TW200945372A - Cable - Google Patents

Cable Download PDF

Info

Publication number
TW200945372A
TW200945372A TW97114120A TW97114120A TW200945372A TW 200945372 A TW200945372 A TW 200945372A TW 97114120 A TW97114120 A TW 97114120A TW 97114120 A TW97114120 A TW 97114120A TW 200945372 A TW200945372 A TW 200945372A
Authority
TW
Taiwan
Prior art keywords
layer
cable
carbon nanotube
long
carbon
Prior art date
Application number
TW97114120A
Other languages
Chinese (zh)
Other versions
TWI345793B (en
Inventor
Kai-Li Jiang
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97114120A priority Critical patent/TWI345793B/en
Publication of TW200945372A publication Critical patent/TW200945372A/en
Application granted granted Critical
Publication of TWI345793B publication Critical patent/TWI345793B/en

Links

Abstract

The present invention relates to a cable. The cable includes at least one conductive wire, at least one insulative layer, at least one shielding layer, and a sheath. Each conductive wire includes conductive material and a carbon nanotube yarn structure. The conductive material is disposed on a surface of the carbon nanotube yarn structure. Each insulative layer is respectively coated on the corresponding conducting wire. The shielding layer surrounds the insulative layer. The sheath wraps at least one shielding layer.

Description

200945372 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種線镜,尤其涉及一種基於奈米碳管的 線欖。 【先前技術】 線纜係電子產業晨較為常用的訊號傳輸線材,微米級 尺寸的線纜更廣泛應用於it產品、醫學儀器、空間設備 中’大直徑的線纜應用於電能的傳輸中。傳統的線窥内部 β設置有兩個導體,内導體用以傳輸電訊號,外導體用以屏 蔽傳輸的電訊號並且將其封閉於内部,從而使線繞且有高 頻損耗低、屏蔽及抗干擾能力強、使用頻帶寬等特性,請 參見文獻 “ Electromagnetic Shielding of High-Voltage Cables”(M.De Wulf,Ρ· Wouters et.al·,Journal of Magnetism and Magnetic Materials, 316, p908-p901 (2007))。 一般情況下,線纜從内至外的結構依次為形成内導體 ❹的纜芯、包覆於纜芯外表面的絕緣介質層、形成外導體的 屏蔽層和外護套。其中,纜芯用來傳輸電訊號,材料以銅、 鋁或銅鋅合金為主。屏蔽層通常由複數股金屬線編織或用 金屬薄膜卷覆於絕緣介質層外形成,用以屏蔽電磁干擾或 無用外部訊號干擾。對於以金屬材料形成的纜芯,最大問 題於於交變電流於金屬導體中傳輸時,各部分的電流密度 不均勻,導體内部電流密度小,導體表面電流密度大,這 種現象稱為趨膚效應(Skin Effect)。趨膚效應使金屬導體中 通過電流時的有效截面積減小,從而使導體的有效電阻變 6 200945372 大’導致線纜的傳輸效率降低或傳輸訊號丟失。另外,以 金屬材料作為纜芯及屏蔽層的線纜,其強度較小,品質及 直徑較大,無法滿足某些特定條件,如航空領域、空間設 備及超細微線纜的應用。 奈米碳管係一種新型一維奈米材料,其具有優異的導 電性能、較高的抗張強度和較高的熱穩定性,於材料科學、 化學、物理學等交叉學科領域已展現出廣闊的應用前景。 目前,已有將奈米碳管與金屬混合形成複合材料,從而用 ®來製造線纜的纜芯。 先前技術中,含奈米碳管的線纜的製造方法一般包括 以下步驟:提供一熔融金屬基體材料;將奈米碳管粉末浸 沒於該熔融金屬基體材料中,形成奈米碳管與金屬基體的 混合物;於能使所述熔融金屬基體材料固化的條件下從該 熔融金屬基體材料中拉出複數滲透了熔融金屬基體材料的 纖維’形成金屬基體複合纜芯;包覆聚合物於所述纜芯的 ❹外表面形成絕緣介質層;將複數股金屬線直接或通過編織 包覆於絕緣介質層外形成屏蔽層或用金屬薄膜卷覆於絕緣 介質層外形成屏蔽層;及包覆一外護套於所述屏蔽層的外 表面。 該方法得到的線纜與採用純金屬纜芯的線纜相比,具 有較強的機械性能,及較輕的品質,該線纜的導電性也有 所提高。然而,該採用金屬基體複合奈米碳管纜芯的線纜 中奈米碳管無序分散於金屬中,該線纜中的奈米碳管無法 發揮其軸向導電的優勢’仍無法解決上述金屬纜芯中的趨 200945372 膚效應問題。且採用混合奈米碳管於熔融金屬中後再拉絲 的方法製備線纜,該方法較為複雜,且成本較高。 综上所述,提供一種線纜,該線纜具有良好的導電性 能實為必要。 【發明内容】 一種線纜,包括至少一個纜芯、包覆於纜芯外的至少 一個絕緣介質層、包覆於絕緣介質層外的至少一個屏蔽層 和包覆於屏蔽層外的-個外護套,其中,該繞芯包括奈米 ®碳管長線結構及導電材料層,該導電材料層包覆于奈米碳 管長線結構表面。 與先則技術比較,本技術方案採用包括奈米碳管長線 結構的纖芯的線纖具有以下優點:其一,該線繞的鐵芯由 導電材料層包裹于奈米碳管長線結構外表面構成,由於奈 米碳管長線結構具有較高的機械強度及較輕的品質。故, 該含有奈米碳管長線結構的線欖比採用金屬基體複合奈米 ❹碳管鏡芯的線纜具有更高的機械強度及更輕的品質,適合 特殊領域,如航空領域及空間設備的應用。其二,該線缆 採用導電材料層及奈米竣管長線結構共同形成的窥怒,由 於該不米奴官長線結構具有較高的導電性,故,採用導電 材料層及不米碳官長線結構共同形成的镜芯比採用金屬基 體複合奈米破管形成的纜芯具有更好的導電性。里三,該 線纜縣採用導電材料層及奈米碳管長線結構共同組成, 電流於纜芯中傳播,電流傳播有效截面積不變,電流於通 過導電材料層時基本不會產生趨膚效應,從而減少了訊號 8 200945372 線上纜中傳輸過程中的衰減。 【實施方式】 以下將結合附圖詳細說明本技術方案實施例線纜10 的結構及其製備方法。 本技術方案實施例提供一種線纜,該線纜包括至少一 纜怒、包覆於纜芯外的至少一絕緣介質層、包覆於絕緣介 質層外的至少一電磁屏蔽層和包覆於電磁屏蔽層外的至少 一外護套。 〇 請參閱圖1 ’本技術方案第一實施例的線纜ίο為同軸 線纜,該同軸線纜包括一個纜芯120、包覆於纜芯120外 的絕緣介質層130、包覆於絕緣介質層130外的屏蔽層14〇 和包覆於屏蔽層140外的外護套150。其中,上述纜芯12〇、 絕緣介質層130、屏蔽層140和外護套150為同軸設置。 請參見圖2 ’所述繞芯120包括導電材料層no及一 奈米峡官長線結構100’該導電材料層11〇包覆於該奈米 碳管長線結構100外表面。具體地,該導電材料層u〇包 φ括與奈米碳管長線結構1 〇〇表面直接結合的调濕層112、 置於满濕層112外表面的過渡層113、設置於過渡層I】〗 外表面的導電層114及設置於導電層114外表面的抗氧化 層115。該導電材料層11〇至少包括該導電層114,上述潤 濕層112、過渡層113、抗氧化層115均為可選結構。該纜 芯120的直徑大於1微米,優選地’該纜芯ι2〇的直徑為 10〜30微米或1厘米。 :.你 所述奈米碳管長線結構100包括至少一奈米碳管長線 102。該奈米碳管長線102的直徑為4.5奈米〜1〇〇微来'。 9 200945372 請參見圖3,該奈米碳管長線結構1〇〇還可以為複數個奈 米碳管長線102組成的束狀或絞線狀結構。當該奈米碳管 長線結構100的直徑小於1〇〇微米時,該奈米碳管結構1〇〇 構成的線纜10可應用於訊號傳輸領域。當該奈米碳管結構 100的直徑大於100微米時,該奈米碳管結構1〇〇構成的 線纜10可應用於電力傳輸領域。 所述奈米碳管長線102包括由複數個奈米碳管組成的 束狀或絞線狀結構。凊參見圖4,該束狀結構的奈米碳管 0長線102包括複數個沿繞芯轴向擇優取向排列的奈米碳管 束片段,母個奈米碳管束片段具有大致相等的長度且每個 奈米碳管束片段由複數個相互平行的奈米碳管束構成,奈 米碳管束片段兩端通過凡德瓦爾力相互連接,該奈米碳管 束中包括複數個奈米碳管,該複數個奈米碳管具有共同的 擇優取向排列。於該束狀結構的奈米碳管長線1〇2中所 述奈米碳管沿奈米碳管長線軸向擇優取向排列,且該複數 個奈米碳管通過凡德瓦爾力首尾相連。該束狀結構^奈米 ❹碳管長線的直徑為10微米〜30微米。 請參見圖5,所述絞線狀結構的奈米碳管長線1〇2包 括複數個奈米碳管沿奈米碳管長線軸向螺旋狀排列,且該 複數個奈米碳管通過凡德瓦爾力首尾相連。該絞線狀奈^ 碳管長線102的直徑為10微米〜30微米。 奈米碳管長線結構100中的奈米碳管包括單壁奈米碳 管’雙壁奈米碳管或多壁奈米碳管,所述單壁奈米碳管的 直徑為0.5奈米〜50奈米,雙壁奈米碳管的直徑為丄奈米 ~50奈米,多壁奈米碳管的直徑為ι·5奈米〜5〇奈米。 200945372 上述潤濕層112的作@a 4, j A i 線結構⑽表面更好的::為1吏:電層,與奈米碳管長 又对旳、、、0合。形成該潤濕層112的材料可 以為錄、把或鈦等與奈米碳管潤濕性好的金屬或盆合金, 度為w奈米。本實施例中:該潤濕 二:材厚度約為2奈米。可以理解,該潤濕 層112為可選擇結構。 ❹ ⑩ 上述過渡層113的作用為使潤濕層112與導電声 =好的結合。形成該過渡層113的材料可 θ 材料及導電層114材料均能較好結合= 屬丨;其合金,該過渡層113的厚度為工,奈米。本實施 列中,該過渡層113的材料為銅,厚度為2奈来。可I理 解,該過渡層113為可選擇結構。 么上述導電層m的作用為使_11〇具有較好的 性此。形成該導電層114的材料可以為銅、銀或金等導 ::的金:或其合金’該導電層m的厚度為㈣奈米。 本實施例中,該導電層114的材料為銀,厚度約為5夺米。 =抗氧化層m的作用為防止線上纜1〇的製造過程 電曰114於空氣中被氧化,從而使規芯12〇的導電性 月^降。形成該抗氧化層115的材料可以為金或 易氧ί的穩定金屬或其合金,該抗氧化層出的厚 f為1〜1G奈米。本實施例中,該抗氧化層115的材料為 Γ吉構厚度為2奈米。可以理解,該抗Λ化層115為可選擇 進一步地,為提高線纜10的強度,可於該 m外進-步設置-強化層116。形成該強化層ιΐ6的材^ 11 200945372 可以為聚乙烯醇(PVA)、聚苯撐苯並二噁唑(PBO)、聚 乙烯(PE)或聚氣乙烯(pvc)等強度較高的聚合物,該 強化層116的厚度為〇.微米。本實施例中,該強化層 116的材料為聚乙烯醇(PVA),厚度為0.5微米。可以理 解,該強化層116為可選擇結構。 上述絕緣介質層13〇用於電氣絕緣,可以選用聚四氟 乙烯、聚乙烯、聚丙烯、聚苯乙烯、泡沫聚乙烯組合物或 不米土尚分子複合材料。奈米黏土一高分子複合材料 ©中奈米黏土係奈米級層狀結構的矽酸鹽礦物,係由複數種 水合梦酸鹽和一定量的氧化鋁、鹼金屬氧化物及鹼土金屬 氧化物組成,具耐火阻燃等優良特性,如奈米高嶺土或奈 米蒙脫土。高分子材料可以選用矽樹脂、聚醯胺、聚烯烴 如聚乙烯或聚丙烯等,但並不以此為限。本實施例絕緣介 質層130優選泡沫聚乙烯組合物。 上述屏蔽層140由一導電材料形成,用以屏蔽電磁干 擾或無用外部訊號干擾。具體地,屏蔽層14〇可由複數股 ❹金屬線編織或用金屬薄膜卷覆於絕緣介質層13〇外形成, 也可由奈米碳管結構纏繞或卷覆於絕緣介質層13〇外形 f ’或可由含有奈米碳管的複合材料直接包覆於絕緣介質 層130表面。 其中 所述金屬薄膜或金屬線的材料可以選擇為銅、 電性好的金屬或其合金。所述奈米碳管結構包 ϊίΐ:不米碳管薄膜或奈米碳管長線。所述含有奈米碳 m 料可以為金屬與奈米碳管的複合材料或聚合物 …丁、未叙管的複合材料4聚合㈣料可以選擇為聚對苯 12 200945372 « 二曱酸乙二醇醋(Polyethylene Terephthalate,PET )、聚碳 酸S旨(Polycarbonate,PC )、丙稀腈_ 丁二烯丙浠一苯乙烯 共聚物(Acrylonitrile-Butadiene Styrene Terpolymer, ABS )、聚碳酸酯/丙烯腈_ 丁二烯一苯乙烯共聚物 (PC/ABS)等高分子材料。當該複合材料為聚合物與奈米 碳管的複合材料時,可將奈米碳管均勻分散於上述聚合物 材料的溶液中,並將該含奈米碳管的聚合物材料的溶液^ 勻塗覆於絕緣介質層130表面,待冷卻後形成一包括聚$ ©物與奈米碳管的屏蔽層140。進一步地,該屏蔽層14〇還 可由上述複數種材料於絕緣介質層130外組合構成。本枝 術方案實施例採用奈米碳管結構組成屏蔽層140,因奈米 碳管具有良好的導電性能從而使得該屏蔽層140具有較強 的屏蔽效果。 上述外護套150由絕緣材料製成,可以選用奈米黏土 —高分子材料的複合材料,其中奈米黏土可以為奈米高嶺 土或奈米蒙脫土,高分子材料可以為矽樹脂、聚醯胺、聚 ❹烯烴如聚乙烯或聚丙烯等,但並不以此為限。本實施例外 護套150優選奈米蒙脫土一聚乙烯複合材料’其具有良_ 的機械性能、耐火阻燃性能、低煙無鹵性能,不僅可以為 線纜10提供保護,有效抵禦機械、物理或化學等外來賴 傷,同時還能滿足環境保護的要求。 所述線纔10由於採用奈米碳管長線結構及導電# 料層110作為纜芯120,其具有以下優點:其一,該雙巧 10中的奈米碳管長線結構100包含複數個有序排列的奈米 碳管,其具有較輕的品質,及較高的機械強度,故,讀含 13 200945372 » 有奈米碳管長線結構100的線纜10比採用金屬基體複合奈 米碳管纜芯的線纜具有更高的機械強度及更輕的品質,適 合特殊領域,如航空領域及空間設備的應用。其二,於奈 米奴管長線結構100中,奈米碳管有序排列,故比採用金 屬基體複合奈米碳管形成的纜芯具有更好的導電性。其 一,該奈米碳管長線結構100包括複數個由凡德瓦爾力首 尾相連且擇優取向排列的奈米碳管,由於奈米碳管為管狀 結構,於該奈米碳管長線結構100中,電流沿複數個首尾 ❾相連的奈米碳管的管壁傳播,電流傳播有效截面積不變, 電流於通過導電材料層時基本不會產生趨膚效應,從而減 少了訊號線上纜中傳輸過程中的衰減。 請參閱圖6及圖7’本技術方案第一實施例線纜1〇的 製備方法主要包括以下步驟: 步驟一:提供一奈米碳管陣列216,優選地,該奈米 碳管陣列216為超順排奈米碳管陣列。 ”” 該奈米碳管陣列216為單壁奈米碳管陣列,雙壁奈米 ❿碳管陣列,及多壁奈米碳管陣列中的一種或複數種。^ 施例中,該超順排奈米碳管陣列的製備方法採用化學氣相 沈積法,其具體步驟包括:(a)提供一平整基底,該基底 可選用P型或N型矽基底,或選用形成有氧化層的矽基 底,本實施例優選為採用4英寸的矽基底;(b)於基底表 面均勻形成一催化劑層,該催化劑層材料可選用鐵(Fe)、 鈷(Co)、鎳(Ni)或其任意組合的合金之一;(幻將上 述形成有催化劑層的基底於700〜9〇(TC的空氣中退火約3〇 分鐘〜90分鐘;(d)將處理過的基底置於反應爐中,於保 200945372 護氣體環境下加熱到500〜740°C’然後通入碳源氣體反應 約5〜30分鐘,生長得到超順排奈来碳管陣列,其高度為 200〜400微米。該超順排奈米碳管陣列為複數個彼此平行 且垂直於基底生長的奈米碳管形成的純奈米碳管陣列。通 過上述控制生長條件,該超順排奈米碳管陣列中基本不含 有雜質,如無定型碳或殘留的催化劑金屬顆粒等。該超順 排奈米碳管陣列中的奈米碳管彼此通過凡德瓦爾力緊密接 觸形成陣列。該超順排奈米碳管陣列的面積與上述基底面 ❹積基本相同。 本實施例中碳源氣可選用乙炔、乙烯、甲烧等化學性 質較活潑的碳氫化合物,保護氣體為氮氣或惰性氣體。本 實施例優選的碳源氣為乙炔,優選的保護氣體為氬氣。 步驟二:採用一拉伸工具從所述奈米碳管陣列216中 拉取獲得一有序奈米碳管結構214。 所述有序奈米碳管結構214的製備方法包括以下步 驟:(a)從上述奈米碳管陣列216中選定一定寬度的複數 ❹個奈米碳管束片段,本實施例優選為採用具有一定寬度的 膠帶或一針尖接觸奈米碳管陣列216以選定一定寬度的複 數個奈米碳管束片段;(b)以一定速度沿基本垂直于夺米 碳管陣歹ij 216 ±長的方向拉伸該複數個奈米碳管束片段,、 以形成一連續的有序奈米碳管結構214。 於上述拉伸過程中,該複數個奈米碳管束片段於拉力 作用下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力 作用,該選定的複數個奈米碳管束片段分別與其他奈米碳 管束片段首尾相連地連續地被拉出,從而形成一有序奈米 15 200945372 碳管結構214。該有序奈米碳管結構214包括複數個首尾 相連且定向排列的奈米碳管束。該有序奈米碳管結構214 中奈米碳管的排列方向基本平行於有序奈米碳管結構214 的拉伸方向。 該有序奈米奴管結構214為一奈米碳管薄膜或一奈米 碳管長線。具體地,當所選定的複數個奈米碳管束片&的 f度較大時,所獲得的有序奈米碳管結構214為一奈米碳 官薄膜,其微觀結構請參閱圖8;當所選定的複數個奈米 ❹碳管束片段的寬度較小時,所獲得的有序奈米碳管結構 214即為一奈米碳管長線。 該直接拉伸獲得的有序奈米碳管結構214的厚度均 勻,奈米碳管於該奈米碳管結構214中均勻分佈。該直接 拉伸獲得有序奈米碳管結構叫的方法簡單 行工業化應用。 理 ^驟三:對上述有序奈米碳管結構214進行機械處 付到一奈米碳管長線結構1〇〇。 〇 m2述有序奈米碳管結構214為—寬度較大的奈米碳 對其進行機械處理從而得到—奈求碳管長線的 步驟可以通過以下二種方式實現:對所述有序社 構214進行扭轉,形成絞線狀奈米碳管長線;切割所ϋ 序奈未碳管結肖214,形成束狀奈米碳管長線;將有序ί 經過一有機溶劑浸潤處理後收縮成為; 對所述有序奈米碳管結構214進行扭 管長線的步驟可通過以下兩種方式實現:其一,= 16 200945372 旌棘雷Ϊ有序奈米碳管結構214—端的拉伸工具固定於一 紅轉電機上,扭轉該有序奈米碳管社 、 ?=管長線。其二,提供-個尾部可以黏住ί = ::軸,將該纺紗轴的尾部與有序奈米碳管 於14、,.σ 口後,使該紡紗軸以旋轉的方式扭轉該有 米碳管結構214’形成-奈米碳管長線 ^ ❹ ❹ 纺紗軸的旋轉方式不限,可以正轉,可以反轉二土二 和反轉相結合。優選地’料扭轉财序奈 ] 有序奈米碳管結構214沿有序奈二 == 以螺旋方式扭轉。扭轉後所形成的奈米 反巨長線為一絞線結構,其掃描電鏡照片請參見圖5。 的牛2㈣有序奈米碳管結構214,形成奈米碳管長線 右床ί為.ί有序奈米碳管結構214的拉伸方向切割所述 有序不米碳管結構214,形成複數個奈米碳管長線。 有序奈米碳管結構214經過一有機溶劑浸潤處理後收 縮獲得的奈来碳管長線為束狀結構,其掃描電鏡照片請參 見圖4。所述有機溶劑為揮發性有機溶劑。所述揮發性有 機浴劑選自乙醇、曱醇、丙酮、二氯乙烧及氣仿,本實施 例中該揮發性有機溶劑優選乙醇。 、當奈米碳管長線結構100包括一個奈米碳管長線時, 上述方法得到的奈米碳管長線即為一奈米碳管長線結構 100。 當奈米碳管長線結構100包括複數個奈米碳管長線 時,上述複數個奈米碳管長線可進一步平行排列成束或相 互纏繞扭轉,以形成一包括複數個奈米碳管長線的奈米碳 17 200945372 管長線結構100。 ^可以理解,本技術方案並不限於上述方法獲得奈来碳 管長線結構100,只要能使所述有序奈米碳管結構形 成奈米碳管長線結構100的方法都於本技術方案的保護^ 圍之内。 步驟四:形成至少一導電材料層110於上述奈米碳管 長線結構100表面,得到一境芯120。 本實施例採用物理氣相沈積法(PVD),如真空蒸铲法 ❹或離子濺射法或電鑛法等方法沈積導電材料層i二了‘選 地,本實施例採用真空蒸鍍法形成至少一層導電材料層 所述採用真空蒸鍍法形成至少一層導電材料層的 ,程包括以下步驟:首先,提供一真空容器210,該真空 容器210具有至少一沈積區,該沈積區底部和頂部分別放 置至少一個蒸發源212,該至少一個蒸發源212按形成至 少一層導電材料層的先後順序依次沿有序奈米碳管結構 ❿214的拉伸方向設置,且每個蒸發源212均可通過一個加 熱裝置+(圖未示)加熱。上述奈米碳管長線結構1〇〇設置 於上下蒸發源212中間並與其間隔一定距離,其中奈米碳 管長線結構100正對上下蒸發源212設置。該真空容器21〇 可通過外接一真空泵(圖未示)抽氣達到預定的真空度。 所述蒸發源2〗2材料為待沈積的導電材料。其次\通過加 熱=述蒸發源212,使其溶融後蒸發或昇華形成導電材料 蒸汽,該導電材料蒸汽遇到冷的奈米碳管長線結構1〇〇 後於不米碳管長線結構1〇〇上下表面凝聚,形成導電材 18 200945372 料層。由於奈米碳管長線結構⑽ 於間隙,導電材料/明不木之間存 面奈米碳管之間的間隙=管長線結構100表 線結構1〇〇的表面。 而很好的沈積於奈米碳管長 =理解,通過調節奈米碳管長線 發源212的距離及蒸發调 ^回為 源加具有-個沈積間的距離’可使每個蒸發 時,可將複繼^ ==複數個蒸發源的沈積區,二St 數層導電材料層110。 為提高導電材料蒸汽密声i 真办度 導電材料被氧化, 荦ΐ施射*力工又應達到1帕(Pa)以上。本技術方 案實施例中’真空容器210中的真空度為切π 本技術方案實施例中,所诫播 -導電材料層m的方鍍法形成至少 篮2*括以下步频:形成一屉湖 ❹ ^、層112於所述奈米碳管長線結構100S面;形成一層過 渡層113於所述潤濕層112的外表 於所述過渡層m的外表面Ί面’^成Γ層導電層114 冰道帝成^ 叼外衣面,形成一層抗氧化層U5於所 m的外表面。其中,上述形成潤濕層ιΐ2 ^層⑴及抗氧化層115的步驟均為可選擇的步驟。具體 ,可將上述奈米碳管長線結構100 材料所形成的蒸發源212的沈積區。敎上达各層 通過上述步驟’可於奈米碳管長線結構100表面形成 >、-導電材料層11G,從而得到線繞1G的㈣120。所 制仵的纜芯no可進一步收集於一第一捲筒224上。收集 19 200945372 方式為將纜芯120纏繞於所述第一捲筒224上。 另外’於所述形成至少一層導電材料層11〇於所述奈 米碳管長線結構100表面之後,可進一步包括於所述奈米 碳管長線結構100表面形成強化層116的步驟。所述形成 強化層116的過程具體包括以下步驟:將形成有至少—層 導電材料層110的奈米碳管長線結構100通過一裝有聚合 物溶液的裝置220,使聚合物溶液浸潤整個奈米碳管長線 結構100’該聚合物溶液通過分子間作用力黏附於所述至 ©少一個導電材料層110的外表面;及凝固聚合物,形成一 強化層116。 步驟五:形成至少一絕緣介質層13〇於所述纜芯12〇 的外表面。 所述絕緣介質層130可通過一第一擠壓裝置23〇包覆 於所述纜芯120的外表面,該第一擠壓裝置23()將聚合物 熔體組合物塗覆於所述纜芯120的表面。本技術方案實施 例中,所述聚合物熔體組合物優選為泡沫聚乙烯組合物。 ⑮一旦緵芯120離開所述第一擠壓裝置230,聚合物熔體組 合物因壓力減小而發生膨脹’從而形成絕緣介質層13〇於 所述缓芯120的外表面。 當所述絕緣介質層13〇為兩層或兩層以上時,可重複 上述步驟。 步驟六··形成至少一屏蔽層14〇於所述絕緣介質層13〇 的外表面。 提供一屏蔽帶242,該屏蔽帶242由一第二捲筒244 提供。將該屏蔽帶242圍繞絕緣介質層13〇卷覆,以便形 20 200945372 成屏蔽層140。屏蔽帶242可選用一金屬薄膜、奈米碳管 結構或金屬線等線狀結構。另外,所述屏蔽帶242也可由 上述複數種材料形成的編織層共同組成,並通過黏結劑黏 結或直接纏繞於所述絕緣介質層13〇外表面。 山μ本技術方案實施例中,所述屏蔽層14〇由複數個奈米 碳管長線結構組成,該奈米碳管長線結構直接或編織成網 狀纏繞於所述絕緣介質層外^每個奈米碳管長線結構包括 複數個從奈米碳管陣列拉出的奈米碳管束片段,每個奈米 ❹碳管束片段具有大致相等的長度且每個奈米碳管束片段由 複數個相互平行的奈米碳管束構成,其中,奈米碳管束片 段兩端通過凡德瓦爾力相互連接。本技術方案實施例採用 奈米碳管結構組成屏蔽層140,因奈米碳管具有良好的導 電性能從而使得該屏蔽層140具有較強的屏蔽效果。 優選地’所述帶狀膜結構的屏蔽帶242繞纜芯120抽 向進行纏繞包袠’以便完全屏蔽纜芯120。所述奈米碳管 長線結構或金屬線等線狀結構的屏蔽帶242可直接或編織 ❹成網狀纏繞於所述絕緣介質層130的外表面。具體地,所 述複數根奈米碳管長線結構或金屬線可通過複數個繞線架 246沿不同的螺旋方向捲繞於所述絕緣介質層130的外表 面。 可以理解,當所述屏蔽層140為兩層或兩層以上結構 時,可重複上述步驟。 步驟七:形成一外護套150於所述屏蔽層140的外表 面。 所述外護套150可通過一第二擠壓裝置250包覆到所 21 200945372 述屏蔽層140外表面,該第二擠壓裝置25〇將聚合物熔體 組合物塗覆於屏蔽層14〇的表面,所述聚合物熔體圍繞於 所述屏蔽層140的外表面被擠壓,冷卻後形成外護套15〇。 本實施例形成外護套15〇的聚合物熔體優選奈米蒙脫土 — 聚乙烯複合材料,其具有良好的機械性能、财火阻燃性能、 低煙無齒性能’不僅可以為線纜1〇提供保護,有效抵禦機 械、物理或化學等外來損傷,同時還能滿足環境保護的要 求。 © 進一步地,可將所製造的線纜10收集於一第三捲筒 260上,以利於儲存和裝運。 請參閱圖9,本技術方案第二實施例提供一種線纜 30,該線纜30為同軸線纜,該同軸線纜3〇包括複數個纜 芯320 (圖9中共顯示七個纜芯)、每一纜芯32〇外覆蓋一 個絕緣介質層330、包覆於複數個纜芯32〇外的一個屏蔽 層340和一個包覆於屏蔽層340外表面的外護套35〇。屏 蔽層340和絕緣介質層330的間隙内可填充絕緣材料。其 ❹中,每個纜芯320及絕緣介質層33〇、屏蔽層34〇和外蠖 套350的結構、材料及製備方法與第一實施例中的纜芯 120、絕緣介質層130、屏蔽層⑽和外護套150的結構、 材料及製備方法基本相同。 請參閱圖1G,本技術方”三實施例提供-種線鏡 4〇,該線纜40為同軸線纜,該同軸線纜4〇包括複數個纜 芯420 (ffl 10 +共顯示五個境芯)、每一繞芯、42〇外覆蓋 -個絕緣介質層430和一個屏蔽層44〇、及包覆於複數個 纔芯420外表面的外護套45〇。屏蔽層44〇的作用於於對 22 200945372 各個纜芯440進行單獨的屏蔽’這樣不僅可以防止外來因 素對鏡芯420内部傳輸的電訊號造成干擾而且可以防止各 繅芯420内傳輸的不同電訊號間相互發生干擾。其中,每 個纜芯420、絕緣介質層430、屏蔽層440和外護套45〇 的結構、材料及製備方法與第一實施例中的纜芯12〇、絕 緣介質層130、屏蔽層14〇和外護套15〇的結構、材料及 製備方法基本相同。 本技術方案實施例提供的包括奈米碳管長線及導電材 ©料層的纜芯的製備方法具有以下優點:其一,由於奈米碳 管長線係通過對奈米碳管薄膜進行旋轉或直接從奈米碳管 陣列中拉取而製造,該方法簡單、成本較低。其二,所述 從奈来碳管陣列中拉取獲得有序奈米碳管結構的步驟及形 成至少一層導電材料層的步驟均可於一真空容器中進行, 有利於繞芯的規模化生產,從而有利於線纜的規模化生產。 另外L本領域技術人員還可於本發明精神内作其他變 化,當然這些依據本發明精神所作的變化,都應包含於 ❹發明所要求保護的範圍内。 【圖式簡單說明】 圖1係本技術方案第一實施例的線纔的截面結構示意 圖。 * - =係本技術方案第一實施例的線纜中單根纜芯的結 構不意圖。 面任:f 技術方案第一實施例的奈米碳管長線結構截 面、、Ό構不意圖。 圖4係本技術方案第一實施例的束狀奈米碳管長線的 23 200945372 掃描電鏡照片。 圖5係本技術方案第一實施例的絞線狀碳奈米管長線 的掃描電鏡照片。 圖6係本技術方案第一實施例線纜的製造方法的流程 圖0 一立圖7係本技術方案第一實施例線纜的製造裝置的結構 不愿·圖。 ©鏡照片 圖8係本技術方案第一實施例碳奈米管薄獏的掃描電 圖9係本技術方案第二實施例線纜的截面結構示意 圖 圖。圖10係本技術方案第三實施例線纜的戴面結構示意 【主要元件符號說明】 線纜 10, 30, 40 120, 320, 420 奈米碳管長線結構 100 導電材料層 110 潤濕層 112 過渡層 113 導電層 114 抗氧化層 115 強化層 116 絕緣介質層 130, 330, 430 24 200945372 屏蔽層 140, 340, 440 外護套 150, 350, 450 真空容器 210 蒸發源 212 有序奈米碳管結構 214 奈米碳管陣列 216 裝置 220 第一捲筒 224 第一擠壓裝置 230 屏蔽帶 242 第二捲筒 244 繞線架 246 第二擠壓裝置 250 第三捲筒 260 ❿ 25200945372 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a wire mirror, and more particularly to a wire based on a carbon nanotube. [Prior Art] Cable is a commonly used signal transmission wire in the electronics industry. Micron-sized cables are more widely used in IT products, medical instruments, and space devices. Large-diameter cables are used for power transmission. The conventional line peek internal β is provided with two conductors, the inner conductor is for transmitting electrical signals, and the outer conductor is for shielding the transmitted electrical signal and enclosing it inside, thereby winding the wire and having low frequency loss, shielding and resistance. For the characteristics of strong interference and frequency bandwidth, please refer to the document "Electromagnetic Shielding of High-Voltage Cables" (M. De Wulf, Ρ Wouters et. al., Journal of Magnetism and Magnetic Materials, 316, p908-p901 (2007). )). In general, the structure of the cable from the inside to the outside is a core forming an inner conductor, an insulating dielectric layer covering the outer surface of the core, a shielding layer forming an outer conductor, and an outer sheath. Among them, the cable core is used to transmit electrical signals, and the material is mainly copper, aluminum or copper-zinc alloy. The shielding layer is usually formed by braiding a plurality of strands of metal wire or wrapping it with a metal film over the insulating dielectric layer to shield electromagnetic interference or unwanted external signal interference. For the core formed of metal material, the biggest problem is that when the alternating current is transmitted in the metal conductor, the current density of each part is not uniform, the current density inside the conductor is small, and the current density of the conductor surface is large. Skin Effect. The skin effect reduces the effective cross-sectional area of the metal conductor when passing current, thereby causing the effective resistance of the conductor to decrease or the transmission signal to be lost. In addition, cables with metal materials as the core and shield have lower strength, larger quality and larger diameter, and cannot meet certain specific conditions, such as aviation, space equipment and ultra-fine cables. Nano carbon tube is a new type of one-dimensional nano-material with excellent electrical conductivity, high tensile strength and high thermal stability. It has been widely used in the fields of materials science, chemistry and physics. Application prospects. At present, carbon nanotubes have been mixed with metals to form a composite material, and the core of the cable is manufactured using ®. In the prior art, a method for manufacturing a carbon nanotube-containing cable generally includes the steps of: providing a molten metal matrix material; immersing the carbon nanotube powder in the molten metal matrix material to form a carbon nanotube and a metal matrix; a mixture of fibers permeable to the molten metal matrix material from the molten metal matrix material under conditions capable of solidifying the molten metal matrix material to form a metal matrix composite cable core; coating the polymer on the cable Forming an insulating dielectric layer on the outer surface of the core; forming a shielding layer by directly or by braiding the outer surface of the insulating dielectric layer or wrapping the metal thin film on the outer surface of the insulating dielectric layer; and coating the outer protective layer Nested on the outer surface of the shielding layer. The cable obtained by the method has stronger mechanical properties and lighter quality than the cable using the pure metal core, and the electrical conductivity of the cable is also improved. However, in the cable using the metal matrix composite carbon nanotube core, the carbon nanotubes are randomly dispersed in the metal, and the carbon nanotubes in the cable cannot take advantage of their axial conduction. The effect of the 200945372 skin effect in the metal cable core. The cable is prepared by mixing the carbon nanotubes in the molten metal and then drawing the wire. The method is complicated and the cost is high. In summary, a cable is provided which is necessary for good electrical conductivity. SUMMARY OF THE INVENTION A cable includes at least one cable core, at least one insulating dielectric layer coated on the outside of the cable core, at least one shielding layer covering the outside of the insulating dielectric layer, and an outer surface covered by the shielding layer. The sheath, wherein the core comprises a nanowire carbon tube long-line structure and a conductive material layer coated on the surface of the carbon nanotube long-line structure. Compared with the prior art, the technical solution adopts a core fiber comprising a core structure of a carbon nanotube long-circuit structure, which has the following advantages: First, the wire-wound iron core is wrapped by a conductive material layer on the outer surface of the carbon nanotube long-line structure. The composition is due to the high mechanical strength and light quality of the long carbon nanotube structure. Therefore, the wire containing the long-line structure of the carbon nanotubes has higher mechanical strength and lighter quality than the cable using the metal matrix composite nano-carbon nanotube mirror core, and is suitable for special fields such as aviation and space equipment. Applications. Secondly, the cable adopts a conductive material layer and a long-line structure of a nano tube. The long line structure of the non-Minute has high conductivity, so the conductive material layer and the non-carbon carbon long line are used. The mirror core formed by the structure has better conductivity than the core formed by the metal matrix composite nano tube. In Lisan, the cable county is composed of a conductive material layer and a long-term structure of a carbon nanotube. The current propagates in the core, the effective cross-sectional area of the current propagation is constant, and the current does not substantially produce a skin effect when passing through the conductive material layer. , thereby reducing the attenuation during the transmission of the signal in the cable 8 200945372. [Embodiment] The structure of the cable 10 of the embodiment of the present technical solution and a preparation method thereof will be described in detail below with reference to the accompanying drawings. Embodiments of the present disclosure provide a cable including at least one cable anger, at least one insulating dielectric layer covering the core, at least one electromagnetic shielding layer covering the outside of the insulating dielectric layer, and covering the electromagnetic At least one outer sheath outside the shield. Please refer to FIG. 1 'The cable of the first embodiment of the present technical solution is a coaxial cable, and the coaxial cable includes a cable core 120, an insulating dielectric layer 130 wrapped around the cable core 120, and covered with an insulating medium. The shielding layer 14 outside the layer 130 and the outer sheath 150 covering the outside of the shielding layer 140. The cable core 12, the insulating dielectric layer 130, the shielding layer 140 and the outer sheath 150 are coaxially disposed. Referring to FIG. 2', the core 120 includes a layer of conductive material no and a layer of nanowires 100'. The layer of conductive material 11 is coated on the outer surface of the long-line structure 100 of the carbon nanotube. Specifically, the conductive material layer u package φ includes a humidity control layer 112 directly bonded to the surface of the carbon nanotube long-line structure 1 , a transition layer 113 disposed on the outer surface of the wet layer 112 , and a transition layer I] The conductive layer 114 on the outer surface and the anti-oxidation layer 115 disposed on the outer surface of the conductive layer 114. The conductive material layer 11A includes at least the conductive layer 114, and the wettability layer 112, the transition layer 113, and the oxidation resistant layer 115 are all optional structures. The core 120 has a diameter greater than 1 micron, preferably 'the core ι2' has a diameter of 10 to 30 microns or 1 cm. :. The carbon nanotube long-line structure 100 includes at least one carbon nanotube long line 102. The diameter of the long carbon nanotube 102 is 4.5 nm ~ 1 〇〇 micro. 9 200945372 Referring to Figure 3, the carbon nanotube long-line structure 1〇〇 can also be a bundle or stranded structure composed of a plurality of carbon nanotube long wires 102. When the diameter of the carbon nanotube long-line structure 100 is less than 1 〇〇 micrometer, the cable 10 composed of the carbon nanotube structure 1 可 can be applied to the field of signal transmission. When the diameter of the carbon nanotube structure 100 is larger than 100 μm, the cable 10 composed of the carbon nanotube structure 1 可 can be applied to the field of power transmission. The carbon nanotube long line 102 includes a bundle or stranded structure composed of a plurality of carbon nanotubes. Referring to Figure 4, the carbon nanotube 0 long line 102 of the bundle structure includes a plurality of carbon nanotube bundle segments arranged in a preferred orientation along the axial direction of the core, the parent carbon nanotube bundle segments having substantially equal lengths and each The carbon nanotube bundle segment is composed of a plurality of mutually parallel carbon nanotube bundles, and the carbon nanotube bundle segments are connected to each other by a van der Waals force, and the carbon nanotube bundle includes a plurality of carbon nanotubes, and the plurality of carbon nanotubes The carbon nanotubes have a common preferred orientation arrangement. The carbon nanotubes in the long carbon nanotube line 1〇2 of the bundle structure are arranged in an axially preferred orientation along the long line of the carbon nanotubes, and the plurality of carbon nanotubes are connected end to end by van der Waals force. The bundle structure has a diameter of 10 micrometers to 30 micrometers. Referring to FIG. 5, the long carbon nanotube line 1〇2 of the stranded structure includes a plurality of carbon nanotubes arranged axially along the longitudinal line of the carbon nanotubes, and the plurality of carbon nanotubes pass through the van der Waals. Valli is connected end to end. The stranded carbon nanotube long line 102 has a diameter of 10 μm to 30 μm. The carbon nanotubes in the carbon nanotube long-line structure 100 include single-walled carbon nanotubes 'double-walled carbon nanotubes or multi-walled carbon nanotubes, and the diameter of the single-walled carbon nanotubes is 0.5 nm~ 50 nm, the diameter of the double-walled carbon nanotube is 丄 nanometer ~ 50 nm, and the diameter of the multi-walled carbon nanotube is ι·5 nm~5 〇 nanometer. 200945372 The above-mentioned wetting layer 112 is made of @a 4, j A i line structure (10). The surface is better:: 1 吏: electric layer, long with carbon nanotubes, and 合, ,, 0. The material for forming the wetting layer 112 may be a metal or a pot alloy which has good wettability with a carbon nanotube such as titanium, and has a degree of w nm. In this embodiment: the wetting material has a thickness of about 2 nm. It will be appreciated that the wetting layer 112 is an optional structure. ❹ 10 The above transition layer 113 functions to bond the wetting layer 112 to the conductive sound. The material forming the transition layer 113 can be better combined with the material of the θ material and the conductive layer 114; the alloy, the thickness of the transition layer 113 is work, nano. In this embodiment, the material of the transition layer 113 is copper and has a thickness of 2 nanometers. It can be understood that the transition layer 113 is of an alternative structure. The above-mentioned conductive layer m functions to make _11 〇 have better properties. The material forming the conductive layer 114 may be copper, silver or gold or the like: gold or alloy thereof. The thickness of the conductive layer m is (four) nanometer. In this embodiment, the conductive layer 114 is made of silver and has a thickness of about 5 meters. = The role of the anti-oxidation layer m is to prevent the manufacturing process of the cable 1〇. The electrode 114 is oxidized in the air, so that the conductivity of the core 12〇 is lowered. The material forming the anti-oxidation layer 115 may be a gold or an oxygen-soluble metal or an alloy thereof, and the anti-oxidation layer has a thickness f of 1 to 1 G nm. In this embodiment, the material of the oxidation resistant layer 115 has a thickness of 2 nm. It can be understood that the anti-deuteration layer 115 is optional. Further, in order to increase the strength of the cable 10, the reinforcing layer 116 may be further disposed on the m-step. The material forming the reinforcing layer ι 6 can be a high strength polymer such as polyvinyl alcohol (PVA), polyphenylene benzobisoxazole (PBO), polyethylene (PE) or polyethylene oxide (pvc). The thickness of the reinforcing layer 116 is 〇.micron. In this embodiment, the reinforcing layer 116 is made of polyvinyl alcohol (PVA) and has a thickness of 0.5 μm. It will be appreciated that the reinforcement layer 116 is an optional structure. The above insulating dielectric layer 13 is used for electrical insulation, and may be selected from the group consisting of polytetrafluoroethylene, polyethylene, polypropylene, polystyrene, foamed polyethylene composition or non-ricitic molecular composite material. Nano-Clay-Polymer Composites_Nano-nano-Clay is a nano-layered structure of citrate minerals consisting of a plurality of hydrated dream acid salts and a certain amount of alumina, alkali metal oxides and alkaline earth metal oxides. Composition, with excellent properties such as fire retardant and flame retardant, such as nano kaolin or nano montmorillonite. The polymer material may be selected from the group consisting of an anthracene resin, a polyamide, a polyolefin such as polyethylene or polypropylene, but not limited thereto. The insulating dielectric layer 130 of this embodiment is preferably a foamed polyethylene composition. The shielding layer 140 is formed of a conductive material for shielding electromagnetic interference or unwanted external signal interference. Specifically, the shielding layer 14 can be formed by braiding a plurality of strands of metal wire or wrapping it with a metal film on the insulating dielectric layer 13 or by winding or wrapping the carbon nanotube structure on the insulating dielectric layer 13 The composite material containing the carbon nanotubes may be directly coated on the surface of the insulating dielectric layer 130. The material of the metal thin film or metal wire may be selected from copper, a metal having good electrical properties or an alloy thereof. The carbon nanotube structure includes 不ίΐ: a non-meter carbon tube film or a long carbon nanotube tube. The nanocarbon m-containing material may be a composite material or a polymer of a metal and a carbon nanotube. The polymerization of the composite material of the metal and the carbon nanotubes may be selected as polyparaphenylene 12 200945372 « Diethylene glycol dicarboxylate Polyethylene Terephthalate (PET), Polycarbonate (PC), Acrylonitrile-Butadiene Styrene Terpolymer (ABS), Polycarbonate/Acrylonitrile A polymer material such as a diene-styrene copolymer (PC/ABS). When the composite material is a composite material of a polymer and a carbon nanotube, the carbon nanotube can be uniformly dispersed in the solution of the polymer material, and the solution of the polymer material containing the carbon nanotube can be uniformly It is coated on the surface of the insulating dielectric layer 130, and after cooling, forms a shielding layer 140 including a poly- and carbon nanotube. Further, the shielding layer 14 can also be composed of a plurality of materials described above which are combined outside the insulating dielectric layer 130. The embodiment of the present invention uses a carbon nanotube structure to form the shielding layer 140. The carbon nanotube has good electrical conductivity, so that the shielding layer 140 has a strong shielding effect. The outer sheath 150 is made of an insulating material, and a composite material of a nano-clay-polymer material may be used. The nano-clay may be a nano-kaolin or a nano-montmorillonite, and the polymer material may be an anthracene resin or a polyfluorene. Amine, polydecene olefin such as polyethylene or polypropylene, etc., but not limited thereto. The present embodiment exception sheath 150 is preferably a nano-montmorillonite-polyethylene composite material which has good mechanical properties, fire-retardant properties, low smoke and halogen-free properties, and can not only provide protection for the cable 10, but also effectively resist mechanical, Physical or chemical alienation can also meet the requirements of environmental protection. The wire 10 has the following advantages due to the use of a carbon nanotube long-line structure and a conductive material layer 110 as the core 120. First, the carbon nanotube long-line structure 100 in the double-chid 10 includes a plurality of orders. Arranged carbon nanotubes, which have lighter quality and higher mechanical strength, therefore, read 13 200945372 » cable 10 with nano tube long-line structure 100 is more than metal matrix composite nano-carbon cable The core cable has higher mechanical strength and lighter quality and is suitable for special applications such as aerospace and space applications. Second, in the long-line structure 100 of the nanotube, the carbon nanotubes are arranged in an orderly manner, so that the core formed by the metal matrix composite carbon nanotubes has better conductivity. First, the carbon nanotube long-line structure 100 comprises a plurality of carbon nanotubes arranged end to end by van der Waals force and arranged in a preferred orientation. Since the carbon nanotubes have a tubular structure, in the long carbon nanotube structure 100 of the carbon nanotubes The current propagates along the wall of a plurality of carbon nanotubes connected by the first and last tails, and the effective cross-sectional area of the current propagation is constant, and the current does not substantially have a skin effect when passing through the conductive material layer, thereby reducing the transmission process in the cable on the signal line. Attenuation in . Referring to FIG. 6 and FIG. 7 'the first embodiment of the present invention, the method for preparing the cable 1 主要 mainly includes the following steps: Step 1: providing a carbon nanotube array 216, preferably, the carbon nanotube array 216 is Ultra-sequential carbon nanotube array. The carbon nanotube array 216 is one or a plurality of single-walled carbon nanotube arrays, double-walled nano-carbon nanotube arrays, and multi-walled carbon nanotube arrays. ^ In the embodiment, the method for preparing the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or Selecting a germanium substrate formed with an oxide layer, in this embodiment, a 4-inch germanium substrate is preferably used; (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be iron (Fe), cobalt (Co), or nickel. One of the alloys of (Ni) or any combination thereof; (the substrate on which the catalyst layer is formed is tempered at 700 to 9 Torr in air of TC for about 3 minutes to 90 minutes; (d) the treated substrate is placed In the reaction furnace, under the protection of 200945372 gas atmosphere to 500~740 ° C ' and then into the carbon source gas reaction for about 5 to 30 minutes, growth to obtain a super-shunned carbon nanotube array, the height of 200 ~ 400 microns The super-sequential carbon nanotube array is a plurality of pure carbon nanotube arrays formed by carbon nanotubes parallel to each other and perpendicular to the substrate. The super-sequential carbon nanotube array is controlled by the above controlled growth conditions. Basically contains no impurities, such as amorphous carbon Residual catalyst metal particles, etc. The carbon nanotubes in the super-sequential carbon nanotube array are in close contact with each other by van der Waals force to form an array. The area of the super-sequential carbon nanotube array is hoarded with the above-mentioned basal plane In the present embodiment, the carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or methyl bromide, and the protective gas is nitrogen or an inert gas. The preferred carbon source gas in this embodiment is acetylene, and the preferred protection. The gas is argon. Step 2: An ordered carbon nanotube structure 214 is obtained by drawing from the carbon nanotube array 216 using a stretching tool. The preparation method of the ordered carbon nanotube structure 214 includes The following steps: (a) selecting a plurality of carbon nanotube bundle segments of a certain width from the carbon nanotube array 216, the embodiment preferably adopts a tape having a certain width or a tip contact carbon nanotube array 216. Selecting a plurality of carbon nanotube bundle segments of a certain width; (b) stretching the plurality of carbon nanotube bundle segments at a constant speed in a direction substantially perpendicular to the length of the carbon nanotube array 歹 216 216 ± Forming a continuous ordered carbon nanotube structure 214. During the stretching process, the plurality of carbon nanotube bundle segments are gradually separated from the substrate in the stretching direction by the tensile force, and the selection is due to the van der Waals force. The plurality of carbon nanotube bundle segments are continuously drawn end-to-end with the other carbon nanotube bundle segments, thereby forming an ordered nanometer 15 200945372 carbon tube structure 214. The ordered carbon nanotube structure 214 includes plural The carbon nanotube bundles are connected end to end and aligned. The arrangement of the carbon nanotubes in the ordered carbon nanotube structure 214 is substantially parallel to the direction of stretching of the ordered carbon nanotube structure 214. The ordered nanometer The slave structure 214 is a carbon nanotube film or a nano carbon tube long line. Specifically, when the selected plurality of carbon nanotube bundles & The tube structure 214 is a nano carbon official film, the microstructure of which is shown in FIG. 8; when the width of the selected plurality of carbon nanotube bundle segments is small, the obtained ordered carbon nanotube structure 214 is One nanometer carbon tube long line. The ordered carbon nanotube structure 214 obtained by direct stretching has a uniform thickness, and the carbon nanotubes are uniformly distributed in the carbon nanotube structure 214. The method of direct stretching to obtain an ordered carbon nanotube structure is simply industrialized. Step 3: The above-mentioned ordered carbon nanotube structure 214 is mechanically treated to a long carbon nanotube structure of 1 nm. 〇m2 describes that the ordered carbon nanotube structure 214 is a mechanical treatment of the nano carbon having a large width, and the step of obtaining the long line of the carbon tube can be achieved by the following two methods: 214 is twisted to form a long line of stranded carbon nanotubes; the end of the cut carbon nanotubes 214 is formed, forming a long line of bundled carbon nanotubes; the ordered ί is infiltrated by an organic solvent and shrinks; The step of performing the twisted tube long line of the ordered carbon nanotube structure 214 can be achieved by the following two methods: one, = 16 200945372 The 214-end stretching tool of the ordered carbon nanotube structure is fixed in a red On the motor, reverse the ordered carbon nanotubes, and the long line. Secondly, providing - a tail can be adhered to the ί = :: axis, the tail of the spinning shaft and the ordered carbon nanotubes are after the 14, σ opening, so that the spinning shaft is rotated in a rotating manner There is a carbon tube structure 214' formed - the carbon nanotube long line ^ ❹ ❹ The spinning shaft is not limited in rotation, and can be rotated forward, and can be reversed to combine the two soils and the reverse. Preferably, the ordered carbon nanotube structure 214 is twisted in a helical manner along the ordered Nai 2 ==. The nano-anti-giant line formed after twisting is a twisted wire structure, and its scanning electron micrograph is shown in Figure 5. The cattle 2 (four) ordered carbon nanotube structure 214, forming a long carbon nanotube on the right bed of the nano carbon tube structure. The tensile direction of the ordered carbon nanotube structure 214 cuts the ordered carbon nanotube structure 214 to form a plurality A long line of carbon nanotubes. The long-term carbon nanotubes obtained by the ordered carbon nanotube structure 214 after being immersed in an organic solvent are bundled, and the scanning electron micrographs are shown in Fig. 4. The organic solvent is a volatile organic solvent. The volatile organic bath is selected from the group consisting of ethanol, decyl alcohol, acetone, dichloroethane and gas, and in the present embodiment, the volatile organic solvent is preferably ethanol. When the long carbon nanotube structure 100 includes a long carbon nanotube line, the long carbon nanotube line obtained by the above method is a nanometer carbon tube long-line structure 100. When the nano carbon tube long-line structure 100 includes a plurality of long carbon nanotube long lines, the plurality of nano carbon tube long lines may be further arranged in parallel or twisted to each other to form a long line including a plurality of carbon nanotube long lines. Meter carbon 17 200945372 Pipe long line structure 100. It can be understood that the technical solution is not limited to the above method to obtain the Nylon carbon tube long-line structure 100, as long as the method for forming the ordered carbon nanotube structure into the nano-carbon tube long-line structure 100 is protected by the technical solution. ^ Within the fence. Step 4: Form at least one conductive material layer 110 on the surface of the above-mentioned carbon nanotube long-line structure 100 to obtain a core 120. In this embodiment, a physical vapor deposition method (PVD) is used, such as a vacuum shovel method or an ion sputtering method or an electric ore method to deposit a conductive material layer i. The present embodiment is formed by vacuum evaporation. Forming at least one layer of conductive material by vacuum evaporation, the process comprising the steps of: firstly, providing a vacuum vessel 210 having at least one deposition zone, the bottom and the top of the deposition zone respectively At least one evaporation source 212 is disposed, and the at least one evaporation source 212 is sequentially disposed along the stretching direction of the ordered carbon nanotube structure 214 in the order of forming at least one layer of the conductive material, and each of the evaporation sources 212 can be heated by one The device + (not shown) is heated. The above-mentioned carbon nanotube long-line structure 1 is disposed in the middle of the upper and lower evaporation sources 212 and spaced apart therefrom, wherein the carbon nanotube long-line structure 100 is disposed opposite to the upper and lower evaporation sources 212. The vacuum vessel 21 can be evacuated to a predetermined degree of vacuum by an external vacuum pump (not shown). The evaporation source 2 is a conductive material to be deposited. Secondly, by heating = the evaporation source 212, it is melted and then evaporated or sublimated to form a conductive material vapor. The conductive material vapor encounters a long carbon nanotube structure and a long-length structure of the carbon nanotube. The upper and lower surfaces are agglomerated to form a conductive material 18 200945372 layer. Due to the long-line structure of the carbon nanotubes (10) in the gap, the gap between the conductive carbon material and the surface of the carbon nanotubes is the surface of the long-line structure 100. And very good deposition in the carbon nanotube length = understand, by adjusting the distance between the long-term source 212 of the carbon nanotubes and the evaporation adjustment back to the source plus the distance between the depositions - can make each evaporation, can be complex Following the === deposition area of a plurality of evaporation sources, the second St layer of conductive material layer 110. In order to improve the tightness of the conductive material vapor, the conductive material is oxidized, and the 荦ΐ application is required to reach 1 Pa (Pa) or more. In the embodiment of the technical solution, the degree of vacuum in the vacuum container 210 is π. In the embodiment of the technical solution, the square plating method of the layer of the conductive-conductive material m forms at least a basket 2* including the following steps: forming a lake ❹ ^, layer 112 on the surface of the carbon nanotube long-line structure 100S; forming a transition layer 113 on the outer surface of the wetting layer 112 on the outer surface of the transition layer m to form a conductive layer 114 The ice road emperor becomes the outer coat surface, forming an anti-oxidation layer U5 on the outer surface of the m. The steps of forming the wetting layer ι 2 layer (1) and the oxidation resistant layer 115 are all optional steps. Specifically, the deposition zone of the evaporation source 212 formed by the above-mentioned carbon nanotube long-line structure 100 material can be used. Each of the layers is formed by the above step ', and the conductive material layer 11G is formed on the surface of the carbon nanotube long-line structure 100, thereby obtaining the (four) 120 of the wire wound 1G. The manufactured core no can be further collected on a first reel 224. Collection 19 200945372 The method is to wind the core 120 around the first reel 224. Further, after forming the at least one layer of the conductive material 11 on the surface of the carbon nanotube long-line structure 100, the step of forming the strengthening layer 116 on the surface of the nano-carbon tube long-line structure 100 may be further included. The process of forming the strengthening layer 116 specifically includes the steps of: passing the carbon nanotube long-line structure 100 formed with at least one layer of the conductive material layer 110 through a device 220 containing a polymer solution, so that the polymer solution infiltrates the entire nanometer. The carbon tube long-line structure 100' is adhered to the outer surface of the conductive material layer 110 by an intermolecular force; and the polymer is solidified to form a strengthening layer 116. Step 5: forming at least one insulating dielectric layer 13 on the outer surface of the core 12A. The insulating dielectric layer 130 may be coated on the outer surface of the core 120 by a first pressing device 23, which applies a polymer melt composition to the cable. The surface of the core 120. In an embodiment of the technical solution, the polymer melt composition is preferably a foamed polyethylene composition. 15 Once the core 120 leaves the first extrusion device 230, the polymer melt composition expands due to a decrease in pressure' to form an insulating dielectric layer 13 that is disposed on the outer surface of the slow core 120. When the insulating dielectric layer 13 is two or more layers, the above steps may be repeated. Step 6· forming at least one shielding layer 14 on the outer surface of the insulating dielectric layer 13A. A shielding strip 242 is provided that is provided by a second reel 244. The shield tape 242 is wound around the insulating dielectric layer 13 to form a shield layer 140. The shielding tape 242 may be a linear structure such as a metal film, a carbon nanotube structure or a metal wire. In addition, the shielding tape 242 may also be composed of a woven layer formed of the above plurality of materials, and bonded or directly wound on the outer surface of the insulating dielectric layer 13 by a bonding agent. In the embodiment of the present invention, the shielding layer 14 is composed of a plurality of long carbon nanotube structures, and the long carbon nanotube structure is directly or woven into a mesh and wound around the insulating dielectric layer. The carbon nanotube long-line structure comprises a plurality of carbon nanotube bundle segments drawn from the carbon nanotube array, each of the nano-tube bundle segments having substantially equal lengths and each of the carbon nanotube bundle segments being parallel to each other The carbon nanotube bundle is composed of a bundle of carbon nanotube bundles connected to each other by van der Waals force. The embodiment of the technical solution uses the carbon nanotube structure to form the shielding layer 140. The carbon nanotube has good electrical conductivity, so that the shielding layer 140 has a strong shielding effect. Preferably, the tape-like film structure of the tape 242 is drawn around the core 120 to wrap the package ' to completely shield the core 120. The shielded tape 242 of the carbon nanotube long-line structure or the wire-like structure such as a metal wire may be wound or meshed directly on the outer surface of the insulating dielectric layer 130. Specifically, the plurality of carbon nanotube long-line structures or metal wires may be wound around the outer surface of the insulating dielectric layer 130 in a plurality of winding frames 246 in different spiral directions. It can be understood that the above steps can be repeated when the shielding layer 140 is of two or more layers. Step 7: Form an outer sheath 150 on the outer surface of the shielding layer 140. The outer sheath 150 may be coated to the outer surface of the shield layer 140 by a second pressing device 250, and the second pressing device 25 涂覆 applies the polymer melt composition to the shield layer 14〇 The surface of the polymer melt is extruded around the outer surface of the shield layer 140 to form an outer jacket 15〇 after cooling. The polymer melt forming the outer sheath 15〇 in this embodiment is preferably a nano-montmorillonite-polyethylene composite material, which has good mechanical properties, flame retardant performance, low smoke and no tooth performance. 1〇 Provides protection against external damage such as mechanical, physical or chemical, while also meeting environmental protection requirements. © Further, the manufactured cable 10 can be collected on a third reel 260 for storage and shipping. Referring to FIG. 9 , a second embodiment of the present invention provides a cable 30 , which is a coaxial cable. The coaxial cable 3 includes a plurality of cores 320 (a total of seven cores are shown in FIG. 9 ). Each of the cores 32 is covered with an insulating dielectric layer 330, a shielding layer 340 covering the outer plurality of cores 32, and an outer sheath 35〇 covering the outer surface of the shielding layer 340. The gap between the shield layer 340 and the insulating dielectric layer 330 may be filled with an insulating material. The structure, material and preparation method of each of the cable core 320 and the insulating dielectric layer 33, the shielding layer 34 and the outer sleeve 350 are the same as the cable core 120, the insulating dielectric layer 130, and the shielding layer in the first embodiment. (10) The structure, material and preparation method of the outer sheath 150 are basically the same. Referring to FIG. 1G, the third embodiment provides a line mirror 4〇, the cable 40 is a coaxial cable, and the coaxial cable 4 includes a plurality of cable cores 420 (ffl 10 + total display five environments) The core, each of the cores, the outer cover of the insulating layer 430 and the shielding layer 44〇, and the outer sheath 45〇 covering the outer surfaces of the plurality of cores 420. The shielding layer 44〇 acts on In the case of 22 200945372, each of the cores 440 is shielded separately. This not only prevents external factors from interfering with the electrical signals transmitted inside the mirror core 420, but also prevents interference between different electrical signals transmitted in the respective cores 420. The structure, material and preparation method of each of the core 420, the insulating dielectric layer 430, the shielding layer 440 and the outer sheath 45A are the same as the core 12A, the insulating dielectric layer 130, the shielding layer 14 and the outer layer in the first embodiment. The structure, material and preparation method of the sheath 15〇 are basically the same. The preparation method of the cable core including the nano carbon tube long wire and the conductive material © material layer provided by the embodiment of the present technical solution has the following advantages: First, due to the nano carbon Long carbon line The film is manufactured by rotating or directly pulling from the carbon nanotube array, and the method is simple and low in cost. Second, the step of extracting the ordered carbon nanotube structure from the carbon nanotube array and The step of forming at least one layer of the conductive material can be carried out in a vacuum vessel, which is advantageous for large-scale production of the core, thereby facilitating large-scale production of the cable. Further, those skilled in the art can also make the spirit of the present invention. Other variations, of course, those which are made in accordance with the spirit of the present invention should be included in the scope of the invention. FIG. 1 is a schematic cross-sectional view of the first embodiment of the present technical solution. * - = The structure of the single cable core in the cable of the first embodiment of the present technical solution is not intended. No.: f The first embodiment of the first embodiment of the carbon nanotube long-length structural section, and the structure is not intended. 4 is a scanning electron microscope photograph of a long-line beam of a bundle of carbon nanotubes in the first embodiment of the present invention. FIG. 5 is a scanning electron microscope of a long-length stranded carbon nanotube tube of the first embodiment of the present technical solution. Fig. 6 is a flow chart of a method for manufacturing a cable according to a first embodiment of the present invention. FIG. 7 is a schematic diagram of a structure of a cable manufacturing device according to a first embodiment of the present technical solution. FIG. 10 is a cross-sectional structural view of a cable of a second embodiment of the present technical solution. FIG. 10 is a perspective view of a cable of a third embodiment of the present technical solution. Structure indication [Main component symbol description] Cable 10, 30, 40 120, 320, 420 Carbon nanotube long-line structure 100 Conductive material layer 110 Wetting layer 112 Transition layer 113 Conductive layer 114 Anti-oxidation layer 115 Strengthening layer 116 Insulating medium Layer 130, 330, 430 24 200945372 Shielding layer 140, 340, 440 Outer sheath 150, 350, 450 Vacuum vessel 210 Evaporating source 212 Ordered carbon nanotube structure 214 Carbon nanotube array 216 Apparatus 220 First reel 224 First pressing device 230 shielding tape 242 second reel 244 bobbin 246 second pressing device 250 third reel 260 ❿ 25

Claims (1)

200945372 十、申請專利範圍 1. -種線纜,包括至少一個纜芯、包覆於纜芯外的至少 -個絕緣介質層、包覆於絕緣介質層外的至少一個屏 蔽層和包覆於屏蔽層外的一個外護套,其改良在於, 該纜心包括奈米碳管長線結構及導電材料層,該導電 材料層包覆於奈米碳管長線結構的外表面。 2·如Λ請專利範圍第1項所述的_,其中,所述奈米 ❺ 奴官長線結構包括至少一奈米碳管長線。 3·如申明專利範圍第2項所述的線纜,其中,所述奈米 碳管長線包括複數個沿其軸向擇優取向排列的奈 碳管。 4. 如申請專利範圍第2項所述的線欖,其中,所述奈米 j官長線包括複數個沿其軸向螺旋狀排列的奈米碳 管。 5. 如申,请專利範圍第3或4項所述的線纜,其中,所述 ® $米碳管長線結構中的奈米碳管包括單壁奈米碳 =,雙壁奈米碳管或多壁奈米碳管,所述單壁奈米碳 s的直徑為0.5奈米〜5〇奈米,雙壁奈米碳管的直徑 為1不米〜50奈米,多壁奈米碳管的直徑為15奈米 〜50奈米。 如申明專利範圍第2項所述的線纜,其中,所述奈米 碳官長線結構包括複數個相互纏繞或平行成束的奈 米碳管長線。 如申明專利範圍第1項所述的線瘦,其中,所述奈米 26 200945372 碳管長線結構的直徑大於4 5奈求。 8.如申請專利範圍第j項所述的線規,其中,所述導電 材料層至少包括一導電層。 9·如申請專利範圍第8項所述的線瘦,其中,所述導電 層的材料為銅、銀、金或其合金,且厚度為丄奈米〜2〇 奈米。 — 10.200945372 X. Patent application scope 1. A cable comprising at least one cable core, at least one insulating dielectric layer covering the outside of the cable core, at least one shielding layer covering the outside of the insulating dielectric layer, and covering the shielding layer An outer sheath of the outer layer is modified in that the cable core comprises a carbon nanotube long-line structure and a conductive material layer coated on the outer surface of the long-length structure of the carbon nanotube. 2. The _, as described in the first paragraph of the patent scope, wherein the nanowire slave line structure comprises at least one long carbon nanotube line. 3. The cable of claim 2, wherein the carbon nanotube long wire comprises a plurality of carbon nanotubes arranged in a preferred orientation along the axial direction thereof. 4. The sapphire according to claim 2, wherein the nanometer long line comprises a plurality of carbon nanotubes arranged spirally along the axial direction thereof. 5. The cable of claim 3, wherein the carbon nanotubes in the long line structure of the ® $ m carbon tube comprise a single-walled nanocarbon = double-walled carbon nanotube Or a multi-walled carbon nanotube, the diameter of the single-walled nanocarbon s is 0.5 nm to 5 Å, and the diameter of the double-walled carbon nanotube is 1 to 50 nm, and the multi-walled nanocarbon The diameter of the tube is 15 nm to 50 nm. The cable of claim 2, wherein the nanocarbon long line structure comprises a plurality of long carbon nanotubes that are intertwined or bundled in parallel. The thin line described in claim 1 of the patent scope, wherein the nanometer 26 200945372 carbon tube long-line structure has a diameter greater than 45. 8. The wire gauge of claim j, wherein the layer of electrically conductive material comprises at least one electrically conductive layer. 9. The wire thin as described in claim 8, wherein the conductive layer is made of copper, silver, gold or an alloy thereof, and has a thickness of 丄 nanometer ~ 2 〇 nanometer. — 10. 11. 12. 〇 如申請專利範圍第8項所述的線纜,其中,所述導電 材料層進一步包括一潤濕層設置於所述導電層與奈 米碳管長線結構之間,所述潤濕層的材料為鎳、鈀、 鈦或者其合金,厚度為1奈米〜10奈米。 如申凊專利範圍第10項所述的線纜,其中,所述導 電材料層進一步包括一過渡層設置於所述導電層與 潤濕層之間,所述過渡層的材料為銅、銀或者其合 金’厚度為1奈米〜10奈米。 如申明專利範圍第8項所述的線纜,其中,所述導電 材料層進一步包括一抗氧化層設置於所述導電層外 表面所述抗氧化層的材料為金、翻或者其合金,厚 度為1奈米〜10奈米。 13. 如申請專利範圍第12項所述的線纜,其中,所述導 電材料層進一步包括一強化層設置於所述抗氧化層 外表面,所述強化層的材料為聚乙烯醇、聚苯撐苯並 二噁唑、聚乙烯或聚氯乙稀,厚度為微米〜J微米。 14. 如申請專利範圍第1項所述的線纜,其中,所述的線 欖為同軸線欖,該同軸線纜包括由内至外同軸依次設 27 200945372 置的一個纜芯、包覆纜芯外表面的—個絕緣介質層、 包覆絕緣介質層外表面的一個屏趑 外$ ^ ^ 钟敝層和包覆廣蔽層 ::面的—個外護套。 15.如申請專 麗為 勒*圍第1項所述的線繞’其中’所述的線 k ’、’、同轴線纜,該同軸線纜包括複數個纜芯、複數個 刀別包覆於每一個纜芯外的絕緣介質層、包覆於複數 個锅絡人 ❾ 、緣’丨質層外的一個屏蔽層和包覆於屏蔽層外的 一個外護套。 16 'fen由上 °月專利範圍第1項所述的線親,其中,所述的線 纜為同軸線纜,該同軸線纜包括複數個纜芯、複數個 刀別包覆於每一個鏡芯外的絕緣介質層、複數個分別 包覆於每〜個絕緣介質層外的屏蔽層和包覆於複數 個屏蔽層外的—個外護奢。11. The cable of claim 8, wherein the conductive material layer further comprises a wetting layer disposed between the conductive layer and the long-term structure of the carbon nanotube, the The material of the wet layer is nickel, palladium, titanium or an alloy thereof, and has a thickness of 1 nm to 10 nm. The cable of claim 10, wherein the conductive material layer further comprises a transition layer disposed between the conductive layer and the wetting layer, the transition layer being made of copper, silver or Its alloy 'thickness is 1 nm ~ 10 nm. The cable according to claim 8, wherein the conductive material layer further comprises an anti-oxidation layer disposed on an outer surface of the conductive layer, wherein the anti-oxidation layer is made of gold, turned or alloyed, and has a thickness. It is 1 nm ~ 10 nm. The cable of claim 12, wherein the conductive material layer further comprises a reinforcing layer disposed on an outer surface of the oxidation resistant layer, the reinforcing layer material being polyvinyl alcohol or polyphenylene. The benzobisoxazole, polyethylene or polyvinyl chloride has a thickness of micrometers to J micrometers. 14. The cable of claim 1, wherein the cable is a coaxial cable, and the coaxial cable includes a cable core and a covered cable disposed coaxially from the inside to the outside. An insulating dielectric layer on the outer surface of the core, a screen outer surface of the outer surface of the insulating dielectric layer, and a covering layer of the cover layer: an outer sheath of the surface. 15. If the application is for the wire k ', ', the coaxial cable described in the first item of the first item, the coaxial cable includes a plurality of cores and a plurality of cutters. An insulating dielectric layer covering each of the cores, a shielding layer covering the plurality of layers, a shielding layer outside the edge of the enamel layer, and an outer sheath covering the shielding layer. 16 'fen is a line member according to item 1 of the above-mentioned patent scope, wherein the cable is a coaxial cable, the coaxial cable includes a plurality of cores, and a plurality of cutters are wrapped around each mirror. An insulating dielectric layer outside the core, a plurality of shielding layers respectively covering each of the insulating dielectric layers, and an outer covering covering a plurality of shielding layers. 2828
TW97114120A 2008-04-18 2008-04-18 Cable TWI345793B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97114120A TWI345793B (en) 2008-04-18 2008-04-18 Cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97114120A TWI345793B (en) 2008-04-18 2008-04-18 Cable

Publications (2)

Publication Number Publication Date
TW200945372A true TW200945372A (en) 2009-11-01
TWI345793B TWI345793B (en) 2011-07-21

Family

ID=44869724

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97114120A TWI345793B (en) 2008-04-18 2008-04-18 Cable

Country Status (1)

Country Link
TW (1) TWI345793B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI413131B (en) * 2010-11-30 2013-10-21 Hon Hai Prec Ind Co Ltd Cable
US8626315B2 (en) 2010-08-31 2014-01-07 Tsinghua University Electronic pacemaker and pacemaker electrode
US8825178B2 (en) 2011-10-28 2014-09-02 Tsinghua University Electrode lead of pacemaker and pacemaker
US8874236B2 (en) 2010-07-05 2014-10-28 Tsinghua University Electronic pacemaker and pacemaker lead
TWI466697B (en) * 2011-10-28 2015-01-01 Hon Hai Prec Ind Co Ltd Pacemaker electrode lead and pacemaker using the same
US9020609B2 (en) 2011-10-28 2015-04-28 Tsinghua University Electrode lead of pacemaker and pacemaker using the same
US9084884B2 (en) 2011-10-28 2015-07-21 Tsinghua University Method for making pacemaker electrode lead
US9138577B2 (en) 2011-10-28 2015-09-22 Tsinghua University Electrode lead of pacemaker and pacemaker using the same
US9193586B2 (en) 2010-11-18 2015-11-24 Tsinghua University Cable
TWI511755B (en) * 2011-10-28 2015-12-11 Hon Hai Prec Ind Co Ltd Pacemaker electrode lead and pacemaker using the same
US9440067B2 (en) 2011-10-28 2016-09-13 Tsinghua University Electrode lead and pacemaker using the same
TWI561274B (en) * 2010-07-26 2016-12-11 Hon Hai Prec Ind Co Ltd The pacemaker
TWI565497B (en) * 2010-09-09 2017-01-11 鴻海精密工業股份有限公司 The pacemaker and the pacemaker electrode
TWI730293B (en) * 2019-01-25 2021-06-11 鴻海精密工業股份有限公司 High temperature resistant wire and detector using the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8874236B2 (en) 2010-07-05 2014-10-28 Tsinghua University Electronic pacemaker and pacemaker lead
TWI561274B (en) * 2010-07-26 2016-12-11 Hon Hai Prec Ind Co Ltd The pacemaker
US8626315B2 (en) 2010-08-31 2014-01-07 Tsinghua University Electronic pacemaker and pacemaker electrode
TWI565497B (en) * 2010-09-09 2017-01-11 鴻海精密工業股份有限公司 The pacemaker and the pacemaker electrode
US9193586B2 (en) 2010-11-18 2015-11-24 Tsinghua University Cable
TWI413131B (en) * 2010-11-30 2013-10-21 Hon Hai Prec Ind Co Ltd Cable
TWI466697B (en) * 2011-10-28 2015-01-01 Hon Hai Prec Ind Co Ltd Pacemaker electrode lead and pacemaker using the same
US9138577B2 (en) 2011-10-28 2015-09-22 Tsinghua University Electrode lead of pacemaker and pacemaker using the same
US9084884B2 (en) 2011-10-28 2015-07-21 Tsinghua University Method for making pacemaker electrode lead
TWI511755B (en) * 2011-10-28 2015-12-11 Hon Hai Prec Ind Co Ltd Pacemaker electrode lead and pacemaker using the same
US9248281B2 (en) 2011-10-28 2016-02-02 Tsinghua University Pacemakers and pacemaker leads
US9433801B2 (en) 2011-10-28 2016-09-06 Tsinghua University Pacemakers and pacemaker leads
US9440067B2 (en) 2011-10-28 2016-09-13 Tsinghua University Electrode lead and pacemaker using the same
US9020609B2 (en) 2011-10-28 2015-04-28 Tsinghua University Electrode lead of pacemaker and pacemaker using the same
US8825178B2 (en) 2011-10-28 2014-09-02 Tsinghua University Electrode lead of pacemaker and pacemaker
TWI730293B (en) * 2019-01-25 2021-06-11 鴻海精密工業股份有限公司 High temperature resistant wire and detector using the same
US11527336B2 (en) 2019-01-25 2022-12-13 Tsinghua University High temperature resistant wire and detector using the same

Also Published As

Publication number Publication date
TWI345793B (en) 2011-07-21

Similar Documents

Publication Publication Date Title
TW200945372A (en) Cable
TWI345792B (en) Cable
CN101556839B (en) Cable
CN105244071B (en) cable
JP5015971B2 (en) Coaxial cable manufacturing method
US9831012B2 (en) Cable
KR102003577B1 (en) Carbon nanotube conductor with enhanced electrical conductivity
CN101499338B (en) Stranded wire production method
CN101499328A (en) Stranded wire
TWI320026B (en) Field emission componet and method for making same
KR101189858B1 (en) Cable and methods for making the same
CN102110501B (en) Preparation method of wire cable and cable core thereof
JP7254708B2 (en) Carbon nanotube composite wire, carbon nanotube coated wire and wire harness
TWI345794B (en) Method for making cable
TWI413131B (en) Cable
CN111418028A (en) Carbon nanotube coated wire
TWI335036B (en) Electro magnetic shielding cable
JP2020184422A (en) Carbon nanotube composite wire, carbon nanotube coated electric wire and wire harness
JP2020184421A (en) Carbon nanotube composite wire, carbon nanotube coated electric wire and wire harness
TW200842902A (en) Electro magnetic shielding cable