CN104016973B - 一种制备二芳香环取代烯烃的方法 - Google Patents

一种制备二芳香环取代烯烃的方法 Download PDF

Info

Publication number
CN104016973B
CN104016973B CN201410231042.6A CN201410231042A CN104016973B CN 104016973 B CN104016973 B CN 104016973B CN 201410231042 A CN201410231042 A CN 201410231042A CN 104016973 B CN104016973 B CN 104016973B
Authority
CN
China
Prior art keywords
catalyst
benzaldehyde
reaction
methylene group
aldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410231042.6A
Other languages
English (en)
Other versions
CN104016973A (zh
Inventor
应安国
杨健国
倪宇翔
胡华南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Haowei Technology Co., Ltd
Original Assignee
Taizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou University filed Critical Taizhou University
Priority to CN201410231042.6A priority Critical patent/CN104016973B/zh
Publication of CN104016973A publication Critical patent/CN104016973A/zh
Application granted granted Critical
Publication of CN104016973B publication Critical patent/CN104016973B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/06Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D235/16Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种高效、环境友好的催化剂,以水为反应介质和室温反应条件实现芳香取代活性亚甲基物质与芳香醛的Knoevenagel缩合,生成二芳香环取代烯烃的方法。所述方法包括以超顺磁纳米颗粒负载、“离子气氛”修饰的正丙胺为催化剂,室温、常压、以水为反应介质条件下芳香取代活性亚甲基物质与芳香醛进行Knoevenagel缩合反应,得到相应的二芳香环取代烯烃衍生物,负载催化剂重复使用8次,未发现反应收率明显下降。该法操作简单、收率高、催化剂回收简单、催化反应体系可重复使用性好、反应条件温和,具有良好的工业化前景。

Description

一种制备二芳香环取代烯烃的方法
技术领域
本发明涉及一种高效、绿色的、以水做溶剂条件下,以新型超顺磁纳米负载、离子液体修饰的正丙胺为催化剂的Knoevenagel缩合制备二芳香环取代烯烃的方法。
技术背景
活性亚甲基化合物与芳香醛的Knoevenagel缩合反应成为有机合成领域碳碳形成的重要反应之一。缩合产物为夺取代烯烃,可作为有机合成中Michael反应、“一锅煮”反应和连续反应等的前体原料,同时也是制备功能聚合物、精细化学品和化学原料药的重要中间体。一般情况下,Knoevenagel缩合反应采用有机碱或其相应的盐作为催化剂,但是催化剂的回收和套用限制了大规模推广和使用。近年来,涌现了很多催化剂,如:MgO/ZnO,amine-functionalizedpolyacrylonitrile fiber,La2O3/MgO,Ni-SiO2,Si-MCM-41supported basicmaterials和IRMOF-3等,虽然这些方法都取得了一定的成功,但是,它们其中存在一些缺陷,如:反应收率偏低、需要大量的催化剂、底物适用范围窄、反应条件苛刻,以及一些有毒溶剂如二氯甲烷的使用。因此,开发高效、绿色的制备二芳香环取代烯烃的方法不仅具有重要的经济效益,还有良好的环境和社会效益。
超顺磁纳米颗粒具有大比表面积、良好分散性和超顺磁性等特点,因此广泛被用做有机反应催化剂载体。离子液体具有热力学稳定性、溶解能力强、低挥发性、分子结构可调性等特点,由于“离子空腔”的作用,离子液体具有良好的催化效果。以超顺磁纳米颗粒为负载,相比于传统催化剂,不仅尺寸处于纳米级,而且容易被外加磁场分离,更好的解决了催化剂的分离与回收。考虑到离子液体与超顺磁纳米颗粒的优点,有必要开发超顺磁纳米颗粒负载、离子液体的“离子气氛”修饰的催化剂,用于催化Knoevenagel缩合反应。
发明内容
本发明的目的是取代传统的催化Knoevenagel缩合芳香取代活性亚甲基物质与芳香醛制备二芳香环取代烯烃的方法,提供一种高效、环境友好的催化剂,以水做溶剂温和(室温)反应条件下实现Knoevenagel缩合反应。
根据本发明,所述通过芳香取代活性亚甲基物质与芳香醛的Knoevenagel缩合制备二芳香环取代烯烃的方法包括:以磁纳米颗粒负载、离子液体修饰的正丙胺为催化剂,室温、常压下,以水做溶剂,芳香取代活性亚甲基物质与芳香醛进行Knoevenagel缩合反应1~10小时,得到相应的二芳香环取代烯烃;其中,所述催化剂为:
其中,所述芳香取代活性亚甲基物质与芳香醛的摩尔比为1:1-1.2:1。
其中,所述负载胺催化剂的摩尔量(以胺计)为芳香醛物质的0.01-1.0倍。
其中,所述芳香取代活性亚甲基物质为2-氰甲基苯并咪唑、2-氰甲基苯并噻唑、苯乙腈、2-氯代苯乙腈、2-氰甲基吲哚。
其中,所述芳香醛为苯甲醛、3-氯苯甲醛、4-硝基苯甲醛、2-甲氧基苯甲醛、3,4-二甲氧基苯甲醛,4-N,N-二甲基苯甲醛、4-三氟甲基苯甲醛、2-甲氧基苯甲醛、4-甲氧基苯甲醛、4-甲基苯甲醛、4-羟基苯甲醛、9-蒽甲醛和2-噻吩醛。
其中,反应结束后,过滤反应液,所得固体用重结晶得到产品;催化剂可由外加磁场回收,乙酸乙酯和乙醇洗涤后,经过60℃真空干燥24小时重复多次使用,使用8次后未见其活性下降。
本发明提供的利用新型磁纳米颗粒负载、离子液体修饰的正丙胺催化Knoevenagel缩合芳香取代活性亚甲基物质与芳香醛,生成二芳香环取代烯烃的方法,是通过以下途径来实现的:
本发明所使用的新型负载催化剂的制备过程:
将咪唑(6.8g,100mmol)、3-氯丙基三乙氧基硅烷(24mL,100mmol)溶于干燥甲苯(100mL),110℃回流搅拌24小时,60℃真空干燥5小时,得到淡黄色固体。制备的缩合物用1H NMR,13C NMR结构确认。所述缩合物为:
二氧化硅包合的四氧化三铁(SiO2@Fe3O4)根据文献J.Magn.Magn.Mater.2007,310,2408.报道的方法制备得到。得到的缩合物(0.5g)与1.0g二氧化硅包合的四氧化三铁(SiO2@Fe3O4)加入到20mL甲苯中,回流48小时,外加磁体吸附,乙酸乙酯洗涤,60℃真空干燥6小时,得到中间体,结构为
往中间体(10g)加入500mL干燥乙醇,超声1小时,往溶液中滴加3-溴丙胺(2.7g,20mmol)和200mL干燥乙醇的混合液,氮气保护下会后48小时。利用外加磁场吸住固体,用乙酸乙酯、无水乙醇洗涤,60℃真空干燥6小时,得到最终超顺磁纳米颗粒负载、离子液体修饰的正丙胺催化剂,负载量为0.34mmol/g(元素分析得出),其结构为
Knoevenagel缩合制备二芳香(杂)环取代烯烃的过程为:
在装有机械搅拌装置的三口烧瓶中,依次加入芳香(杂)取代活性亚甲基物质、芳香醛氨类物质、催化剂和水。其中芳香(杂)取代活性亚甲基物质与芳香醛的摩尔比为1:1-1.2:1,负载催化剂与芳香醛的摩尔比为0.01:1-1:1,以水做溶剂室温常压反应1-10小时,薄层色谱(TLC)跟踪反应进度。反应结束后,过滤反应液,所得固体用重结晶得到产品;催化剂可由外加磁场回收,乙酸乙酯和乙醇洗涤后,经过60℃真空干燥24小时重复多次使用,使用8次后未见其活性下降。
具体实施方式
以下将结合实施例对本发明做进一步说明,本发明的实施例仅用于说明本发明的技术方案,并非限定本发明。
实施例1
将噻吩醛(5mmol)、2-氰甲基苯并咪唑(5mmol)、0.735g催化剂、水(10mL)依次加入到50mL三口瓶中,室温搅拌2小时,TLC检测,原料基本消失,外加磁场吸住催化剂,倾倒出反应液,过滤,所得固体用乙醇重结晶得到产品,收率79%,含量98%。
2-(1H-benzoimidazol-2-yl)-3-(thiophen-2-yl)acrylonitrile:1H NMR(400MHz,CDCl3):δ7.15-7.22(m,1H),7.30-7.37(m,2H),7.50-7.52(m,1H),7.66-7.70(m,2H),7.76-7.77(m,1H),7.87-7.89(m,1H),8.63(s,1H);13CNMR(100MHz,CDCl3):δ98.1,115.6,115.7,116.7,123.6,129.1,134.5,136.8,137.0,139.3,147.6
实施例2
将噻吩醛(5mmol)、2-氰甲基苯并咪唑(5mmol)、0.147g催化剂、水(10mL)依次加入到50mL三口瓶中,室温搅拌5小时,TLC检测,原料基本消失,外加磁场吸住催化剂,倾倒出反应液,过滤,所得固体用乙醇重结晶得到产品,收率62%,含量97%。
实施例3
将噻吩醛(5mmol)、2-氰甲基苯并咪唑(6mmol)、0.147g催化剂、水(10mL)依次加入到50mL三口瓶中,室温搅拌3小时,TLC检测,原料基本消失,外加磁场吸住催化剂,倾倒出反应液,过滤,所得固体用乙醇重结晶得到产品,收率76%,含量99%。
实施例4
将噻吩醛(5mmol)、2-氰甲基苯并咪唑(5mmol)、14.7g催化剂、水(10mL)依次加入到50mL三口瓶中,室温搅拌2小时,TLC检测,原料基本消失,外加磁场吸住催化剂,倾倒出反应液,过滤,所得固体用乙醇重结晶得到产品,收率81%,含量98%。
实施例5
将苯甲醛(5mmol)、2-氰甲基苯并咪唑(5mmol)、0.735g催化剂、水(10mL)依次加入到50mL三口瓶中,室温搅拌2小时,TLC检测,原料基本消失,外加磁场吸住催化剂,倾倒出反应液,过滤,所得固体用乙醇重结晶得到产品,收率83%,含量96%。
2-(1H-benzoimidazol-2-yl)-3-phenylacrylonitrile:1H NMR(400MHz,CDCl3):δ7.31-7.34(m,2H),7.50-7.52(m,3H),7.65(s,2H),7.98-7.80(m,2H),8.51(s,1H);13C NMR(100MHz,CDCl3):δ111.2,116.8,119.7,123.6,124.2,129.3,130.0,132.1,132.7,146.3,146.8
实施例6
将3-氯苯甲醛(5mmol)、2-氰甲基苯并咪唑(5mmol)、0.735g催化剂、水(10mL)依次加入到50mL三口瓶中,室温搅拌1.5小时,TLC检测,原料基本消失,外加磁场吸住催化剂,倾倒出反应液,过滤,所得固体用乙醇重结晶得到产品,收率85%,含量98%。
实施例7
将3-甲氧基苯甲醛(5mmol)、2-氰甲基苯并咪唑(5mmol)、0.735g催化剂、水(10mL)依次加入到50mL三口瓶中,室温搅拌2小时,TLC检测,原料基本消失,外加磁场吸住催化剂,倾倒出反应液,过滤,所得粗品用乙醇重结晶得到产品,收率84%,含量96%。
2-(1H-benzoimidazol-2-yl)-3-(3-methoxyphenyl)acrylonitrile:1H NMR(400MHz,CDCl3):δ3.89(s,3H),7.07-7.09(m,1H),7.33-7.44(m,3H),7.55-7.59(m,2H),7.66(s,2H),8.53(s,1H);13C NMR(100MHz,CDCl3):δ55.5,105.8,114.1,116.5,119.0,121.7,123.4,123.7,126.0,127.0,130.2,133.6,135.0,146.9,153.6,160.0,162.7
实施例8
将苯甲醛(5mmol)、2-氰甲基苯并噻唑(5mmol)、0.735g催化剂、水(10mL)依次加入到50mL三口瓶中,室温搅拌3小时,TLC检测,原料基本消失,外加磁场吸住催化剂,倾倒出反应液,过滤,所得粗品用乙醇重结晶得到产品,收率90%,含量98%。
2-(benzothiazol-2-yl)-3-phenylacrylonitrile:1H NMR(400MHz,CDCl3):δ7.45(m,1H),7.52-7.54(m,4H),7.91(d,1H,J=6.4Hz),8.03(m,2H),8.09(d,1H,J=6.4Hz),8.26(s,1H);13C NMR(100MHz,CDCl3):δ105.8,116.7,121.9,123.8,126.2,127.2,129.5,130.6,132.5,135.2,147.1,153.8,163.0
实施例9
将对甲氧基苯甲醛(5mmol)、2-氰甲基苯并噻唑(5mmol)、0.735g催化剂、水(10mL)依次加入到50mL三口瓶中,室温搅拌2小时,TLC检测,原料基本消失,外加磁场吸住催化剂,倾倒出反应液,过滤,所得粗品用乙醇重结晶得到产品,收率87%,含量97%。
2-(benzothiazol-2-yl)-3-(4-methoxyphenyl)acrylonitrile:1H NMR(400MHz,CDCl3):δ3.90(s,3H),7.01(d,2H,J=6.4Hz),7.40-7.53(m,2H),7.89(d,1H,J=6.4Hz),8.02-8.07(m,3H),8.18(s,1H);13C NMR(100MHz,CDCl3):δ55.8,102.5,115.0,117.3,121.8,123.6,125.4,125.9,127.0,133.0,135.0,146.7,153.8,163.1,163.6
实施例10
将对三氟甲基苯甲醛(5mmol)、2-氰甲基苯并噻唑(5mmol)、0.735g催化剂、水(10mL)依次加入到50mL三口瓶中,室温搅拌1.5小时,TLC检测,原料基本消失,外加磁场吸住催化剂,倾倒出反应液,过滤,所得粗品用乙醇重结晶得到产品,收率84%,含量98%。
2-(benzothiazol-2-yl)-3-(4-(dimethylamino)phenyl)acrylonitrile:1H NMR(400MHz,CDCl3):δ3.13(s,6H),6.74(d,2H,J=8.8Hz),7.38-7.41(m,1H),7.49-7.53(m,1H),7.88(d,1H,J=7.6Hz),7.99-8.05(m,3H),8.12(s,1H);13CNMR(100MHz,CDCl3):δ40.0,97.7,111.7,118.2,120.2,121.5,122.9,125.1,126.6,133.1,134.6,147.0,152.9,153.8,164.7
实施例11
将苯甲醛(5mmol)、3-氯苯乙腈(5mmol)、0.735g催化剂、水(10mL)依次加入到50mL三口瓶中,室温搅拌5小时,TLC检测,原料基本消失,外加磁场吸住催化剂,倾倒出反应液,过滤,所得粗品用乙醇重结晶得到产品,收率83%,含量96%。
2-(4-chlorophenyl)-3-phenylacrylonitrile:1H NMR(400MHz,CDCl3):δ7.40(m,2H),7.48-7.50(m,3H),7.55-7.59(m,2H),7.67(s,1H),7.90-7.91(m,2H);13C NMR(100MHz,CDCl3):δ110.5,117.8,124.5,126.2,129.3,129.5,129.7,130.5,131.2,133.5,135.4,136.5,143.6
实施例12
将苯甲醛(5mmol)、2-氰甲基吲哚(5mmol)、0.735g催化剂、水(10mL)依次加入到50mL三口瓶中,室温搅拌5小时,TLC检测,原料基本消失,外加磁场吸住催化剂,倾倒出反应液,过滤,所得粗品用乙醇重结晶得到产品,收率86%,含量97%。
2-(1H-indol-2-yl)-3-phenylacrylonitrile:1H NMR(400MHz,CDCl3):δ7.28-7.33(m,2H),7.41-7.49(m,4H),7.60-7.63(m,2H),7.88(d,2H,J=5.6Hz),8.00(d,1H,J=6.0Hz),8.58(s,1H);13C NMR(100MHz,CDCl3):δ106.5,112.4,113.1,118.9,120.0,121.5,123.6,124.4,125.8,128.9,129.1,129.8,134.9,137.3,138.2
实施例13
将对甲基苯甲醛(5mmol)、2-氰甲基吲哚(5mmol)、0.735g催化剂、水(10mL)依次加入到50mL三口瓶中,室温搅拌5小时,TLC检测,原料基本消失,外加磁场吸住催化剂,倾倒出反应液,过滤,所得粗品用乙醇重结晶得到产品,收率81%,含量96%。
2-(1H-indol-2-yl)-3-p-tolylacrylonitrile:1H NMR(400MHz,CDCl3):δ2.42(s,3H),7.26-7.33(m,4H),7.45(d,1H,J=6.4Hz),7.57-7.60(m,2H),7.79(d,2H,J=6.4Hz),8.00(d,1H,J=6.0Hz),8.46(s,1H);13C NMR(100MHz,CDCl3):δ21.8,105.3,112.3,113.3,119.1,120.0,121.4,123.5,124.4,125.4,128.9,129.8,132.1,137.2,138.5,140.2
实施例14
将噻吩醛(5mmol)、2-氰甲基苯并咪唑(5mmol)实施例1中经外加磁体回收60℃真空干燥2小时后的催化剂,依次加入到50mL单口瓶中,室温搅拌2小时,TLC检测,原料消失,过滤,所得滤饼用乙醇重结晶得到产品,收率80%,含量98%。离子液体重复使用8次,未发现收率明显下降,具体见表1.NMR数据实施例1。
表1
需要说明的是,上述发明内容及具体实施方式意在证明本发明所提供技术方案的实际应用,不应解释为对本发明保护范围的限定。本领域技术人员在本发明的精神和原理内,当可作各种修改、等同替换、或改进。本发明的保护范围以所附权利要求书为准。

Claims (8)

1.芳香取代活性亚甲基物质与芳香醛进行Knoevenagel缩合制备二芳香环取代烯烃衍生物的方法,其特征在于,所述方法包括以超顺磁纳米颗粒负载、咪唑离子液体修饰的正丙胺为催化剂,室温、常压和以水为反应介质条件下芳香取代活性亚甲基物质与芳香醛进行Knoevenagel缩合反应,得到相应的二芳香环取代烯烃;其中,所述催化剂为:
2.如权利要求1所述的方法,其特征在于,所述芳香取代活性亚甲基物质与芳香醛的摩尔比为1:1-1.2:1。
3.如权利要求1所述的方法,其特征在于,所述负载胺催化剂的摩尔量为芳香醛物质的0.01-1.0倍。
4.如权利要求1、2或3所述的方法,其特征在于,所述芳香取代活性亚甲基物质为2-氰甲基苯并咪唑、2-氰甲基苯并噻唑、苯乙腈、2-氯代苯乙腈、2-氰甲基吲哚。
5.如权利要求1或2所述的方法,其特征在于,所述芳香醛为苯甲醛、3-氯苯甲醛、4-硝基苯甲醛、2-甲氧基苯甲醛、3,4-二甲氧基苯甲醛,4-N,N-二甲基苯甲醛、4-三氟甲基苯甲醛、2-甲氧基苯甲醛、4-甲氧基苯甲醛、4-甲基苯甲醛、4-羟基苯甲醛、9-蒽甲醛和2-噻吩醛。
6.如权利要求1所述的方法,其特征在于,反应时间为1~10小时。
7.如权利要求6所述的方法,其特征在于,反应结束后,过滤反应液,所得固体用重结晶得到产品。
8.如权利要求7所述的方法,其特征在于,反应结束后,催化剂可由外加磁场回收,乙酸乙酯和乙醇洗涤后,经过60℃真空干燥24小时重复多次使用。
CN201410231042.6A 2014-05-28 2014-05-28 一种制备二芳香环取代烯烃的方法 Active CN104016973B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410231042.6A CN104016973B (zh) 2014-05-28 2014-05-28 一种制备二芳香环取代烯烃的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410231042.6A CN104016973B (zh) 2014-05-28 2014-05-28 一种制备二芳香环取代烯烃的方法

Publications (2)

Publication Number Publication Date
CN104016973A CN104016973A (zh) 2014-09-03
CN104016973B true CN104016973B (zh) 2016-11-02

Family

ID=51434022

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410231042.6A Active CN104016973B (zh) 2014-05-28 2014-05-28 一种制备二芳香环取代烯烃的方法

Country Status (1)

Country Link
CN (1) CN104016973B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106905350B (zh) * 2017-03-07 2018-11-16 马鞍山市泰博化工科技有限公司 一种噻唑并[3,2-α]吡啶衍生物的制备方法及其制备用催化剂
CN111269134B (zh) * 2020-04-01 2022-09-20 九江中星医药化工有限公司 一种苯甘氨酸及其衍生物的制备方法
CN111675625B (zh) * 2020-04-01 2022-11-04 九江中星医药化工有限公司 一种催化合成四氮唑乙酸的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0500029D0 (en) * 2005-01-04 2005-02-09 Univ Belfast Basic ionic liquids
CN101554596A (zh) * 2009-05-22 2009-10-14 北京化工大学 一种由杂化复合前体制备高比表面固体碱催化剂的方法
CN101829585B (zh) * 2010-04-16 2011-11-02 北京化工大学 一种磁性纳米碱金属氟化物负载型固体碱催化剂及其制备方法
US9035086B2 (en) * 2011-02-14 2015-05-19 Council Of Scientific & Industrial Research Modified layered double hydroxide (LDH) and a process for preparation thereof for C—C bond forming reactions
CN102728403B (zh) * 2012-07-17 2014-04-09 石家庄学院 合成α-氰基肉桂酸乙酯的有机固体碱催化剂、其制备方法及其应用
CN103204845B (zh) * 2013-03-12 2014-12-24 西北大学 咪唑基离子液体及其合成方法和应用

Also Published As

Publication number Publication date
CN104016973A (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
Ghorbani-Choghamarani et al. The first report on the preparation of boehmite silica sulfuric acid and its applications in some multicomponent organic reactions
Li et al. Nano-CoFe 2 O 4 supported molybdenum as an efficient and magnetically recoverable catalyst for a one-pot, four-component synthesis of functionalized pyrroles
Moghanian et al. Sulfanilic acid-functionalized silica-coated magnetite nanoparticles as an efficient, reusable and magnetically separable catalyst for the solvent-free synthesis of 1-amido-and 1-aminoalkyl-2-naphthols
Gholinejad et al. Magnetic nanoparticles supported oxime palladacycle as a highly efficient and separable catalyst for room temperature Suzuki–Miyaura coupling reaction in aqueous media
Taheri et al. A new magnetically recoverable catalyst promoting the synthesis of 1, 4-dihydropyridine and polyhydroquinoline derivatives via the Hantzsch condensation under solvent-free conditions
Nouri Sefat et al. Preparation of silica-based ionic liquid an efficient and recyclable catalyst for one-pot synthesis of α-aminonitriles
Dadhania et al. Magnetically retrievable magnetite (Fe 3 O 4) immobilized ionic liquid: an efficient catalyst for the preparation of 1-carbamatoalkyl-2-naphthols
Safaei-Ghomi et al. A pseudo six-component process for the synthesis of tetrahydrodipyrazolo pyridines using an ionic liquid immobilized on a FeNi 3 nanocatalyst
CN104016973B (zh) 一种制备二芳香环取代烯烃的方法
Sharghi et al. One-pot synthesis of 2-arylbenzimidazole, 2-arylbenzothiazole and 2-arylbenzoxazole derivatives using vanadium (IV)–salen complex as homogeneous catalyst and vanadium (IV)–salen complex nanoparticles immobilized onto silica as a heterogeneous nanocatalyst
Zarnegar et al. Magnetic nanoparticles supported imidazolium-based ionic liquids as nanocatalyst in microwave-mediated solvent-free Biginelli reaction
Mazloumi et al. Nanoporous TiO 2 containing an ionic liquid bridge as an efficient and reusable catalyst for the synthesis of N, N′-diarylformamidines, benzoxazoles, benzothiazoles and benzimidazoles
CN106607091B (zh) 微孔聚合物-纳米金属粒子催化剂及其制备方法和应用
Shiri et al. Sulfuric acid heterogenized on magnetic Fe3O4 nanoparticles: a new and efficient magnetically reusable catalyst for condensation reactions
Hajjami et al. Tribromide ion immobilized on magnetic nanoparticle as a new, efficient and reusable nanocatalyst in multicomponent reactions
Shaabani et al. Copper (ii) supported on magnetic chitosan: a green nanocatalyst for the synthesis of 2, 4, 6-triaryl pyridines by C–N bond cleavage of benzylamines
Chng et al. Efficient synthesis of amides and esters from alcohols under aerobic ambient conditions catalyzed by a Au/mesoporous Al2O3 nanocatalyst
Shiri et al. Magnetic Fe 3 O 4 nanoparticles supported amine: a new, sustainable and environmentally benign catalyst for condensation reactions
Zhu et al. Synthesis of novel magnetic chitosan supported protonated peroxotungstate and its catalytic performance for oxidation
Maleki et al. Green composite nanostructure (Fe3O4@ PEG-SO3H): Preparation, characterization and catalytic performance in the efficient synthesis of β-amino carbonyl compounds at room temperature
Shiri et al. Sulfamic acid immobilized on amino‐functionalized magnetic nanoparticles: A new and active magnetically recoverable catalyst for the synthesis of N‐heterocyclic compounds
Khalafi-Nezhad et al. Magnetic nanoparticles-supported tungstosilicic acid: as an efficient magnetically separable solid acid for the synthesis of benzoazoles in water
CN103880728A (zh) 一种制备二吲哚甲烷类化合物的方法
Aghajani et al. A one‐pot green synthesis of 2‐amino‐4H‐benzo [h] chromenes catalyzed by a dioxomolybdenum Schiff base complex supported on magnetic nanoparticles as an efficient and recyclable nanocatalyst
Rezapour et al. Palladium niacin complex immobilized on starch-coated maghemite nanoparticles as an efficient homo-and cross-coupling catalyst for the synthesis of symmetrical and unsymmetrical biaryls

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200918

Address after: 124000 room 306, complex building, GONGMAO Road West, Yuanyuan street, Shuangtaizi District, Panjin City, Liaoning Province

Patentee after: Liaoning Haowei Technology Co., Ltd

Address before: 318000, No. 1139, City Avenue, Jiaojiang District, Zhejiang, Taizhou

Patentee before: TAIZHOU University

TR01 Transfer of patent right