CN104021837B - 一种非金属轻型导电线及其方法和应用产品 - Google Patents
一种非金属轻型导电线及其方法和应用产品 Download PDFInfo
- Publication number
- CN104021837B CN104021837B CN201410241033.5A CN201410241033A CN104021837B CN 104021837 B CN104021837 B CN 104021837B CN 201410241033 A CN201410241033 A CN 201410241033A CN 104021837 B CN104021837 B CN 104021837B
- Authority
- CN
- China
- Prior art keywords
- conductor
- wire
- cored wire
- layer
- carbon nanotube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/04—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/06—Insulating conductors or cables
- H01B13/062—Insulating conductors or cables by pulling on an insulating sleeve
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/06—Insulating conductors or cables
- H01B13/08—Insulating conductors or cables by winding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/303—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
- H01B3/306—Polyimides or polyesterimides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/441—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/0009—Details relating to the conductive cores
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49119—Brush
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Insulated Conductors (AREA)
- Carbon And Carbon Compounds (AREA)
- Ropes Or Cables (AREA)
Abstract
本发明公开了一种非金属轻型导电线、由这种导电线制备的复合导电线、特种电缆、电机等应用产品以及这种复合导电线的制作方法。本发明结构新颖,操作简单,且易于大范围的工业化生产,将本发明所生产的导电线应用于电机制造、航空航天等领域,有利于大幅度降低导线所占的重量。
Description
技术领域
本发明属于电气领域,尤其涉及一种非金属轻型导电线及其方法和应用产品。
背景技术
目前合成的碳纳米管纤维的主要方法有三种:湿法纺丝法,碳纳米管阵列直接抽丝法,浮动化学气相沉积拉丝法。美国rice university【Natnael Behabtu et al.Strong,Light,Multifunctional Fibers of Carbon Nanotubes with UltrahighConductivity.Science339,182(2013)】采用湿法纺丝法制备的纯双壁碳纳米管纤维,展示出了优异的机械性能和电学性能,但是这种方法造价太高(市场价2000美元/g),不可能大范围的广泛应用。日本Hata课题组【Chandramouli Subramaniam et al.One hundred foldincrease in current carrying capacity in a carbon nanotube-coppercomposite.DOI:10.1038/ncomms3202.】采取碳纳米管阵列直接抽丝法制备的碳纳米管纤维在经过铜参杂后,其电导率能接近铜,且其载流密度大约是铜的100倍。由于大范围的生长碳纳米管阵列受制于硅基底尺寸,导致阵列抽丝法不太合适工业化的生产。天津大学【XiaoHua Zhong et al.Continuous Multilayered Carbon NanotubeYarns.Adv.Mater.2010,22,692-696】采用浮动化学气相沉积拉丝法制备出了几公里长的碳纳米管纤维,展示出了较好的机械性能。但是采用这种方法合成的碳纳米管纤维电学性能较差,主要受制于现阶段浮动气相沉积法制备碳纳米管的合成工艺,目前采用这种方法合成的碳纳米管壁数不均一,且碳纳米管未经提纯直接拉丝,里面含有较多的碳杂质和催化剂颗粒,从而影响了碳纳米管纤维的电学性能和机械性能。
发明内容
针对现有技术中存在的缺陷,本发明公开了一种非金属轻型导电线,包括分导线,所述分导线形成内导线,所述内导线包裹有绝缘保护层,其特征在于:所述分导线包括高强度高聚物纤维芯线和包覆于所述芯线上的碳纳米管导电层。
可选的,所述分导线为多根,多根分导线相互缠绕形成所述内导线。
此外,本发明还公开了一种电机,其特征在于:所述电机内的绕线采用上述导电线。
