CN103997337A - 低功耗低相位噪声电感电容压控振荡器 - Google Patents

低功耗低相位噪声电感电容压控振荡器 Download PDF

Info

Publication number
CN103997337A
CN103997337A CN201410239798.5A CN201410239798A CN103997337A CN 103997337 A CN103997337 A CN 103997337A CN 201410239798 A CN201410239798 A CN 201410239798A CN 103997337 A CN103997337 A CN 103997337A
Authority
CN
China
Prior art keywords
controlled oscillator
fixed capacity
phase noise
low
power consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410239798.5A
Other languages
English (en)
Other versions
CN103997337B (zh
Inventor
王源
甘善良
贾嵩
张钢刚
张兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201410239798.5A priority Critical patent/CN103997337B/zh
Publication of CN103997337A publication Critical patent/CN103997337A/zh
Application granted granted Critical
Publication of CN103997337B publication Critical patent/CN103997337B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

本发明公开了一种低功耗低相位噪声电感电容压控振荡器(LC-VCO)。本发明电感电容压控振荡器采用开关控制的并联NMOS交叉耦合负阻单元,这些开关同时控制电容阵列,使得在不同的电容阵列选通情况下,有适当的交叉耦合负阻被选通接入电路以提供振荡能量,而不必在不同的电容阵列选通情况下一直提供最大振荡能量,因此,可以降低电路功耗。另外,本发明压控振荡器采用不同偏置电压的可变电容并联组合,增加了可变电容的电容—电压线性度,从而降低了可变电容带来的相位噪声。

Description

低功耗低相位噪声电感电容压控振荡器
技术领域
发明涉及电感电容压控振荡器技术领域,更具体涉及一种低功耗低相位噪声电感电容压控振荡器(LC-VCO)。
背景技术
电感电容压控振荡器(LC-VCO)作为时钟产生单元,广泛应用于需要提供一定频率信号的电路,如锁相环、调制解调模块等。而LC-VCO的功耗相比于传统的环型振荡器功耗明显较大,并且随着振荡频率提高,功耗有不断增大的趋势。另外,在LC-VCO中,随着频率增大,对相位噪声的要求也越来越高。而无源器件可变电容是一个较大的噪声源,这是由于可变电容C-V特性不够线性引起的。
对于LC-VCO,为了增大频率调节范围而又不增加它的增益,通常采用多位开关控制的固定电容阵列,使其形成多个频率调节子带,如采用3bits开关控制的固定电容阵列,就会有8个频率调节子带。但是,在采用了多位开关控制的固定电容阵列后,如果采用固定的交叉耦合负阻单元,此时交叉耦合负阻单元必须提供振荡频率最大时所需的能量。因此,在改变固定电容阵列控制信号使得振荡频率降低时,交叉耦合负阻单元仍然提供振荡频率最大时所需的能量,这样就带来了较大的功耗。
对于LC-VCO中的无源器件可变电容,它的电容值是随着控制电压的变化而变化的,如果电容值不随控制电压线性变化,就会导致输出频率随控制电压的变化也不够线性,从而使得LC-VCO输出信号的相位噪声增大。对于单一偏置电压的可变电容,它的C-V不够线性主要体现在工作电压比较小和比较大的范围,当控制电压在0—0.4V和0.8—1.2V范围时,C-V特性就不够线性。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题就是如何在不改变电源电压情况下降低电感电容压控振荡器(LC-VCO)的功耗以及相位噪声,
(二)技术方案
为了解决上述技术问题,本发明提供了一种低功耗低相位噪声电感电容压控振荡器,该电感电容压控振荡器包括由ind、C0、Mn1、Mn2和Mn0构成的一个基本的振荡单元CELL0,所述ind是一个三端电感,所述C0是固定电容,ind和C0构成基本的振荡单元LC Tank;NMOS管Mn1和Mn2形成交叉耦合负阻给LC Tank提供能量,同时将栅接Vdd的NMOS管Mn0作为尾电流源接到Mn1和Mn2的源极与地之间;在CELL0基础上并联了3bits,即SW1、SW2、SW3控制的三个CELL,即CELL1、CELL2和CELL3,每个CELL包括开关控制的固定电容和负阻;在CELL0基础上还并联了由Vbias1、Vbias2和Vbias3控制的三组可变电容的组合;在开关选通某个CELL的固定电容同时开关的反信号关断此CELL的尾电流源NMOS管。
其中,上述CELL1的结构如下:SW1接到NMOS管Mn3和Mn4的栅极,Mn3和Mn4的源极接地,Mn3漏极和VCOP之间接固定电容C3,Mn4漏极和VCON之间接固定电容C4,SW1经过反相器后接到尾电流源NMOS管Mn7的栅极,NMOS管Mn5和Mn6形成交叉耦合负阻,Mn5的漏极接VCOP,Mn6的漏极接VCON,Mn7接在Mn5和Mn6的源极与地之间;上述CELL2和上述CELL3的结构与上述CELL1结构相同。
其中,由上述Vbias1控制的可变电容结构如下:固定电容C1接在VCOP和可变电容Cvar1的阴极之间,固定电容C2接在VCON和可变电容Cvar2的阴极之间,可变电容调节电压Vtune接到Cvar1和Cvar2的阳极;可变电容偏置电压Vbias1通过大电阻R1和R2分别接到Cvar1的阴极和Cvar2的阴极;由上述Vbias2和上述Vbias3控制的可变电容结构与上述Vbias1控制的可变电容结构相同。
其中,采用三种不同电压Vbias1、Vbias2和Vbias3偏置的可变电容并联组合。
其中,控制固定电容阵列信号的反信号同时控制着对应于该固定电容阵列的带尾电流源的交叉耦合负阻;可变电容阵列采用三种不同电压偏置并联组成。
其中,开关控制的固定电容阵列及负阻单元扩展至多个;不同偏置电压控制的可变电容并联组合也扩展至多个偏置电压控制。
其中,带尾电流源的NMOS交叉耦合负阻换成带尾电流源的PMOS交叉耦合负阻。
(三)有益效果
本发明的结构采用固定电容阵列开关控制并联交叉耦合负阻尾电流源,使得负阻单元在不同振荡频率下提供合适的振荡能量,而不必一直提供最高频率时所需的能量,从而降低了电路的功耗。电路模拟软件SPECTRE的仿真结果显示最高频率7.67GHz时电路的功耗为4.213mw,最低频率6.44GHz时电路的功耗为3.395mw,最低频率时功耗相对最高频率时功耗降低了14.9%。本发明结构还采用不同偏置电压的可变电容组合,对于偏压为0V、0.6V、1.2V组合时C-V曲线的线性度相对于单一偏压为0.6V的可变电容线性度提高了14%,在载波频率为7GHz时,频偏1MHz处的相位噪声降低了2.31dB。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明低功耗低相位噪声电感电容压控振荡器结构示意图;
图2是为单个可变电容在偏压为0.6V时的C-V特性曲线图;
图3是为偏压在0V、0.6V、1.2V组合下的可变电容C-V特性曲线图;
图4是将偏压为0V、0.6V、1.2V下可变电容并联后得到的线性C-V特性曲线图;
图5是本发明的一个较佳实施例在最低频率6.44GHz时电流、振荡波形以及振荡频率;
图6是本发明的一个较佳实施例在最高频率7.67GHz时电流、振荡波形以及振荡频率;
图7是本发明的一个较佳实施例在7GHz时,采用可变电容偏压组合与采用单一偏压可变电容时相位噪声对比情况。
具体实施方式
下面结合附图和实施例对本发明的实施方式作进一步详细描述。以下实施例用于说明本发明,但不能用来限制本发明的范围。
本发明电感电容压控振荡器在降低电路功耗方面,采用3bits控制开关,同时控制固定电容阵列和带尾电流源的NMOS交叉耦合负阻。如图1所示,电路最高频率是当开关SW1、SW2和SW3都为低电平时获得的,此时固定电容C3、C4、C7、C8、C11、C12都没有接入振荡单元,所以此时LC Tank的总电容值最小,因此振荡频率最高。而此时由于开关SW1、SW2和SW3都为低电平,它们的反信号分别控制交叉耦合负阻的尾电流源NMOS管,将Mn7、Mn12、Mn17打开,给振荡电路提供能量以维持振荡。电路最低频率是当开关SW1、SW2和SW3都为高电平时获得的,此时固定电容C3、C4、C7、C8、C11、C12都被接入振荡单元,所以此时LC Tank的总电容值最大,因此振荡频率最低。而此时由于开关SW1、SW2和SW3都为高电平,它们的反信号分别控制交叉耦合负阻的尾电流源NMOS管,将Mn7、Mn12、Mn17关闭,所以降低了电路的功耗。在开关SW1、SW2和SW3为其它组合的情况下,也不同程度地降低了电路的功耗。对于多位控制信号情况,也可采用本发明提供的方案进行低功耗设计。另外,本发明所提出的是利用固定电容阵列的开关信号控制NMOS交叉耦合负阻的NMOS尾电流源,此方法也可扩展应用到利用固定电容阵列的开关信号控制PMOS交叉耦合负阻的PMOS尾电流源,从而降低电路功耗。
本发明电感电容压控振荡器在降低相位噪声方面,采用了三种偏置电压对三组可变电容进行偏置,然后将这三组可变电容与LC Tank并联。由于单一偏压的可变电容,它的C-V特性在调节电压较低和较高时都很不线性,从而使得可变电容带来的相位噪声较大。而改变可变电容的偏压,可以使可变电容的C-V曲线向左或向右平移,然后将平移后的曲线相加,就可以得到很线性的C-V曲线。本发明中的Vbias1、Vbias2和Vbias3为三组偏置电压,分别对(Cvar1,Cvar2)、(Cvar3,Cvar4)和(Cvar5,Cvar6)三组可变电容进行偏置,其中,Cvar1与Cvar2尺寸相同,Cvar3与Cvar4尺寸相同,Cvar5与Cvar6尺寸相同,并且它们的阳极都与控制电压Vtune相连。
图1为本发明的一个较佳实施例的低功耗低相位噪声LC-VCO的结构示意图。符号表示反相器,符号表示接地,符号表示接电源。如图1所示,ind为电感,C0为固定电容,Mn0、Mn1和Mn2为NMOS管,ind和C0并联构成了基本的振荡核心单元,并且交叉耦合的Mn1和Mn2为此核心单元提供振荡能量,Mn1和Mn2的源极接到尾电流源管Mn0的漏极,并且Mn0的栅极接电源电压。
CELL1是由SW1控制的固定电容以及SW1控制的交叉耦合负阻并联形成。C3、C4为固定电容,Mn3、Mn4、Mn5、Mn6、Mn7为NMOS管,SW1控制Mn3和Mn4的栅极,同时SW1经过反相器后接到尾电流源Mn7的栅极,Mn3和Mn4的源极接地,Mn5和Mn6为交叉耦合的NMOS负阻。
CELL2是由SW2控制的固定电容以及SW1控制的交叉耦合负阻并联形成。C7、C8为固定电容,Mn8、Mn9、Mn10、Mn11、Mn12为NMOS管,SW2控制Mn8和Mn9的栅极,同时SW2经过反相器后接到尾电流源Mn12的栅极,Mn8和Mn9的源极接地,Mn10和Mn11为交叉耦合的NMOS负阻。
CELL3是由SW3控制的固定电容以及SW3控制的交叉耦合负阻并联形成。C11、C12为固定电容,Mn13、Mn14、Mn15、Mn16、Mn17为NMOS管,SW3控制Mn13和Mn14的栅极,同时SW3经过反相器后接到尾电流源Mn17的栅极,Mn13和Mn14的源极接地,Mn15和Mn16为交叉耦合的NMOS负阻。
由Vbias1、Vbias2和Vbias3控制可变电容的组合。R1、R2、R3、R4、R5、R6为大电阻,C1、C2、C5、C6、C9和C10为固定电容,Cvar1、Cvar2、Cvar3、Cvar4、Cvar5和Cvar6为可变电容。Vbias1通过R1和R2分别接到C1与Cvar1、C2与Cvar2的极板共同连接点上,可变电容控制电压Vtune接到Cvar1和Cvar2的极板共同连接点上。Vbias2通过R3和R4分别接到C5与Cvar3、C6与Cvar4的极板共同连接点上,可变电容控制电压Vtune接到Cvar3和Cvar4的极板共同连接点上。Vbias3通过R5和R6分别接到C9与Cvar5、C10与Cvar6的极板共同连接点上,可变电容控制电压Vtune接到Cvar5和Cvar6的极板共同连接点上。
上述的低功耗低相位噪声LC-VCO的工作过程为:SW1、SW2和SW3为外部送进来的频率子带选择信号,当需要最高频率时,SW1、SW2、SW3都为0V,固定电容阵列C3、C4、C7、C8、C11、C12都没有接入LC Tank,此时LC Tank的总电容值最小,因此振荡频率最高。当需要最低频率时,SW1、SW2、SW3都为0V,固定电容阵列C3、C4、C7、C8、C11、C12都被接入LC Tank,此时LC Tank的总电容值最大,因此振荡频率最低。在需要其它中间频率时,分别打开合适的子带选择信号即可。由于在改变振荡频率时,能同时改变负阻提供的能量大小,而不必一直提供最高振荡频率所需的负阻能量,因此,降低了电路的功耗。
下面给出降低功耗方案的仿真结果及分析。
利用SPECTRE对上面的电路进行仿真,该仿真实验基于SMIC65nm CMOS工艺,电源电压1.2V。
分别对SW1、SW2和SW3的八种组合的情况进行了仿真,功耗和频率结果见表1。
表1八种情况下电路的功耗和频率
SW1(V) SW2(V) SW3(V) 功耗(mw) 频率(GHz)
1.2 1.2 1.2 3.395 6.44
1.2 1.2 0 3.427 6.57
1.2 0 1.2 3.613 6.71
1.2 0 0 3.745 6.87
0 1.2 1.2 3.887 7.06
0 1.2 0 4 7.26
0 0 1.2 4.08 7.46
0 0 0 4.213 7.67
从表1可以看出,功耗与振荡频率成正比,最低频率6.44GHz时的功耗相对于最高频率是的功耗降低了19.4%。图5和图6分别展示了最小频率和最大频率时电流、振荡波形和振荡频率。
另外,本实施例中的Vbias1、Vbias2和Vbias3分别接固定电平0V、0.6V和1.2V,从而得到线性的可变电容C-V曲线。可变电容偏压为单一的0.6V时C-V曲线如图2所示,可以看出控制电压在0—0.4V以及0.8V—1.2V范围时曲线很不线性。图3展示了可变电容偏压在0.6V、0V和1.2V时的C-V曲线,其中最上面的一条对应0.6V,中间一条对应0V,最下面一条对应1.2V,将这三条曲线求和后,得到比较线性的C-V曲线如图4所示,本发明方案的可变电容C-V线性度相对于单一电压偏置的可变电容C-V线性度提高了14%。图7对三种偏压组合(0V、0.6V、1.2V)的LC-VCO和单一偏压(均为0.6V)的LC-VCO在7GHz载波频率下的相位噪声进行了对比,可以看出,在频偏1MHz处,采用本发明方案的相位噪声比单一偏压LC-VCO的相位噪声降低了2.31dB。
综上所述,本发明的低功耗低相位噪声LC-VCO结构,可以随着振荡频率的变化改变负阻提供的能量,不必一直提供最大能量,因此可以降低电路功耗。另外,采用不同偏压组合的可变电容结构,可以提高可变电容的C-V线性度,从而降低LC-VCO的相位噪声。
以上实施方式仅用于说明本发明,而非对本发明的限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行各种组合、修改或者等同替换,都不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

Claims (7)

1.一种低功耗低相位噪声电感电容压控振荡器,其特征在于,该电感电容压控振荡器包括由ind、C0、Mn1、Mn2和Mn0构成的一个基本的振荡单元CELL0,所述ind是一个三端电感,所述C0是固定电容,ind和C0构成基本的振荡单元LC Tank;NMOS管Mn1和Mn2形成交叉耦合负阻给LC Tank提供能量,同时将栅接Vdd的NMOS管Mn0作为尾电流源接到Mn1和Mn2的源极与地之间;在CELL0基础上并联了3bits,即SW1、SW2、SW3控制的三个CELL,即CELL1、CELL2和CELL3,每个CELL包括开关控制的固定电容和负阻;在CELL0基础上还并联了由Vbias1、Vbias2和Vbias3控制的三组可变电容的组合;在开关选通某个CELL的固定电容同时开关的反信号关断此CELL的尾电流源NMOS管。
2.根据权利要求1的低功耗低相位噪声电感电容压控振荡器,其特征在于,上述CELL1的结构如下:SW1接到NMOS管Mn3和Mn4的栅极,Mn3和Mn4的源极接地,Mn3漏极和VCOP之间接固定电容C3,Mn4漏极和VCON之间接固定电容C4,SW1经过反相器后接到尾电流源NMOS管Mn7的栅极,NMOS管Mn5和Mn6形成交叉耦合负阻,Mn5的漏极接VCOP,Mn6的漏极接VCON,Mn7接在Mn5和Mn6的源极与地之间;上述CELL2和上述CELL3的结构与上述CELL1结构相同。
3.根据权利要求1的低功耗低相位噪声电感电容压控振荡器,其特征在于,由上述Vbias1控制的可变电容结构如下:固定电容C1接在VCOP和可变电容Cvar1的阴极之间,固定电容C2接在VCON和可变电容Cvar2的阴极之间,可变电容调节电压Vtune接到Cvar1和Cvar2的阳极;可变电容偏置电压Vbias1通过大电阻R1和R2分别接到Cvar1的阴极和Cvar2的阴极;由上述Vbias2和上述Vbias3控制的可变电容结构与上述Vbias1控制的可变电容结构相同。
4.根据权利要求1的低功耗低相位噪声电感电容压控振荡器,其特征在于,采用三种不同电压Vbias1、Vbias2和Vbias3偏置的可变电容并联组合。
5.根据权利要求1的低功耗低相位噪声电感电容压控振荡器,其特征在于,控制固定电容阵列信号的反信号同时控制着对应于该固定电容阵列的带尾电流源的交叉耦合负阻;可变电容阵列采用三种不同电压偏置并联组成。
6.根据权利要求1至5其中任一项的低功耗低相位噪声电感电容压控振荡器,其特征在于,开关控制的固定电容阵列及负阻单元扩展至多个;不同偏置电压控制的可变电容并联组合也扩展至多个偏置电压控制。
7.根据权利要求1至5其中任一项的低功耗低相位噪声电感电容压控振荡器,其特征在于,带尾电流源的NMOS交叉耦合负阻换成带尾电流源的PMOS交叉耦合负阻。
CN201410239798.5A 2014-05-30 2014-05-30 低功耗低相位噪声电感电容压控振荡器 Active CN103997337B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410239798.5A CN103997337B (zh) 2014-05-30 2014-05-30 低功耗低相位噪声电感电容压控振荡器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410239798.5A CN103997337B (zh) 2014-05-30 2014-05-30 低功耗低相位噪声电感电容压控振荡器

Publications (2)

Publication Number Publication Date
CN103997337A true CN103997337A (zh) 2014-08-20
CN103997337B CN103997337B (zh) 2017-01-04

Family

ID=51311361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410239798.5A Active CN103997337B (zh) 2014-05-30 2014-05-30 低功耗低相位噪声电感电容压控振荡器

Country Status (1)

Country Link
CN (1) CN103997337B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107437938A (zh) * 2016-05-25 2017-12-05 深圳骏通微集成电路设计有限公司 一种压控振荡器电路
CN107771373A (zh) * 2015-05-18 2018-03-06 高通股份有限公司 具有副本偏置的高速的ac耦合的基于反相器的缓冲器
CN109643972A (zh) * 2016-08-23 2019-04-16 瑞典爱立信有限公司 电容器开关晶体管的偏置电路和其方法
CN110557093A (zh) * 2019-07-29 2019-12-10 深圳市华奥通通信技术有限公司 一种lc传感器及其控制方法、计算机可读存储介质
CN112003613A (zh) * 2020-09-02 2020-11-27 重庆西南集成电路设计有限责任公司 双核并联跨导线性化低相噪压控振荡器
CN116633271A (zh) * 2023-05-31 2023-08-22 成都电科星拓科技有限公司 解决vco电容开关过压的方法、电路、锁相环及芯片

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100438325C (zh) * 2005-12-01 2008-11-26 清华大学 用于模拟集成电路设计中的分段式交叉耦合mos管
JP5655534B2 (ja) * 2009-12-18 2015-01-21 日本電波工業株式会社 電圧制御可変容量及び電圧制御発振器
CN101820250B (zh) * 2010-04-15 2012-05-30 复旦大学 一种宽带正交双模压控振荡器
CN102545783B (zh) * 2010-12-28 2014-12-17 杭州中科微电子有限公司 一种宽频率调谐范围lc-vco

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107771373A (zh) * 2015-05-18 2018-03-06 高通股份有限公司 具有副本偏置的高速的ac耦合的基于反相器的缓冲器
CN107771373B (zh) * 2015-05-18 2021-02-12 高通股份有限公司 具有副本偏置的高速的ac耦合的基于反相器的缓冲器
CN107437938A (zh) * 2016-05-25 2017-12-05 深圳骏通微集成电路设计有限公司 一种压控振荡器电路
CN107437938B (zh) * 2016-05-25 2020-11-06 深圳骏通微集成电路设计有限公司 一种压控振荡器电路
CN109643972A (zh) * 2016-08-23 2019-04-16 瑞典爱立信有限公司 电容器开关晶体管的偏置电路和其方法
CN109643972B (zh) * 2016-08-23 2023-12-15 瑞典爱立信有限公司 电容器开关晶体管的偏置电路和其方法
CN110557093A (zh) * 2019-07-29 2019-12-10 深圳市华奥通通信技术有限公司 一种lc传感器及其控制方法、计算机可读存储介质
CN112003613A (zh) * 2020-09-02 2020-11-27 重庆西南集成电路设计有限责任公司 双核并联跨导线性化低相噪压控振荡器
CN112003613B (zh) * 2020-09-02 2023-11-21 重庆西南集成电路设计有限责任公司 双核并联跨导线性化低相噪压控振荡器
CN116633271A (zh) * 2023-05-31 2023-08-22 成都电科星拓科技有限公司 解决vco电容开关过压的方法、电路、锁相环及芯片

Also Published As

Publication number Publication date
CN103997337B (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
CN103997337A (zh) 低功耗低相位噪声电感电容压控振荡器
CN100514840C (zh) 对称化线性压控振荡器
US9490745B1 (en) Voltage-controlled oscillator
CN104143977B (zh) 一种压控振荡器
CN108199687B (zh) 跨导线性化宽带lc型压控振荡器及可调电容阵列电路
US9041477B2 (en) Voltage-controlled oscillator
TW200711289A (en) Voltage controlled oscillator and radio communication set
CN102545783B (zh) 一种宽频率调谐范围lc-vco
CN106487382A (zh) 一种多模分频的注入锁定分频器
CN103460579A (zh) 减小电荷泵浪涌电流
CN103956986B (zh) 高q值可调谐差分式有源电感
US20130241661A1 (en) Voltage-controlled oscillator module and method for generating oscillator signals
US20140159825A1 (en) Voltage controlled oscillator with low phase noise and high q inductive degeneration
CN107276538B (zh) 射频压控振荡器
CN110061697A (zh) 低电源电压下、具有宽调谐范围的毫米波压控振荡器
KR20080112813A (ko) 능동 인덕터를 이용한 전압제어 발진기
CN102064824B (zh) 具有轨到轨电压调节范围的高速高带宽vco延迟单元
Wan et al. A very low power quadrature VCO with modified current-reuse and back-gate coupling topology
Neeraja et al. Review of Ultra Low Power Receiver Front-end Designs
CN104052472A (zh) 一种低相位噪声lc-vco
Ying et al. A 1mW 5GHz current reuse CMOS VCO with low phase noise and balanced differential outputs
EP3829056B1 (en) Quadrature oscillator circuitry and circuitry comprising the same
Gao et al. A 1.6–10.9 GHz voltage-controlled ring oscillator for the serial interface of high-speed data converters
CN105743496A (zh) 一种工作在近阈值电源电压下的数控振荡器
CN112737510A (zh) 一种压控振荡器、压控振荡处理方法及电子设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant