限公司 一种原油中的h2s的消除方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030042173A1 (en) * 2001-05-18 2003-03-06 Michael Krumpelt Autothermal hydrodesulfurizing reforming method and catalyst
WO2003063282A1 (en) * 2002-01-25 2003-07-31 Ceramic Fuel Cells Limited Desulfurisation of fuel
US20040159584A1 (en) * 2003-02-18 2004-08-19 Ke Liu Mini-CPO providing hydrogen for hydrogen desulfurization of hydrocarbon feeds
US20050164051A1 (en) * 2004-01-22 2005-07-28 Ion America Corporation High temperature fuel cell system and method of operating same
CN101154741A (zh) * 2005-09-27 2008-04-02 赫多特普索化工设备公司 燃料处理方法和系统
US20100104897A1 (en) * 2008-10-27 2010-04-29 Korea Advanced Institute Of Science And Technology Fuel processing method for solid oxide fuel cell system
US20130126038A1 (en) * 2011-11-21 2013-05-23 Saudi Arabian Oil Company Method and a system for combined hydrogen and electricity production using petroleum fuels

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB263381A (en) * 1926-04-27 1926-12-30 Charles Delamare Maze Process and apparatus for the purification and hydrogenation of liquid hydrocarbons
US3476535A (en) * 1967-09-26 1969-11-04 United Aircraft Corp Hydrogen generator including desulfurization with diffused hydrogen feedback
IN189391B (zh) * 1995-12-27 2003-02-15 Amalesh Sarkar
JP4313464B2 (ja) * 1999-04-30 2009-08-12 本田技研工業株式会社 燃料改質装置
US7318845B2 (en) 2002-07-10 2008-01-15 Applied Research Associates, Inc. Compact distillates fuel processor with effective sulfur removal process
WO2004057176A1 (de) * 2002-12-20 2004-07-08 Volkswagen Mechatronic Gmbh & Co. Kg Pumpe-düse-einheit
KR100853393B1 (ko) * 2006-03-10 2008-08-21 한국과학기술원 분무장치를 포함하는 연료 개질기, 연료 개질기용 분무기및 연료 개질 방법
US20090212127A1 (en) * 2007-12-14 2009-08-27 Weidlinger Associates, Inc. Fuel injector with single crystal piezoelectric actuator stack
US8211375B2 (en) * 2009-10-07 2012-07-03 Chevron U.S.A. Inc. Flow distribution device for downflow catalytic reactors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030042173A1 (en) * 2001-05-18 2003-03-06 Michael Krumpelt Autothermal hydrodesulfurizing reforming method and catalyst
WO2003063282A1 (en) * 2002-01-25 2003-07-31 Ceramic Fuel Cells Limited Desulfurisation of fuel
US20040159584A1 (en) * 2003-02-18 2004-08-19 Ke Liu Mini-CPO providing hydrogen for hydrogen desulfurization of hydrocarbon feeds
US20050164051A1 (en) * 2004-01-22 2005-07-28 Ion America Corporation High temperature fuel cell system and method of operating same
CN101154741A (zh) * 2005-09-27 2008-04-02 赫多特普索化工设备公司 燃料处理方法和系统
US20100104897A1 (en) * 2008-10-27 2010-04-29 Korea Advanced Institute Of Science And Technology Fuel processing method for solid oxide fuel cell system
US20130126038A1 (en) * 2011-11-21 2013-05-23 Saudi Arabian Oil Company Method and a system for combined hydrogen and electricity production using petroleum fuels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHAKER HAJI ET AL.: "Atmospheric hydrodesulfurization of diesel fuel using Pt/Al2O3 catalysts prepared by supercritical deposition for fuel cell applications", 《APPLIED CATALYSIS A: GENERAL》, vol. 374, 6 November 2009 (2009-11-06), pages 1 - 10, XP026854599 *

Also Published As

Publication number Publication date
AU2012350999A1 (en) 2014-07-03
CA2859186A1 (en) 2013-06-20
JP2015507319A (ja) 2015-03-05
AU2012350999B2 (en) 2016-04-14
KR20140104476A (ko) 2014-08-28
EA201491166A1 (ru) 2014-12-30
WO2013087378A2 (en) 2013-06-20
WO2013087378A3 (en) 2013-08-08
US20140363749A1 (en) 2014-12-11
IN2014CN04289A (zh) 2015-09-04
EP2791050A2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
KR102080819B1 (ko) 석유 연료를 사용한 화합된 수소 및 전기 생산 방법 및 그 시스템
US6159256A (en) Method for desulfurizing a fuel for use in a fuel cell power plant
JP5057315B2 (ja) ガスタービン燃料油の製造方法
CN100422293C (zh) 燃料电池发电装置中汽油或柴油的脱硫方法
US9917320B2 (en) Sweep membrane separator and fuel processing systems
US6884531B2 (en) Liquid hydrocarbon based fuels for fuel cell on-board reformers
CN104039690A (zh) 用于燃料电池应用的液体燃料脱硫的方法和系统
US10833341B2 (en) Non-catalytic hydrogen generation process for delivery to a hydrodesulfurization unit and a solid oxide fuel cell system combination for auxiliary power unit application
WO2012051408A2 (en) Fuel processing system and method for sulfur bearing fuels
JP2022030943A (ja) プラントおよび水素製造方法
Molinder et al. Thermochemical conversion of glycerol to hydrogen
JP2004027083A (ja) 水素製造用燃料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: TOPSOE A/S

Free format text: FORMER OWNER: TOPSOEE FUEL CELL AS

Effective date: 20150901

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20150901

Address after: Danish spirits

Applicant after: Topsoe A/S

Address before: Danish spirits

Applicant before: Topsoe Fuel Cell As

AD01 Patent right deemed abandoned
AD01 Patent right deemed abandoned

Effective date of abandoning: 20170419