此外,本发明还公开了一种复合导电线的制作方法,其特征在于,包括:
S100:在多股高强度高聚物纤维芯线(1.1)外包裹一层双壁碳纳米管层(1.2);
S200:将多股包覆有双壁碳纳米管层(1.2)的所述芯线(1.1)加捻使之相互缠绕,制得内导线;
S300:在内导线外包覆绝缘保护层(2)。
可选的,所述步骤S300包括:用超声喷涂的方法或者将内导线通过聚酰亚胺溶液,在内导线表面包覆一层聚酰亚胺作为绝缘保护层(2)。
可选的,所述步骤S100到S300为连续过程,其中步骤S100通过共轴挤压方法将所述碳纳米管挤压到所述芯线的表面,步骤S300通过共轴挤压方法将绝缘保护层挤压到内导线的表面。
与现有技术相比,上述技术方案具有以下优点:
本发明直接在高强度高聚物纤维芯线表面包覆碳纳米管,操作简单,且易于大范围的工业化生产;这种方式制备的导线表面均匀,且进一步将多股导线经过加捻缠绕在一起后,结构更加紧密,电学性能和机械性能都能进一步得到提高。用上述导电线来代替铜导线,能大大地降低相应设备,比如电机的重量。
附图说明
图1、2是本发明的一个实施例的分导线的相关结构示意图,
其中:附图标记1为分导线,2为绝缘保护套,1.1为高强度高聚物纤维芯线,1.2为碳纳米管导电层。
具体实施方式
下面结合附图,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
在一个实施例中,本发明公开了一种非金属轻型导电线,包括分导线,所述分导线形成内导线,所述内导线包裹有绝缘保护层,所述分导线包括高强度高聚物纤维芯线和包覆于所述芯线上的碳纳米管导电层。
该实施例意味着导电线包括中心部分的载体高强度高聚物纤维芯线、载体表面的高导电碳纳米管内导线所代表的导电层,以及内导线上包裹的绝缘保护层。与金属相比高强度高聚物纤维的密度小,强度高,而碳纳米管密度小,具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。高强度高聚物纤维作为芯线,这样一方面即可以降低导线的重量,另一方面也可以保证导线具有良好的机械强度。由于没有金属导线又有良好的导电性,所以该非金属轻型导电线能够用于制造轻型的导电线的相应其他产品,比如电缆、电机等。
可选的,所述分导线为多根,多根分导线(1)相互缠绕形成所述内导线。
请参阅图1、2,其中本发明的复合电缆包括多根分导线1,多根分导线相互缠绕形成电缆的内导线,在内导线之上还施加有包裹内导线的绝缘保护层2。内导线被绝缘保护层2封装,。分导线1包括芯线1.1和包覆于芯线1.1上的碳纳米管层1.2,芯线1.1由高强度高聚物纤维制成。本发明直接在所述芯线1.1的表面包覆一层碳纳米管层1.2,由于碳纳米管与所述纤维之间具有较好的吸附力,碳纳米管层1.2能紧密地吸附在芯线1.1上。多股分导线缠绕在一起后,结构更加紧密,电学性能和机械性能都能得到进一步提高。
优选的,绝缘保护层由塑料材质制成。
更优选的,当所述导电线用于制得普通导线时,所述绝缘保护层(2)包括单层高聚物绝缘层,所述高聚物绝缘层采用以下任一材料:聚酰亚胺(PI)、聚酰胺-酰亚胺(PAI)、交联聚乙烯(XLPE);当所述导电线用于制得特种电缆时,所述绝缘保护层为多层结构,包括导体屏蔽层、绝缘层、绝缘屏蔽层和外保护层。导体屏蔽层、绝缘层、绝缘屏蔽层和外保护层,可以采用相关线缆领域的现有技术,本发明对此不再予以赘述。
更优选的,在另一个实施例中,所述芯线(1.1)采用以下任一材料:聚酯纤维(PEEK)、聚酰亚胺(PI)纤维、尼龙(PA)纤维、聚酰胺-酰亚胺(PAI)纤维、超高分子量聚乙烯纤维(UHMPE),所述芯线的直径为0.01毫米到2毫米。
在另一个实施例中,所述碳纳米管导电层(1.2)包括单壁碳纳米管、双壁碳纳米管、多壁碳纳米管或混合碳纳米管导电层,所述导电层的厚度为所述芯线直径的0.01到2倍。
在另一个实施例中,本发明还公开了一种复合导电线,该复合导电线采用一根或多根所述的导电线制得。
在另一个实施例中,本发明还公开一种特种电缆,所述特种电缆采用一根或多根该导电线制得。
在另一个实施例中,本发明还公开了一种电机,其特征在于:所述电机内的绕线采用所述导电线。就上述复合导电线和特种电缆以及电机,其说明了本发明导电线的相关产品及其领域。
此外,通过如下步骤制得本发明的复合导电线:
S100:在多股高强度高聚物纤维芯线(1.1)外包裹一层双壁碳纳米管层(1.2);
S200:将多股包覆有双壁碳纳米管层(1.2)的所述芯线(1.1)加捻使之相互缠绕,制得内导线;
S300:在内导线外包覆绝缘保护层(2)。
可选的,所述步骤S300包括:用超声喷涂的方法或者将内导线通过聚酰亚胺溶液,在内导线表面包覆一层聚酰亚胺作为绝缘保护层(2)。
可选的,所述步骤S100到S300为连续过程,其中步骤S100通过共轴挤压方法将所述碳纳米管挤压到所述芯线的表面,步骤S300通过共轴挤压方法将绝缘保护层挤压到内导线的表面。
聚酰亚胺溶液在固化的过程中,体积收缩,对包裹其中的碳纳米管纤维施加一个压力,使得多股碳纳米管纤维接触更加紧密,提高纤维的导电率。同时聚酰亚胺的机械性能较优异,且熔点相对较高,使得导线的运用领域更加广泛,例如可以将采用碳纳米管制得的导线制作电机的绕线,这样会大幅减轻电机的重量。
可选的,在另一个实施例中,为了将双壁碳纳米管包裹于聚酯纤维芯线上,可以将多股聚酯纤维芯线通过预先制备的双壁碳纳米管分散液,多股聚酯纤维(PET fibers)缓慢匀速的经过碳纳米管分散液,聚酯纤维(PET fiber)在经过双壁碳纳米管分散液后,每股纤维的表面就会包裹一层双壁碳纳米管。聚酯纤维表面碳纳米管层的厚度可以通过牵引速度和所述碳纳米管分散液的浓度来控制,在碳纳米管吸附的过程中,每股聚酯纤维相互分开以避免不当接触而影响成品。
示例性的,在另一个实施例中,所述步骤S100包括:
S101:以乙醇、一氧化碳或甲烷为碳源采用化学气相沉积的方式合成双壁碳纳米管,经过气相氧化和液相酸洗提纯后,得到双壁碳纳米管;
S102:将双壁碳纳米管分散在一个液体里,制得碳纳米管分散液;
S103:将互相不接触的多股所述芯线牵引通过所述碳纳米管分散液,在芯线表面形成双壁碳纳米管涂层,得到多股包覆有双壁碳纳米管层的芯线;
S104:对涂层后的包覆有双壁碳纳米管层的芯线进行后处理,所述后处理包括加热干燥,溶剂清洗,再加热干燥,重复S102和S103,直到所述碳纳米管涂层厚度达到所需厚度,然后将多股线加捻使之相互缠绕,制得内导线。
更优选的,为了能制得具有良好包覆性和导电性的碳纳米管分散液,对于上述S102步骤,而言:所述液体包括在表面活性剂十二烷基苯磺酸钠(SDBS)的协助下,能分散双壁碳纳米管的水溶液,或者其它能分散双壁碳纳米管的溶剂。
更优选的,多股包裹着双壁碳纳米管的高强度高聚物纤维在经过加捻后,直接收集在集线器上。多股高强度高聚物纤维合成的导线,能够形成多个导电通道,经过加捻后,每股高强度高聚物纤维表面的双壁碳纳米管能更加紧密的接触,降低导线的电阻率。
综上所述,本发明采用高强度高聚物纤维为载体,在其表面包覆了一层双壁碳纳米管,制备了具有高电导率的导线,且制备工艺简单,适合大规模的生产。导线不仅电导率较好,而且其密度小,质量轻。
以上对本发明进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
Claims (10)
1.一种非金属轻型导电线,包括分导线(1)和绝缘保护层(2),所述分导线(1)形成内导线,所述内导线包裹有绝缘保护层(2),其特征在于:所述分导线(1)包括高强度高聚物纤维芯线(1.1)和包覆于所述芯线上的高导电碳纳米管导电层(1.2);其中,所述分导线(1)的形成包括在多股高强度高聚物纤维芯线中的单股高强度高聚物纤维芯线(1.1)外包裹一层碳纳米管导电层,然后通过共轴挤压方法将所述碳纳米管导电层挤压到所述单股芯线的表面,以形成所述包覆于所述单股芯线上的高导电碳纳米管导电层(1.2);所述多股包覆有所述高导电碳纳米管导电层(1.2)的所述芯线(1.1)形成多个导电通道;
将多股包覆有所述高导电碳纳米管导电层(1.2)的所述芯线(1.1)加捻使之相互缠绕并更加紧密地接触,以形成所述内导线。
2.根据权利要求1所述的导电线,其特征在于:当所述导电线用于制得普通导线时,所述绝缘保护层(2)包括单层高聚物绝缘层,所述高聚物绝缘层采用以下任一材料:聚酰亚胺(PI)、聚酰胺-酰亚胺(PAI)、交联聚乙烯(XLPE);当所述导电线用于制得特种电缆时,所述绝缘保护层为多层结构,包括导体屏蔽层、绝缘层、绝缘屏蔽层和外保护层。
3.根据权利要求1所述的导电线,其特征在于:所述芯线(1.1)采用以下任一材料:聚酯纤维(PEEK)、聚酰亚胺(PI)纤维、尼龙(PA)纤维、聚酰胺-酰亚胺(PAI)纤维、超高分子量聚乙烯纤维(UHMPE),所述芯线的直径为0.01毫米到2毫米。
4.根据权利要求1所述的导电线,其特征在于:所述碳纳米管导电层(1.2)包括单壁碳纳米管、双壁碳纳米管、多壁碳纳米管或混合碳纳米管导电层,所述导电层的厚度为所述芯线直径的0.01到2倍。
5.一种复合导电线,其特征在于:复合导电线采用一根或多根如权利要求1或2所述的导电线制得。
6.一种特种电缆,其特征在于:所述特种电缆采用一根或多根如权利要求1所述的导电线制得。
7.一种电机,其特征在于:所述电机内的绕线采用权利要求1所述导电线。
8.一种导电线的制作方法,用于制作权利要求1所述的导电线,其特征在于,包括:
S100:在多股高强度高聚物纤维芯线(1.1)外包裹一层高导电碳纳米管导电层(1.2);通过共轴挤压方法将所述碳纳米管挤压到所述芯线的表面;
S200:将多股包覆有高导电碳纳米管导电层(1.2)的所述芯线(1.1)加捻使之相互缠绕,制得内导线;
S300:在内导线外包覆绝缘保护层(2);
所述步骤S100到S300为连续过程,步骤S300通过共轴挤压方法将绝缘保护层挤压到内导线的表面。
9.根据权利要求8所述的方法,其特征在于,所述步骤S100包括:
S101:以乙醇、一氧化碳或甲烷为碳源采用化学气相沉积的方式合成双壁碳纳米管,经过气相氧化和液相酸洗提纯后,得到双壁碳纳米管;
S102:将双壁碳纳米管分散在一个液体里,制得碳纳米管分散液;
S103:将互相不接触的多股所述芯线牵引通过所述碳纳米管分散液,在芯线表面形成双壁碳纳米管涂层,得到多股包覆有双壁碳纳米管层的芯线;
S104:对包覆有双壁碳纳米管层的芯线进行后处理,所述后处理包括加热干燥,溶剂清洗,再加热干燥,重复S102和S103,直到所述碳纳米管涂层厚度达到所需厚度,通过共轴挤压方法将所述碳纳米管挤压到所述芯线的表面。
10.根据权利要求8所述的方法,其特征在于,所述步骤S300包括:用超声喷涂的方法或者将内导线通过聚酰亚胺溶液,在内导线表面包覆一层聚酰亚胺作为绝缘保护层(2)。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410241033.5A CN104021837B (zh) | 2014-05-31 | 2014-05-31 | 一种非金属轻型导电线及其方法和应用产品 |
US14/570,782 US9934881B2 (en) | 2014-05-31 | 2014-12-15 | Non-metallic light conductive wire and its method and application products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410241033.5A CN104021837B (zh) | 2014-05-31 | 2014-05-31 | 一种非金属轻型导电线及其方法和应用产品 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104021837A CN104021837A (zh) | 2014-09-03 |
CN104021837B true CN104021837B (zh) | 2017-12-26 |
Family
ID=51438551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410241033.5A Active CN104021837B (zh) | 2014-05-31 | 2014-05-31 | 一种非金属轻型导电线及其方法和应用产品 |
Country Status (2)
Country | Link |
---|---|
US (1) | US9934881B2 (zh) |
CN (1) | CN104021837B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104538090A (zh) * | 2014-12-05 | 2015-04-22 | 苏州聚宜工坊信息科技有限公司 | 一种导线、制备方法及应用 |
CN104616718B (zh) * | 2015-02-04 | 2018-12-04 | 苏州聚宜工坊信息科技有限公司 | 一种碳纳米管导线及其应用 |
KR102558412B1 (ko) * | 2017-04-03 | 2023-07-24 | 오티스 엘리베이터 컴파니 | 추가적인 층을 갖는 엘리베이터 벨트 |
US11274017B2 (en) * | 2017-08-25 | 2022-03-15 | Otis Elevator Company | Belt with self-extinguishing layer and method of making |
US10128022B1 (en) * | 2017-10-24 | 2018-11-13 | Northrop Grumman Systems Corporation | Lightweight carbon nanotube cable comprising a pair of plated twisted wires |
CN113284650A (zh) * | 2021-05-14 | 2021-08-20 | 山东滨澳电线电缆有限公司 | 一种多芯高强度柔软航空电缆 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201655353U (zh) * | 2010-04-30 | 2010-11-24 | 冯静 | 一种以纤维线作为载体的增强碳纳米管线 |
CN102372252A (zh) * | 2010-08-23 | 2012-03-14 | 清华大学 | 碳纳米管复合线及其制备方法 |
CN102770815A (zh) * | 2010-03-03 | 2012-11-07 | 可乐丽日常生活株式会社 | 导电性复丝纱和导电性刷 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050170177A1 (en) * | 2004-01-29 | 2005-08-04 | Crawford Julian S. | Conductive filament |
CN101090011B (zh) * | 2006-06-14 | 2010-09-22 | 北京富纳特创新科技有限公司 | 电磁屏蔽电缆 |
US7769251B2 (en) * | 2007-11-12 | 2010-08-03 | Schlumberger Technology Corporation | Hydrocarbon monitoring cable with an absorbing layer |
US9167736B2 (en) * | 2010-01-15 | 2015-10-20 | Applied Nanostructured Solutions, Llc | CNT-infused fiber as a self shielding wire for enhanced power transmission line |
JP2014508370A (ja) * | 2010-09-23 | 2014-04-03 | アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー | 強化送電線のセルフシールドワイヤとしてのcnt浸出繊維 |
US20140079360A1 (en) * | 2012-09-17 | 2014-03-20 | Tyson York Winarski | Nanotube fiber optic cable |
ES2727600T3 (es) * | 2014-04-25 | 2019-10-17 | Thyssenkrupp Elevator Ag | Elemento elevador de un ascensor |
-
2014
- 2014-05-31 CN CN201410241033.5A patent/CN104021837B/zh active Active
- 2014-12-15 US US14/570,782 patent/US9934881B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102770815A (zh) * | 2010-03-03 | 2012-11-07 | 可乐丽日常生活株式会社 | 导电性复丝纱和导电性刷 |
CN201655353U (zh) * | 2010-04-30 | 2010-11-24 | 冯静 | 一种以纤维线作为载体的增强碳纳米管线 |
CN102372252A (zh) * | 2010-08-23 | 2012-03-14 | 清华大学 | 碳纳米管复合线及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104021837A (zh) | 2014-09-03 |
US20150348668A1 (en) | 2015-12-03 |
US9934881B2 (en) | 2018-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104021837B (zh) | 一种非金属轻型导电线及其方法和应用产品 | |
CN105244071B (zh) | 线缆 | |
TWI345792B (en) | Cable | |
Zhang et al. | Bioinspired supertough graphene fiber through sequential interfacial interactions | |
CN101499328B (zh) | 绞线 | |
Gan et al. | Graphene nanoribbon coated flexible and conductive cotton fabric | |
Tran et al. | Post-treatments for multifunctional property enhancement of carbon nanotube fibers from the floating catalyst method | |
US9528198B2 (en) | Methods of making nanofiber yarns and threads | |
US8247036B2 (en) | Method for making coaxial cable | |
WO2015041777A1 (en) | Carbon macrotubes and methods for making the same | |
Liu et al. | Formation mechanisms and morphological effects on multi-properties of carbon nanotube fibers and their polyimide aerogel-coated composites | |
JP2009252745A (ja) | 同軸ケーブル | |
Song et al. | Sword/scabbard-shaped asymmetric all-solid-state supercapacitors based on PPy-MWCNTs-silk and hollow graphene tube for wearable applications | |
CN107815755B (zh) | 多管制备碳纳米管石墨烯复合纤维的制备装置和制备方法 | |
TW200945372A (en) | Cable | |
Poothanari et al. | Carbon nanostructures for electromagnetic shielding applications | |
Duong et al. | Advanced fabrication and properties of aligned carbon nanotube composites: Experiments and modeling | |
Zou et al. | Soldering carbon nanotube fibers by targeted electrothermal-induced carbon deposition | |
Huang et al. | Fabrication of free-standing flexible and highly efficient carbon nanotube film/PEDOT: PSS thermoelectric composites | |
KR101189858B1 (ko) | 케이블 및 그 제조방법 | |
CN108625005A (zh) | 碳纳米管纤维复合包芯纱及其制备方法与应用 | |
JP2018115087A (ja) | カーボンナノチューブ集合体、カーボンナノチューブ線材及びカーボンナノチューブ集合体の製造方法 | |
Peng et al. | MXene/bacterial cellulose/Fe3O4/methyltrimethoxylsilane flexible film with hydrophobic for effective electromagnetic shielding | |
Farha et al. | Microstructural Tuning of Twisted Carbon Nanotube Yarns through the Wet-Compression Process: Implications for Multifunctional Textiles | |
TWI413131B (zh) | 線纜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |